

Security Engineering

Lecture 17 - OS/VM Security
Fabio Massacci
(with W2K courtesy of D. Gollmann)

Security Engineering

Some Misinterpreted Pictures..

- The picture is "evocative"
 - but this is NOT the reality
- A "descriptive" picture would include all the different software and protocol stacks
 - A MSc student in CS should know the actual reality...
 - And reason on what is really going on

Massacci - Paci - Security Engineering

A misconception

- I don't need OS security because I consider smart sensors and
 - they use machine-to-machine communication
 - they communicate either with wireless or power-lines
 - So once we secure the network we are done
- I don't need safety belts on my delivery van because
 - we only deliver groceries door-to-door
 - we drive either on state roads or on country roads
 - So once we put brakes we are done

Massacci - Paci - Security Engineering

ingineering

What is a smart sensor?

• Basically a Phone with a GSM Card

Some Security Technologies

• Transport Layer Security protocol, ver 1.0

- Confidentiality and data integrity between two communicating applications
- Protect information transmitted between browsers and Web servers
- Deployed in nearly every web browser
- IPSec authentication
 - confidentiality, authentication, key management
- Where do we position them in the real picture?

Massacci - Paci - Security Engineering

▶

A Simple Model of the OS/VM

- A system is a collection of running processes and files.
 - processes perform actions on behalf of a user
 - open, read, write files read, write, execute memory, etc.
 - files have access control lists dictating who can do users what
- Simple policy goals
 - Integrity: processes running on behalf of user A shouldn't be able to corrupt the code, data, or files of user B nor interfere with the latter processes.
 - Availability: processes should eventually gain access to resources such as the CPU or disk.
 - Confidentiality: same as integrity (replace "corrupt" → "read")
- More sophisticated goals
 - Access control following a RBAC/MAC model

Massacci - Paci - Security Engineering

W2K System Architecture

11/19/2015

MASSACCI - System Security - UNITN Slides Courtesy of D. Gollmann

Windows 2000

- W2K is based on Windows NT
 - most security features on NT also in W2K.
- W2K comes in various flavours
 - Workstation, Server, Advanced Server and Datacenter.
 - The basics are the same in all cases, but the administration is different.
- In this lecture
 - Workstation and Server

11/19/2015

MASSACCI - System Security - UNITN -Slides Courtesy of D. Gollmann

Security Components

- Object Manager
 - Manages objects, including files, folders, ports, processes and threads; is in charge of naming, maintaining security, allocating and disposing of objects.
- Security Reference Monitor (SRM)
 - Validates access rights; compares a process' access token with an object's ACL and determines whether the requested access is granted; called by the Object Manager.
- Programs cannot access objects directly all accesses channelled through the O.S.

1/10/2015

MASSACCI - System Security - UNITN Slides Courtesy of D. Gollmann

Additional Security Objectives

Authentication

- Single sign-on in the enterprise
- Strong authentication
- Active Directory (AD)

Access Control

- Usage of security policies
- Integrated security services
- Delegation and scalability of administration
- Standards-based protocols for interoperability
- Auditing services

11/19/2019

MASSACCI - System Security - UNITN -Slides Courtesy of D. Gollmann

User Management (III)

- There are a number of predefined groups for a domain, mainly for management tasks
- Administrators
 - Users with rights to manage the system
- Account Operators
 - Users with rights to manage user accounts.
- Server Operators
 - Users with rights to manage servers.
- Users
 - Normal users with accounts
- Guests
 - Users without accounts who have restricted rights.
- etc

MASSACCI - System Security - UNITN 11/19/2015

Slides Courtesy of D. Gollmann

W2K Security Subsystem

Authentication

- Active Directory (AD) Service users, group policies
- Kerberos (v5) authenticates all W2K machines, and clients that support Kerberos authentication.
- Secure Sockets Layer (SSL) encrypted channel for authentication.
- NTLM protocol for logon to local user account; also supported in domain logons for older Windows machines.

Access Control

- Local Security Authority (LSA) the TCB: generates access tokens, manages local security policies, provides authentication for user logons.
- Security Accounts Manager (SAM) database of local users and accounts; used for local user authentication; stored locally on all non-domain controlled W2K machines.
- Security Reference Monitor (SRM) see previous slide

11/19/2015

MASSACCI - System Security - UNITN Slides Courtesy of D. Gollmann

Access Control

- Two mechanisms are used when a user attempts to access an object
 - User Rights
 - Discretionary Access Control Lists (DACLs).

All objects have Security Descriptors

- The SID of the user who owns the object, usually the creator of the object.
- The DACL, which holds information about which users or groups can access the object. A DACL is a list of Access Control Entries (ACEs).
- A System Access Control List (SACL) which defines the auditing policy for the object.

MASSACCI - System Security - UNITN Slides Courtesy of D. Gollmann

The Simple Way: User Rights

- Authorise users or groups to perform specific actions.
 - Actually the SID associated with the user or group
 - Many possibilities and must be handled with care.

Right	Description	Default Groups
Act as part of the OS	Allows a user or group to run a process as a trusted part of the OS	None
Bypass traverse checking	Allows users/groups to traverse folders for which they have no access to allow access to a child folder to which they do have access.	Everyone Administrators Authenticated Users
Change the system time	Allows a user or group to set the system time of the computer	Administrators Server Operators Power Users

11/19/2015

MASSACCI - System Security - UNITN - Slides Courtesy of D. Gollmann

DACL (Intuition)

MASSACCI - System Security - UNITN Slides Courtesy of D. Gollmann

Potentially Dangerous Rights

- Some user rights have a high degree of risk associated with their possible misuse
- Potentially dangerous rights must only be assigned to users/groups that actually need them.
 - Act as part of the operating system
 - Create a token object
 - Add workstations to a domain
 - Back up files and directories
 - Change the system time
 - Debug programs
 - Increase scheduling priority
 - Increase quotas
 - Load and unload device drivers
- · Try to answer why for each of them

11/19/2015

MASSACCI - System Security - UNITN -Slides Courtesy of D. Gollmann

Auditing

- · W2K auditing is an Administrator function
 - can be assigned to an "Auditor" group
- Audit event categories include (can set audit success and/or fail)
 - System events
 - Process Tracking
 - Privilege use
 - Policy change
 - Object access (i.e SACL)
 - Logon events
 - Directory Service access
- · Security Log can be accessed via the Event Viewer.
- Filtering options can be applied, logs can be saved to file, log sizes can be restricted, etc.

1/19/2015

MASSACCI - System Security - UNITN Slides Courtesy of D. Gollmann

11/19/2015

entire DACL

Auditing (cont)

Decisions

- what information needs to be collected.
- what information does not need to be collected.
- who should have access to the information.

Actions

- Configure the system as appropriate to the environment.
- Use a third-party log consolidation product if it is not practical to review all logs manually.
- Review the information and, if necessary, act upon it.

Important criterias

- What current Laws ask you to do?
- What is useful for Computer Forensic?
- Never store something you'll never look at (except for previous two exceptions)

11/19/2015

MASSACCI - System Security - UNITN - Slides Courtesy of D. Gollmann

Security Attack on HBGary

Casus Belli

 CEO Aaron Barr stated he would reveal Anonymous member.

The beach head

- A custom written CMS application was exploited with SQL injection and the usernames/passwords were dumped from the users table.
- The passwords were hashed with MD5 but not salted so simple rainbow tables cracked some of the passwords.
 - The CEO and COO had passwords were six lower-case letters and two numbers.
 - Now the attackers had access to the CMS plus whoever re-used these passwords

What can go wrong?

- read/write/execute or change ACL of a file for which process doesn't have proper access.
 - checkfileaccessagainstACL
- process writes (or reads) into memory of another process
 - Isolate memory of each process (don't forget OS, network and device services etc. etc.)
- · process pretends it is the OS and execute its codes
 - maintain process ID and keep certain operations privileged
 - need some way to transition and avoid process transition back
- process never gives up the CPU
 - force process to yield in some finite time
- · process uses up all the memory or disk
 - Enforce quotas
- OS is buggy ... Oops.

Massacci - Paci - Security Engineering

Security Attack on HBGary

A first inroad

- One password cracked was reused and had SSH non-root access to support.hbgary.com.
- Elevated to root access using a known local privilege-escalation vulnerability of an unpatched.
- Gigabytes of research info removed

A second inroad

Same passwords used in Google, Twitter, and LinkedIn. CEO's was admin for Google Apps Mail
 By resetting users passwords, could gain access.

Finally

- One accounts, "Greg Hoglund", disclosed two potential root account passwords to a rootkit.com server. Also revealed that a Nokia employee had SSH access to that server.
- ssh as root not allowed so attacker impersonated "Greg Hoglund" and wrote to Nokia employee to get ssh onto server
- Once on server was able to elevate to root
- They defaced the server...

Massacci - Paci - Security Engineering

What an OS should have?

- reliable access to information about what the App is about to do
 - what instruction is it about to execute?
 - Which data is going do be read ot written
- ability to "stop" the application
 - can't stop a program running on another machine that you don't control
 - really, stopping isn't necessary, but transition to a "good" state.
- Ability to protect the OS's state and code from tampering.
 - key reason why a kernel's data structures and code aren't accessible by user code.
- More and above all that > low overhead.

Massacci - Paci - Security Engineering

How a Classical OS Works

Massacci - Paci - Security Engineering

How does it work at Hw level?

- Translation Lookaside Buffer (TLB)
 - provides an inexpensive check for each memory access.
 - mapsvirtualaddresstophysicaladdress
 - small, fully associative cache (8-10 entries) cache miss triggers a trap
 - granularity of map is a page (4-8KB)
- Distinct user and supervisor modes
 - certain operations (e.g., reload TLB, device access) require supervisor bit is set
 - Invalid operations cause a trap
- Setsupervisor bit and transfer control back to OS routine.
 - Timer triggers a trap for preemption and avoids hijacking

Massacci - Paci - Security Engineering

MicroKernels

- The smaller the VMM/Sandbox the better
 - Increase Flexibility,
 - Minimize the TCB
- A big push for microkernels
 - Mach, Spring, etc.
- Only put bare minimum into the kernel.
 - context switching code. TLB management
 - trap and interrupt handling device access
- Run everything else as a process.
 - file systems networking protocols page replacement algorithm
- Component Sub-systems communicate via remote procedure call (RPC)

How Micro-Kernels works

Massacci - Paci - Security Engineering

The curse of performance

- If performance was not an issue an OS could:
 - examine the entire history and the entire machine state to decide whether or not to allow an instruction.
 - perform an arbitrary computation to decide whether or not to allow a transition.
 - Use a distinct instruction set (and processor) from the program
- · In practice, most systems must
 - keep a small piece of state to track mostr recent history
 - only look at labels on the transitions
 - have small and few labels
 - perform simple tests
 - use (almost) the same instruction set
- Otherwise, the overheads would be overwhelming.
- So policies are practically limited by the vocabulary of labels, the complexity of the tests, the state maintained by the OS/VM, and the potentially different instructions

Massacci - Paci - Security Engineering

Performance trumps...

- Claim was that flexibility and increased assurance would win
 - But performance overheads were non trivial
 - Many PhD's on minimizing overheads of communication
 - Even highly optimized implementations of RPC cost 2/3 orders of magnitude more than a
- Result: micro-kernel won't fly
- Some embedded or specialized kernels (e.g., Exokernel)
- Windows, Linux, Solaris
 - continue the monolithic tradition.
 - and continue to grow for performance reasons (e.g., GUI) and for functionality gains (e.g., specialized file systems.)
- Mac OS X, Free BSD
 - Originally based on Mach, but nowadays
 - "The OS X kernel environment includes the Mach kernel, BSD, the I/O Kit, file systems, and networking components."
- VMware
 - achieves multiple personalities but has monolithic personalities sitting on top

Massacci - Paci - Security Engineering

Two Alternative Protection models

Sandboxing

- Does not emulate computer's hardware
- Alters interface between computer, process
- Requires only software support

Virtual machines

- Emulate computer's hardware
- "Guest" entity cannot access underlying computer system
- Requires absolutely hardware support

Sandboxes

- Environment in which actions of process are restricted according to security policy
 - Program to be executed is not altered,
 - Implementation of "Interface" instructions with devices is changed
 - Can add extra security-checking mechanisms to libraries, kernel, drivers, etc.
 - Similar to debuggers, profilers that add breakpoints
 - Example → JavaVM, Browsers, Android etc.
- Sometimes can modify program or process to be executed
 - Add code to do extra checks (memory access, etc.) as program runs (software fault isolation)
 - Not truly sandboxing in this case → in-line monitor
 - Example → Software Fault Isolation

Massacci - Paci - Security Engineering

Additional Readings

- Gollmann Computer Security
 - Ch. 8 Operating Systems
 - Ch. 9 Databases
- Mac OS X kernel Information
 - https://developer.apple.com/library/mac/documentat ion/Darwin/Conceptual/KernelProgramming/Architect ure/Architecture.html
- On exploiting execution path to gain control of Applications and OS
 - Tutorial by Lucas Davi, ESWeek 2015

19/11/2015 Massacci-Paci Security Engineering

35

Virtual Machine

- A program that simulates hardware of computer system and reports results back to Application
 - Classical OS is essentially the first "virtualization" of the physical hardware
- Virtual machine monitor (VMM, "hypervisor") provides VM on which conventional OS can run
 - Each VM is one subject;
 - VMM doesn't worry about processes running inside each VM
 - up to the VM manager to make sure they are properly secure
 - VMM mediates all interactions of VM with resources or other VMs