
11/10/17	

1	

Offensive	technologies	
Fall	2017	

Lecture	5	–	Crea;ng	Shell	Code	
Fabio	Massacci	

11/10/17	 Fabio	Massacci	-	Offensive	Technologies		 1	

Ethical	Acceptance	
•  You	are	bound	by	the	terms	and	condi;ons	of	this	course	

–  You	try	offensive	technologies	only	in	the	lab	
–  You	are	not	allowed	to	disclose	informa;on	about	any	
individual	that	you	find	during	the	analysis		

–  Your	final	deliverable,	as	approved	by	the	professor	is	the	only	
public	deliverable	you	are	allowed	to	disclose	to	third	par;es	

•  Any	use	outside	the	agreed	framework	of	the	course	may	
be	penally	relevant	(i.e.	a	crime)	
–  Everything	is	isolated	from	rest	of	infrastructure	à	you	must	
deliberately	exfiltrate	material	à	cannot	claim	that	“happened	
by	mistake”	

–  The	same	considera;ons	apply	if	you	give	material	to	other	
students	who	have	not	signed	the	agreement	à	aiding	and	
abeSng	=	same	penal	responsibility	as	if	you	did	it	yourself.	

11/10/17	 Fabio	Massacci	-	Offensive	Technologies		 2	

11/10/17	

2	

Key	Idea	of	any	type	of	exploit	
•  Send	data	to	a	complex	web/stack	of	applica;ons	
•  Some	bug	in	the	data	processing	flow	makes	a	component	

take	an	unexpected	turn	
•  If	you	are	lucky	the	wrong	turn	of	control	is	all	you	need	

–  Example:	access	control	error	à	grant	you	access	with	admin	
privileges	on	a	web	server	

•  Else	the	data	itself	must	be	executed	to	transfer	you	the	
control	
–  If	you	are	lucky	the	data	is	directly	executable	at	the	wrong	turn	

•  Example:	SQL	injec;on	(or	JS	Eval)	à	data	is	directly	executed	by	the	
DB	(or	WS)	

–  Else	you	must	somewhat	encode	it	in	the	data	
•  Example:	Buffer	Overflow	and	shell	code	injec;on	

11/10/17	 Fabio	Massacci	-	Offensive	Technologies		 3	

Turing	Completeness	
•  Theore;cal	constructs	needed	to	execute	an	arbitrary	func;on?	

–  Array	of	memory	loca;ons	storing	integers	
–  Test	on	zero	on	memory	loca;ons	
–  Addi;on	of	values	in	memory	loca;ons	

•  Subtrac;on	makes	life	easier	but	it	is	not	necessary	
–  While	loop	

•  Typically	implemented	by	condi;onal	jumps	
–  Assignments	to	and	from	memory	loca;ons	

•  Addi;onal	prac;cal	requirements	
–  Assignments	to	and	from	registers	

•  Modern	architectures	don’t	usually	make	math	opera;ons	on	memory	loca;ons	
–  Loca;ng	addresses	of	func;ons	in	memory	

•  Otherwise	you	can’t	jump	on	them	
–  Deploying	func;ons	in	memory	
–  Ini;alizing	EIP	(Instruc;on	Pointer)	

•  The	computer	needs	to	know	where	to	start	

11/10/17	 Fabio	Massacci	-	Offensive	Technologies		 4	

11/10/17	

3	

How	to	ship	the	code	to	the	machine	

1.	Send	fragment	
to	get	a	foothold	
into	the	machine	

4.	Next	fragment	
to	bootstrap	the	

execu;on	

4.1	Next	fragment	
generate	the	code	
that	you	need	in	

vivo	

4.2	Fragments	uses	
bits	and	pieces	of	

code	that	is	
already	there	

2.	Send	everything	
you	need	to	
execute	

3.	Next	fragment	
to	open	an	

interac;ve	session	

3.1	Execute	the	
interac;ve	session	
with	all	code	you	

need	

11/10/17	 Fabio	Massacci	-	Offensive	Technologies		 5	

Registers	
•  eax,	ecx,	edx,	ebx	à	general	purpose	registers	

–  Accumulator,	Counter,	Data,	Base	registers	
–  Basically	for	everything	(not	really	true,	some	operands	used	them	in	

especial	ways)	
•  esp,	ebp	à	stack	and	base	pointers	
•  esi,	edi	à	source	index,	des;na;on	index		

–  Used	to	copy	things	in	bulk,	some	instruc;on	needs	them	but	for	us	
they	are	just	general	registers	

•  eip	à	instruc;on	pointer	
–  Where	the	next	instruc;on	is	

•  eflags	à	several	bit	flags	used	for	comparison	and	memory	
segmenta;on	
–  This	is	only	for	very	advanced	users	and	I	would	need	to	look	out	for	

what	they	are	

11/10/17	 Fabio	Massacci	-	Offensive	Technologies		 6	

11/10/17	

4	

Stack	Grows	Downward	(i.e.	higher	
addresses	are	at	the	bolom)	

Return	Variable	

• Return	Variable	
• Nothing	really	happens	here	(however	we	could	also	change	that)	

Func;on	Local	
Variables	

• Func;on	Local	Variables	
• This	the	place	where	the	buffer	overflow	takes	place	

Saved	Frame	
Pointer	

• Stack	Frame	Pointer	
• We	ignore	this	point	for	the	;me	being	(it	is	only	used	in	the	func;on)	

Return	Address	
(ret)	

• Return	Address	for	calling	func;on	
• This	is	the	place	we	want	to	change	to	a	suitable	return	address	poin;ng	up	

Func;on	
Arguments	

• Func;on	arguments	
• Place	where	the	arguments	of	the	called	func;on	are	stored	

Calling	Func;on	
Stack	Frame	

• Calling	Func;on	Stack	Frame	
• This	is	the	stack	frame	of	the	calling	func;on	

11/10/17	 Fabio	Massacci	-	Offensive	Technologies		 7	

What	happens	with	Overflow	

RET	Var	
•  Return	Variable	

Loc	Vars	
•  Func;on	Local	Variables	à	PARTLY	OVERWRITTEN	

SFP	
•  Stack	Frame	Pointer	à	OVERWRITTEN	

RET	
•  Return	Address	à	OVERWRITTEN	ß	Must	point	to	LocVars	

FA	
•  Arguments	àPOSSIBLY	OVERWRITTEN	

CSF	
•  Calling	Func;on	Stack	Frame	à	POSSIBLY	OVERWRITTEN	

11/10/17	 Fabio	Massacci	-	Offensive	Technologies		 8	

11/10/17	

5	

Making	shell	code	more	robust	
•  Difficul;es	

–  Shellcode	may	be	either	too	small	or	too	large	
–  Return	address	might	not	be	precisely	known	

•  We	extend	the	shell	code	
–  «Bolom»	of	the	code	with	NOP	(\x90)	
–  Shell	code	we	want	to	execute	
–  «Top»	of	the	code	with	copies	of	the	tenta;ve	return	address	
–  SHELLCODE=$(perl	-e	'print	"\x90"	x	200')$(cat	shellcode.txt)$(perl	-e	'print	

"return	address	in	exa"	x	40‘)	
•  Beware	return	address	for	lille	endian	à	address	0x08048d70	à	string	

\x70\x8d\x04\x08	
•  Ret	on	«top»	of	the	code	will	actually	point	downward	so	eip	will	move	upward	

•  How	do	we	know	the	return	address?	
–  Well,	try	and	experiment	(ASLR	makes	things	difficult)	à	Chap.	0x330	in	book	

11/10/17	 Fabio	Massacci	-	Offensive	Technologies		 9	

Other	places	to	overflow	
•  We	don’t	always	need	to	send	shellcode	through	a	buffer	in	the	

stack	
•  Environmental	Variables	are	helpful	

–  We	need	ret	address	to	point	at	the	environmental	variable	where	the	
shellcode	is	

–  Always	at	the	beginning	of	the	stack	à	very	lille	uncertainty	on	
where	they	are!	

•  System	calls	that	require	enviroments	are	also	helpful	
–  execle(comm,args[],env[])	
–  env[]	is	list	of	environmental	variables	terminated	by	a	NULL	pointer	
–  Now	if	shellcode	is	an	environmental	variable	and	we	make	sure	it	is	

terminated	by	a	null	pointer	à	every	other	var	will	be	ignored	à	
shellcode	will	be	last	var	
•  We	only	need	to	put	the	return	address	in	the	buffer	and	this	determinis;cally	

starts	from	the	bolom	of	the	stack	of	the	process	

11/10/17	 Fabio	Massacci	-	Offensive	Technologies		 10	

11/10/17	

6	

More	places	to	overflow	
•  Heap		

–  There	are	places	to	return	control	but	progressively	harder	
–  Simple	mechanism	is	to	actually	change	files/environmental	variables/	etc	that	are	

manipulated	by	the	vic;m	
•  Write	to	/etc/passwd	instead	of	/tmp/printer-spooler	
•  Change	argument	to	a	legi;mate	system	call	so	that	argument	is	$(execute	this)	

•  bbs	
–  Contains	global	variables,	for	example	func;on	pointers	
–  If	a	global	variable	could	be	overflown	à	func;on	pointer	below	it	can	be	overflown	

•  Either	do	wrong	thing	with	an	exis;ng	func;on	à	cannot	be	prevented	in	any	way	by	the	OS	
protec;on	measures	eg	unexecutable	stack	(why?)	

•  Or	Execu;ng	shellcode	from	either	input	or	shell	variable	

•  .dtors	(destructuctors)	
–  Func;ons	called	to	cleanup	for	program	func;ons	a|er	main	exit	à	normally	writable	

•  Global	Offset	Table	à	shared	libraries	
–  Program	linking	table	is	write	only	but	it	jumps	to	pointers	to	address	
–  Addresses	are	in	the	GOT	and	they	can	poten;ally	be	rewilen	(eg	the	exit()	func;on	

11/10/17	 Fabio	Massacci	-	Offensive	Technologies		 11	

Self-loca;ng	code	
•  We	o|en	need	the	absolute	address	in	the	program	

–  For	example	to	jump	at	an	address	
–  Equally	absolute	pointers	are	needed	for	accessing	constant	strings,	data	etc.	

•  BUT	Shellcode	is	injected	into	the	program		
–  it	cannot	be	«linked»,	memory	layout	has	not	be	calculated	by	the	compiler/

loader,	we	don’t	know	absolute	addresses	in	general	etc.	
–  Need	to	be	posi;on	independent	

•  We	use	the	stack’s	opera;ons	kindly	provided	by	the	CPU	
–  call	<loca;on>	à	call	a	func;on	and	jump	to	the	address	in	the	<loca;on>	

operand	(absolute	or	rela;ve),	the	address	of	the	instruc;on	a|er	the	call	is	
pushed	to	the	stack		
•  Actual	interpreta;on	à	«whatever	X	is	in	the	memory	address	a|er	a	call	is	interpreted	

as	an	instruc;on	whose	ABSOLUTE	address	is	pushed	into	the	stack	as	a	return	address»	
–  This	make	sense	as	we	are	not	supposed	to	have	a	call	to	a	func;on	in	the	middle	of	data,	aren’t	

we?	
•  We	don’t	need	to	know	the	address	now,	the	OS	will	do	it	for	us	

–  Ret	à	pop	the	return	address	from	the	stack	à	we	got	an	absolute	address	to	
«whatever	X»	

11/10/17	 Fabio	Massacci	-	Offensive	Technologies		 12	

11/10/17	

7	

Example	of	linkable	vs	self-loca;ng	
programs	

Linkable	Hello	World	
BITS	32 	 	 	;tell	assembler	is	32	BITS	
sec;on	.data		 	 	;Data	segment	
msg	db	"Hello,	world!",	0x0a,	0xd	;	string,	newline,	
carriage	return	
sec;on	.text 	 	 	;Code	segment	
global	_start 	 	 	;default	entry	point	for	ELF	
linking	
	
_start:	

	mov	ecx,	msg 	 	;put	address	of	string	in	ecx	
	mov	eax	4 	 	;write	is	syscall	#4	
	mov	ebx,	1 	 	;stdout	is	1	
	mov	edx,	15 	 	;put	length	of	string	in	edx	
	int	0x80 	 	;SYSCALL:	write(1,msg,14)	

mov	eax,	1	 	 	 	;exit	is	syscall	#1	
mov	ebx,	0 	 	 	;	exit	with	success	
int	0x80 	 	 	;SYSCALL	exit(0)	

Self-locaCng	Hello	World	
BITS	32 	 	 	;tell	assembler	is	32	BITS	

	 	 	;no	explicit	data	segment	
	 	 	;no	explicit	code	segment	
	 	 	;no	entry	point	for	ELF	linking	

call	myself	
db	"Hello,	world!",	0x0a,	0xd	 	;	string,	
newline,	carriage	return	
myself:	

	pop	ecx 	 	;load	address	of	string	in	ecx	
	mov	eax	4 	 	;write	is	syscall	#4	
	mov	ebx,	1 	 	;stdout	is	1	
	mov	edx,	15 	 	;put	length	of	string	

in	edx	
	int	0x80 	 	;SYSCALL:	write(1,msg,14)	

mov	eax,	1		 	 	;exit	is	syscall	#1	
mov	ebx,	0 	 	 	;	exit	with	success	
int	0x80 	 	 	;SYSCALL	exit(0)	
	

11/10/17	 Fabio	Massacci	-	Offensive	Technologies		 13	

Polyglot’s	misinterpreta;on	goes	both	
ways	

•  General	Problem	with	Polyglots	
–  Hacker	compile	«code»	into	«data»	à	send	«data»	to	Vic;m(s)	à	Vic;m	1	

pass	«data»	to	Vic;m	2	à	…	à	Vic;m	n	(mis)interpret	it	as	«code»	and	
executes	it	

–  Hacker	compile	«code»	into	«data»	à	send	«data»	to	Vic;m(s)	à	Vic;m	1	
pass	«data»	to	Vic;m	2	à	…	à	Vic;m	j	(mis)interpret	it	as	«data»	and	
corrupts	it…	à	Vic;m	n	interpret	it	as	«code»	but	code	has	been	corrupted…	

•  When	shipping	shellcode	around	à	it	is	interpreted	as	strings	à	null	byte	
stops	the	string	à	any	0ed	byte	is	interpreted	as	a	null	string	and	the	shell	
code	is	abruptly	truncated	
–  Example:	shell	code	is	small	à	jumps	are	small	but	address	are	on	32+	bits	à	

leading	zeros	create	null	bytes	when	reverted	in	lille	endian	à	ahi	ahi	
–  Another	example	"mov	eax,	0x4"	=	"B8	04	00	00	00"	in	binary	à	as	soon	as	

the	input	analyzer	arrives	to	the	00s	the	code	is	truncated	
•  Similar	issues	with	other	executable	languages	(eg	escape	characters)	

11/10/17	 Fabio	Massacci	-	Offensive	Technologies		 14	

11/10/17	

8	

Various	solu;ons	to	avoid	null	bytes	

•  Make	short	jumps		
– So	the	program	won’t	fill	with	leading	zeros		
– Trade-off	can	jump	at	most	128bytes	either	way	
à	ok	shell	code	is	short	

•  Use	two-complement	
–  jump	at	the	end	of	the	program	(higher	address)	
–  jump	backward	so	this	is	a	small	nega;ve	number	
à	leading	bit	turned	on	à	0xff	(lille	endian)		

11/10/17	 Fabio	Massacci	-	Offensive	Technologies		 15	

This	shellcode	should	work…	but	
doesn’t	

Linkable	Hello	World	
call	myself 	 	 	;	many	zeros	
db	"Hello,	world!",	0x0a,	0xd 		
myself:	

	pop	ecx 	 	;load	address	of	string	
in	ecx	

	mov	eax	4	 	;write	is	syscall	#4	
	mov	ebx,	1 	 	;stdout	is	1	
	mov	edx,	15 	;put	length	of	string	in	edx	
	int	0x80 	 	;SYSCALL:	write(1,msg,

14)	
mov	eax,	1	 	 	 	;exit	is	syscall	#1	
mov	ebx,	0 	 	 	;	exit	with	success	
int	0x80 	 	 	;SYSCALL	exit(0)	
	
;	

Self-locaCng	Hello	World	
jmp	short	endofprogram	
	
myself:	

	pop	ecx 	 	;load	address	of	string	in	ecx	
	mov	eax	4 	 	;write	is	syscall	#4	
	mov	ebx,	1 	 	;stdout	is	1	
	mov	edx,	15 	 	;put	length	of	string	

in	edx	
	int	0x80 	 	;SYSCALL:	write(1,msg,14)	

mov	eax,	1		 	 	;exit	is	syscall	#1	
mov	ebx,	0 	 	 	;	exit	with	success	
int	0x80 	 	 	;SYSCALL	exit(0)	
endofprogram:	

	call	myself	
	db	"Hello,	world!",	0x0a,	0xd	

11/10/17	 Fabio	Massacci	-	Offensive	Technologies		 16	

11/10/17	

9	

More	zeros	and	more	ways	to	avoid	
null	bytes	

•  Use	direct	opera;ons	for	low/high	bytes	of	a	register	
–  Registers	are	32-bits	and	originally	were	16bits	so	lots	of	
trailing	is	put	to	zero.	
•  mov	eax,	0x4 	à	B8	04	00	00	00	
•  mov	ax,	0x4	 	à	66	B8	04	00	
•  mov	al,	0x4 	à	B0	04		à	ok,	but	the	remaining	three	bytes	are	
arbitrary	à	must	be	zeroed	

•  Zero	a	register	by	using	aritme;cs	or	logic	
–  mov	eax,	0x11223344 	à	B8	44	33	22	11	
–  sub	eax,	0x11223344 	à	2D	44	33	22	11	
–  sub	eax,	eax	 	à	29	C0	
–  xor	eax,	eax	 	à	31	C0	à	this	is	considered	the	best	
(but…)	

11/10/17	 Fabio	Massacci	-	Offensive	Technologies		 17	

Removing	zeros	
jmp	short	endofprogram	
	
myself:	

	pop	ecx	 	;load	address	of	string	in	ecx	
	mov	eax	4 	 	;write	is	syscall	#4	
	 	 	BUT	4	=	0x4000	
	mov	ebx,	1 	 	;stdout	is	1	
	 	 	BUT	1	=	0x1000	
	mov	edx,	15 	 	;put	length	of	string	in	edx	
	 	 	BUT	15	=…	
	int	0x80 	 	;SYSCALL:	write(1,msg,14)	

mov	eax,	1	 	 	 	;exit	is	syscall	#1	
mov	ebx,	0 	 	 	;	exit	with	success	
int	0x80 	 	 	;SYSCALL	exit(0)	
endofprogram:	

	call	myself	
	db	"Hello,	world!",	0xa,	0xd	

jmp	short	endofprogram	
	
myself:	

	pop	ecx	 	;load	address	of	string	in	ecx	
	xor	eax,	eax 	 	;first	zero	the	register	
	mov	al,	4 	 	;Now	4	is	byte	=	0x4	
	xor	ebx,	ebx 	 	;stdout	is	1	
	inc	ebx	
	xor	edx,edx 	 	;put	length	of	string	in	edx	
	mov	dl,	15	
	int	0x80 	 	;SYSCALL:	write(1,msg,14)	

mov	al,1	 	 	 	;exit	syscall	#1,	top	3	bytes	=	0x0,	
why?	
dec	ebx	 	 	;	decrement	ebx	back	down	
int	0x80 	 	 	;SYSCALL	exit(0)	
endofprogram:	

	call	myself	
	db	"Hello,	world!",	0xa,	0xd	

11/10/17	 Fabio	Massacci	-	Offensive	Technologies		 18	

11/10/17	

10	

Execu;ng	everything	
•  The	process	can	be	repeated	for	different	syscalls	

–  Find	syscall	number	
•  #11	for	execve(filename,argv,envp)	
•  #164	(0xa4)	for	setresuid(0,0,0)	which	restore	all	root	privileges	
•  #102	(0x66)	for	sockcall		

–  Load	it	
•  Syscall	number	in	eax			
•  Value	(or	pointer)	to	first	argument	in	ebx,	second	in	ecx,	third	in	edx	etc.	

–  Call	int	0x80	
•  What	if	we	need	to	null	terminate	something	(eg	a	string)?	

–  xor	eax,	eax	
–  mov	[ebx+n],	eax		

•  use	ax	or	al	depending	on	how	many	bits	we	need	to	zero	
•  What	if	we	need	to	load	an	address	to	something	that	is	in	the	

middle	of	something	else	
–  lea	ecx,	[ebx+n]	à	loads	the	effec;ve	address	of	what	is	at	the	

address	ebx+n	
•  Can	also	use	push	to	add	things	to	the	stack	instead	of	jumping	

back	and	forth	and	using	arithme;cs	mov		
11/10/17	 Fabio	Massacci	-	Offensive	Technologies		 19	

Blocking	polyglots	

•  A	firewall/sani;zer	can	filter	anything	that	is	
not	correct	data	
– Hacker	compile	«code»	into	«data»	à	send	
«data»	to	Vic;m(s)	à	Vic;m	1	pass	«data»	to	
Vic;m	2	à	…	à	Vic;m	n	(mis)interpret	it	as	
«code»	and	executes	it	

– Hacker	compile	«code»	into	«data»	à	send	
«data»	to	Vic;m(s)	à	Vic;m	1	pass	«data»	to	
Vic;m	2	à	…	à	Firewall	j	drops	anything	that	is	
NOT	looking	as	«data»	à	Vic;m	n	no	longer	gets	
«code»…	

•  When	shipping	shellcode	around	à	it	is	
interpreted	as	«strings»	à	any	byte	that	is	
«not	printable»	is	unlikely	to	be	«strings»	à	
any	binary	byte	is	dropped	and	the	shell	code	
is	abruptly	truncated	
– Can	be	replicated	with	images	etc.	

11/10/17	 Fabio	Massacci	-	Offensive	Technologies		 20	

11/10/17	

11	

How	to	bypass	«language	checks»	
•  General	(automated)	solu;on	is	cross	compila;on	
–  Iden;fy	a	«conformant	instruc;on	set»	that	i)	sa;sfies	the	
«data»	language	check	and	ii)	corresponds	to	a	Turing	
complete	set	
and	eax,	0x454e4f4a 		
and	eax,	0x3a313035 	ßà 	xor	eax,	eax							ßà 	 	mov	eax,	
0x0	

–  Compile	any	target	instruc;on	into	the	appropriate	
sequence	of	«conformant	instruc;ons»	
•  ALWAYS	works	but	you	need	to	have	alended	a	course	on	
Compilers	to	do	it	properly	

•  May	increase	the	lenght	of	the	shellcode	in	general	(as	you	are	not	
op;mizing	the	compiler)	

•  On-line	Construc;on	
–  Load	a	«conformant	loader»	
–  Allocate	some	space	in	memory	

•  eg	for	stack	extend	the	ESP	to	make	space	for	the	shellcode	
–  Construct	the	remaining	shellcode	in	memory	by	using	the	
loader	
•  put	byte-by-byte	the	shellcode	in	memory,	loading	each	byte	into	
memory	with	a	set	of	«conformant»	instruc;ons	à	tedious	but	
can	be	done	manually	and	partly	automatedù	

•  You	are	doing	the	same	as	cross	compila;on,	just	one-off	on	your	
shell	code	

11/10/17	 Fabio	Massacci	-	Offensive	Technologies		 21	

Addi;onal	Reading	

•  Jon	Erickson,	«Hacking,	The	art	of	
exploita;on»,	No	Starch	Press	2°	edi;on	
– The	source	used	in	the	book	can	be	downloaded	
free	of	charge	from	the	publisher’s	web	site	

•  For	the	general	idea	of	a	compiler	for	
«printable	shellcode»	
– See	Chapter	3	of	Pieter	Philippaerts	“Security	of	
So|ware	on	Mobile	Devices”,	PhD	Thesis	

– hlps://lirias.kuleuven.be/bitstream/
123456789/274862/1/Thesis_Final-
with_cover.pdf	

11/10/17	 Fabio	Massacci	-	Offensive	Technologies		 22	

11/10/17	

12	

Useful	commands	for	exercises	in	
the	book	

•  gcc	-g	-o	program	program.c	
•  objdump	-M	intel	-D	program	|	grep	–A20	

func;on\>:	
–  spits	out	the	next	20	lines	a|er	<func;on>:	in	the	

assembly	
•  gdb	–q	

–  set	disassembly	intel	
–  break	func%on	
–  run	
–  info	register(s)	register	
–  disassemble	func%on	
–  x/x,u,t,i,s,c	loca%on	$loca%on	

•  X	exadecimal,	t	binary,	i	instruc%on	
•  n	to	make	sequences	(b,w	to	change	size)	

–  nex%,	con%nue	
–  $variable,	&variable	

•  $(perl	-e	'print	"A"	x	20	.	"\x14"	x	5	.	"ABCD";')		
•  for	line	in	$(cat	shellcode.txt);	do	echo	–en	$line;	

done	>	shellcode.bin	
•  export	SHELLCODE=$(perl	-e	'print	"\x90"	x	200')$

(cat	shellcode.txt)$(perl	-e	'print	"return	address	in	
exe"	x	40‘)			

•  echo	"set	dis	intel"	>>	~/.gdbint	
•  echo	0	>	/proc/sys/kernel/randomize_va_space	

•  hexdump	–C	shellcode.bin	
•  nasm	–f	elf	helloworld.asm	
•  ld	–o	helloworld	helloworld.o	
•  ndisasm	–b32	helloworld	
•  less	/usr/include/ams-i386/unistd.h	
•  sudo	apt	install	nasm	
•  sudo	mount	-t	vboxsf	-o	uid=$UID,gid=$(id	-g)	

globalshare	~/mycopy	

11/10/17	 Fabio	Massacci	-	Offensive	Technologies		 23	

