
06/10/17	

1	

Offensive	technologies	
Fall	2017	

Lecture	4	–	Gaining	Access	
Fabio	Massacci	

	
(Some	slides	courtesy	of	Jelena	Mirkovic)	

06/10/17	 Fabio	Massacci	-	Offensive	Technologies	 1	

Ethical	Acceptance	
•  You	are	bound	by	the	terms	and	condiMons	of	this	course	

–  You	try	offensive	technologies	only	in	the	lab	
–  You	are	not	allowed	to	disclose	informaMon	about	any	
individual	that	you	find	during	the	analysis		

–  Your	final	deliverable,	as	approved	by	the	professor	is	the	only	
public	deliverable	you	are	allowed	to	disclose	to	third	parMes	

•  Any	use	outside	the	agreed	framework	of	the	course	may	
be	penally	relevant	(i.e.	a	crime)	
–  Everything	is	isolated	from	rest	of	infrastructure	à	you	must	
deliberately	exfiltrate	material	à	cannot	claim	that	“happened	
by	mistake”	

–  The	same	consideraMons	apply	if	you	give	material	to	other	
students	who	have	not	signed	the	agreement	à	aiding	and	
abeUng	=	same	penal	responsibility	as	if	you	did	it	yourself.	

06/10/17	

2	

•  Type	of	infecMon	is	a	funcMon	of	aWacker’s	goal:	
–  Botnet	creaMon	à	simple	form	of	control	for	limited	
funcMonaliMes	

–  Virus/keylogger	→	credenMal	the]	/spoofing/	spam/	remote	
control	

–  Full-fledged	backdoors	→	monitoring	/	remote	control	
–  Ransomware	→	direct	moneMsaMon	&	low	profile	

•  Regardless	of	what	the	aWacker	wants	to	do,	he/she	must	have	
some	level	of	access	to	the	machine	
–  Remote	control	=	long	term	avenue	for	the	aWacker	to	
“valorize"	the	infecMon	but	may	not	be	necessary	

AWack	delivery	

Fabio	Massacci	-	Offensive	Technologies	
06/10/17	 3	

How	does	the	infecMon	happen?	
•  Human	vector	(social	engineering)	à	user	vulnerability	

–  The	aWacker	convinces	the	user	on	doing	something	for	him/her	
(e.g.	install	a	virus	masked	as	an	anM-virus	→	fakeAV)	

•  Tecnological	vector	à	so]ware	vulnerability	
–  Principal	cause	is	that	most	systems	are	not	capable	of	
disMnguishing	“legiMmate”	input	from	“rogue”	input	(e.g.	as	
provided	by	the	aWacker)	

–  The	system	executes	whatever’s	in	memory.	
–  Virtually	any	so]ware	has	bugs	that	the	aWacker	can	exploit	to	
deviate	the	execuMon	of	the	so]ware	towards	acMons	in	his	
own	agenda.	

•  Mixed:	e.g.	link	on	social	network,	link	clicked	by	a	user	on	
a	document,	opening	an	email	with	a	malware,	IP	
connected	camera	with	pre-loaded	malware	etc.	

06/10/17	 Fabio	Massacci	-	Offensive	Technologies	 4	

06/10/17	

3	

•  AWacker	convinces	the	user	
to	install	a	virus	masked	as	a	
legiMmate		applicaMon	

•  The	example	here	is	a	fake	
anMvirus	product	called	
“Win	8	Security	System”	
–  User	thinks	it’s	actual	AV	
–  In	reality	it	infects	the	
system	

Human	vector:	social	engineering	

Fabio	Massacci	-	Offensive	Technologies	
06/10/17	 5	

Example	of	aWempted	infecMon	

Fabio	Massacci	-	Offensive	Technologies	
06/10/17	 6	

06/10/17	

4	

Technological	vector	
•  The	aWack	usually	exploits	some	vulnerability	in	so]ware	
•  System	is	fed	with	computaMonally	valid	codes	in	input	to	a	

vulnerable	so]ware	→	code	is	executed	
•  Several	types	of	vulnerabiliMes	

–  XSS	
–  Buffer	overflow	
–  SQLi	
–  Privilege	escalaMon	
–  …	

•  More	exercises	and	details	in	
–  Network	Security	Course	
–  Security	TesMng	Course	

06/10/17	 Fabio	Massacci	-	Offensive	Technologies	 7	

Vulnerability	examples	

Fabio	Massacci	-	Offensive	Technologies	06/10/17	 8	

06/10/17	

5	

Buffer	Overflow	AWacks	

•  Aka	stack-based	overflow	aWacks	
•  Stack	stores	important	data	on	procedure	call	

FuncMon	call	
arguments	

Return	address	

Saved	frame	ptr	

Local	variables	
for	called	procedure	

TOS	

Memory	address	
increases	

Buffer	Overflow	AWacks	
•  Consider	a	funcMon	

void sample_function(char* s)
{
 char buffer[10];
 strcpy(buffer, s);
 return;
}	

•  And	a	main	program	
void main()
{
 int i;
 char temp[200];
 for(i=0; i<200;i++) temp[i]=‘A’;
 sample_function(temp);
 return;
}	

Argument	is	larger	
than	we	expected	

…	

06/10/17	

6	

Buffer	Overflow	AWacks	

•  Large	input	will	be	stored	on	the	stack,		
overwriMng	system	informaMon	

FuncMon	call	
arguments	

Return	address	

Saved	frame	ptr	

s,buffer[10]	
TOS	

Memory	address	
increases	OverwriWen	

by	A’s	

Buffer	Overflow	AWacks	

•  AWacker	overwrites	return	address	to	point	
somewhere	else	

–  “Local	variables”	porMon	of	the	stack	
–  Places	aWack	code	in	machine	language	at	that	porMon	
–  Since	it	is	difficult	to	know	exact	address	of	the	porMon,	

pads	aWack	code	with	NOPs	before	and	a]er	

06/10/17	

7	

Buffer	Overflow	AWacks	

•  Intrusion	DetecMon	Systems	(IDSs)	could	look	for	
sequence	of	NOPs	to	spot	buffer	overflows	

–  AWacker	uses	polymorphism:	he	transforms	the	code	so	
that	NOP	is	changed	into	some	other	command	that	does	
the	same	thing,		
e.g.	MOV	R1,	R1	

–  AWacker	XORs	important	commands	with	a	key	
–  AWacker	places	XOR	command	and	the	key	just	before	

the	encrypted	aWack	code.	XOR	command	is	also	
obscured	

Buffer	Overflow	AWacks	

•  What	type	of	commands	does	the	aWacker	
execute?	

–  Commands	that	help	him	gain	access	to	the	machine	
–  Writes	a	string	into	inetd.conf	file	to	start	shell	

applicaMon	listening	on	a	port,	then	“logs	on”	through	
that	port	

–  Starts	Xterm	

06/10/17	

8	

Buffer	Overflow	AWacks	

•  How	does	an	aWacker	discover	Buffer	
overflow?	

–  Looks	at	the	source	code	
–  Runs	applicaMon	on	his	machine,	tries	to	supply	

long	inputs	and	looks	at	system	registers	

•  Read	more	at	
–  hWp://insecure.org/sw/smashstack.html	

Defenses	Against	Buffer	Overflows	
•  For	system	administrators:	

–  Apply	patches,	keep	systems	up-to-date	
–  Disable	execuMon	from	the	stack	
–  Monitor	writes	on	the	stack	
–  Store	return	address	somewhere	else	
–  Monitor	outgoing	traffic	

•  For	so]ware	designers	
–  Apply	checks	for	buffer	overflows	
–  Use	safe	funcMons	
–  StaMc	and	dynamic	code	analysis	

06/10/17	

9	

Network	AWacks	
•  Sniffing	for	passwords	and	usernames	
•  Spoofing	addresses
•  Hijacking	a	session	

Sniffing	
•  Looking	at	raw	packet	informaMon	on	the	wire	

–  Some	media	is	more	prone	to	sniffing	–	Ethernet	
–  Some	network	topologies	are	more	prone	to	sniffing	–	

hub	vs.	switch	

06/10/17	

10	

Sniffing	On	a	Hub	
•  Ethernet	is	a	broadcast	media	–	every	machine	

connected	to	it	can	hear	all	the	informaMon	
–  Passive	sniffing	

For	X	 For	X	

X	

A	

R	Y	

Sniffing	On	a	Hub	
•  AWacker	can	get	anything	that	is	not	encrypted	and	

is	sent	to	LAN	
–  Defense:	encrypt	all	sensiMve	traffic	
–  Tcpdump	

•  hWp://www.tcpdump.org	
–  Snort	

•  hWp://www.snort.org	
–  Ethereal	

•  hWp://www.ethereal.com	

06/10/17	

11	

Sniffing	On	a	Switch	
•  Switch	is	connected	by	a	separate	physical	line	to	

every	machine	and	it	chooses	only	one	line	to	send	
the	message	

For	X	

For	X	 X	

A	

R	Y	

Sniffing	On	a	Switch	–	Take	1	
•  AWacker	sends	a	lot	of	ARP	messages	for	fake	

addresses	to	R	
–  Some	switches	send	on	all	interfaces	when	their	table	

overloads	

For	X	

For	X	 X	

A	

R	Y	

06/10/17	

12	

Sniffing	On	a	Switch	–	Take	2	
•  Address	ResoluMon	Protocol	(ARP)	maps	IP	

addresses	with	MAC	addresses	

1.	For	X	

4.	For	X	

2.	Who	has	X?	

3.	I	do	 X	

A	

R	Y	

Sniffing	On	a	Switch	–	Take	2	
•  AWacker	uses	ARP	poisoning	to	map	his	MAC	

address	to	IP	address	X	

2.	For	X	

1.  I	have	X,	MAC(A)	
	I	have	Y,	MAC(A)	
	(unsolicited)	

X	

A	

R	Y	

3.	F
or	X

,	M
AC	

(A)	4.	F
or	X

,	M
AC	

(X)	

5.	For	X,	MAC	(X)	

06/10/17	

13	

Sniffing	On	a	Switch	–	Take	2	
•  AWacker	uses	ARP	poisoning	to	map	his	MAC	

address	to	IP	address	X	

9.	For	Y,	MAC(Y)	

X	

A	

R	Y	

7.	F
or	Y

,	M
AC	

(A)	8.	F
or	Y

,	M
AC	

(Y)	

6.	For	Y	

AcMve	Sniffing	Tools	
•  Dsniff	

–  hWp://www.monkey.org/~dugsong/dsniff	
–  Also	parses	applicaMon	packets	

for	a	lot	of	applicaMons	
–  Sniffs	and	spoofs	DNS	 Dangerous	

06/10/17	

14	

Spoofing	DNS	
•  AWacker	sniffs	DNS	requests,	replies	with	his	own	

address	faster	than	real	server	(DNS	cache	
poisoning)	

•  When	real	reply	arrives	client	ignores	it	
•  This	can	be	coupled	with	aWack	on	HTTPS	and	SSH	

if	self-signed	cerMficates	are	allowed	

Sniffing	Defenses	
•  Use	end-to-end	encrypMon	like	DNSSEC	

–  No	one	can	sniff	applicaMon	traffic	like	DNS	
–  DNS	servers	would	need	to	support	encrypMon	too	

•  Use	staMc	switch	configuraMon	
–  StaMcally	configure	MAC	and	IP	bindings	with	ports	
–  No	one	can	spoof	ARP-IP	mapping	

•  Don’t	accept	suspicious	cerMficates	
–  Even	if	someone	can	hijack	DNS	names	they	cannot	

generate	valid	cerMficates	
–  Prevents	HTTPS/SSH	aWacks	

06/10/17	

15	

What	Is	IP	Spoofing	
•  Faking	somebody	else’s	IP	address	in	IP	source	

address	field	
•  How	to	spoof?	

–  Linux	and	BSD	OS	have	funcMons	that	enable	superuser	
to	create	custom	packets	and	fill	in	any	informaMon	

–  Windows	XP	also	has	this	capability	but	earlier	Windows	
versions	don’t	

IP	Address	Spoofing	in	TCP	packets	
•  AWacker	cannot	see	reply	packets		

Alice	M	 Bob	M	

AWacker	M	
1.	SYN,	IP	Alice,	SEQA	

2.	SYN	SEQB,	ACK	SEQA		

3.	RESET	

06/10/17	

16	

Guessing	a	Sequence	Number	
•  AWacker	wants	to	assume	Alice’s	idenMty	

–  He	establishes	many	connecMons	to	Bob	with	his	own	
idenMty	gets	a	few	sequence	numbers	

–  He	disables	Alice	(DDoS)	
–  He	sends	SYN	to	Bob,	Bob	replies	to	Alice,	aWacker	uses	

guessed	value	of	SEQB	to	complete	connecMon	–	TCP	
session	hijacking	

–  If	Bob	and	Alice	have	trust	relaMonship	(/etc/hosts.equiv	
file	in	Linux)	he	has	just	gained	access	to	Bob	

–  He	can	add	his	machine	to	/etc/hosts.equiv	
echo	“1.2.3.4”	>>	/etc/hosts.equiv	

•  How	easy	is	it	to	guess	SEQB?	

Guessing	a	Sequence	Number	
•  It	used	to	be	ISN=f(Time),	sMll	is	in	some	Windows	

versions	

06/10/17	

17	

Guessing	a	Sequence	Number	
•  On	Linux	ISN=f(Mme)+rand	

Guessing	a	Sequence	Number	
•  On	BSD	ISN=rand	

06/10/17	

18	

Spoofing	Defenses	
•  Ingress	and	egress	filtering	
•  Don’t	use	trust	models	with	IP	addresses	
•  Randomize	sequence	numbers	

At	The	End	of	Gaining	Access	
•  AWacker	has	successfully	logged	onto	a	machine	

06/10/17	

19	

Phase	4:	Maintaining	Access	
•  AWacker	establishes	a	listening	applicaMon	on	a	

port	(backdoor)	so	he	can	log	on	any	Mme	with	or	
without	a	password	

•  AWackers	frequently	close	security	holes	they	find	

Netcat	Tool	
•  Similar	to	Linux	cat	command	

–  hWp://netcat.sourceforge.net/	
–  Client:	IniMates	connecMon	to	any	port	on	remote	machine	
–  Server:	Listens	on	any	port	
–  To	open	a	shell	on	a	vicMm	machine	

On victim machine: nc –l –p 1234
/* This opens a backdoor */

On attacker machine: nc 123.32.34.54 1234 –c /bin/sh
/* This enters through a backdoor, opens a shell */

Dangerous	

06/10/17	

20	

Netcat	Tool	
•  Used	for		

–  Port	scanning	
–  Backdoor	
–  Relaying	the	aWack	

Trojans	
•  ApplicaMon	that	claims	to	do	one	thing	(and	looks	

like	it)	but	it	also	does	something	malicious	
•  Users	download	Trojans	from	Internet	(thinking	

they	are	downloading	a	free	game)	or	get	them	as	
greeMng	cards	in	E-mail,	or	as	AcMveX	controls	when	
they	visit	a	Web	site	

•  Trojans	can	scramble	your	machine	
–  They	can	also	open	a	backdoor	on	your	system	

•  They	will	also	report	successful	infecMon	to	the	
aWacker

06/10/17	

21	

Back	Orifice	
•  Trojan	applicaMon	that	can	

–  Log	keystrokes	
–  Steal	passwords	
–  Create	dialog	boxes	
–  Mess	with	files,	processes	or	system	(registry)	
–  Redirect	packets	
–  Set	up	backdoors	
–  Take	over	screen	and	keyboard	
–  hWp://www.bo2k.com/	

Trojan	Defenses	
•  AnMvirus	so]ware	
•  Don’t	download	suspicious	so]ware	
•  Check	MD5	sum	on	trusted	so]ware	you	

download	
•  Disable	automaMc	execuMon	of	aWachments	

06/10/17	

22	

At	the	End	of	Maintaining	Access	
•  The	aWacker	has	opened	a	backdoor	and	can	now	

access	vicMm	machine	at	any	Mme	

Phase	5:	Covering	Tracks	
•  Rootkits	
•  Alter	logs	
•  Create	hard-to-spot	files	
•  Use	covert	channels	

06/10/17	

23	

ApplicaMon	Rootkits	
•  Alter	or	replace	system	components		

(for	instance	DLLs)	
•  E.g.,	on	Linux	aWacker	replaces	ls	program	
•  Rootkits	frequently	come	together	with	sniffers:	

–  Capture	a	few	characters	of	all	sessions	on	the	Ethernet	
and	write	into	a	file	to	steal	passwords	

–  Administrator	would	noMce	an	interface	in	promiscuous	
mode	
•  Not	if	aWacker	modifies	an	applicaMon	that	shows	interfaces	-	

netstat		

ApplicaMon	Rootkits	
•  AWacker	will	modify	all	key	system	applicaMons	that	

could	reveal	his	presence	
–  List	processes	e.g.	ps	
–  List	files	e.g.	ls	
–  Show	open	ports	e.g.	netstat	
–  Show	system	uMlizaMon	e.g.	top	

•  He	will	also	subsMtute	modificaMon	date	with	the	
one	in	the	past	

06/10/17	

24	

Defenses	Against	App.	Rootkits	
•  Don’t	let	aWackers	gain	root	access	
•  Use	integrity	checking	of	files:	

–  Carry	a	floppy	with	md5sum,	check	hashes	of	system	files	
against	hashes	adverMsed	on	vendor	site	or	hashes	you	
stored	before	

•  Use	Tripwire	
–  Free	integrity	checker	that	saves	md5	sums	of	all	

important	files	in	a	secure	database	(read	only	CD),	then	
verifies	them	periodically	

–  hWp://www.tripwire.org/		

Kernel	Rootkits	
•  Replace	system	calls	

–  Intercept	calls	to	open	one	applicaMon	with	calls	to	open	
another,	of	aWacker’s	choosing	

–  Now	even	checksums	don’t	help	as	aWacker	did	not	
modify	any	system	applicaMons	

–  You	won’t	even	see	aWacker’s	files	in	file	lisMng	
–  You	won’t	see	some	processes	or	open	ports	

•  Usually	installed	as	kernel	modules	
•  Defenses:	disable	kernel	modules		

06/10/17	

25	

Altering	Logs	
•  For	binary	logs:	

–  Stop	logging	services	
–  Load	files	into	memory,	change	them	
–  Restart	logging	service	
–  Or	use	special	tool		

•  For	text	logs	simply	change	file	through	scripts	
•  Change	login	and	event	logs,	command	history	file,	

last	login	data	

Defenses	Against	Altering	Logs	
•  Use	separate	log	servers	

–  Machines	will	send	their	log	messages	to	these	servers	

•  Encrypt	log	files	
•  Make	log	files	append	only	
•  Save	logs	on	write-once	media	

06/10/17	

26	

CreaMng	Hard-to-Spot	Files	
•  Names	could	look	like	system	file	names,	but	slightly	

changed	
–  Start	with	.	
–  Start	with	.	and	add	spaces	
–  Make	files	hidden	

•  Defenses:	intrusion	detecMon	systems	and	cauMon	

AddiMonal	Readings	
•  First	academic	paper	menMoning	0-days	(that	I	know	of)	

–  O.	Arkin.	“Tracing	Hackers:	Part	1.”	Computers	and	Security,	2002.	
•  Insight	in	the	market	

–  C.	Miller.	The	LegiMmate	Vulnerability	Market.	Workshop	on	Economics	of	InformaFon	
Security,	2006.	

–  Axel	Arnbak,	Hadi	Asghari,	Michel	Van	Eeten,	and	Nico	Van	Eijk	“Security	Collapse	in	the	
HTTPS	Market”.	CommunicaMons	of	the	ACM	57,	no.	10	(2014):	47-55.		

•  Some	different	perspecMves	on	cybercrime	
–  Nick	Nykodym	et	al.	“Criminal	profiling	and	insider	cyber	crime.”	Digital	InvesFgaFon,	2005.	
–  D.	Florencio	et	al.	“Sex,	Lies	and	Cybercrime	Surveys”.	Workshop	on	Economics	of	InformaFon	

Security,	2006.	
–  J.	Franklin.	“An	Inquiry	into	the	Nature	and	Causes	of	the	Wealth	of	Internet	Miscreants”.	

ACM	Conference	on	Computer	and	CommunicaFon	Security,	2007	
•  A	tutorial	on	the	difficulty	of	aWribuMon	

–  M.	Marquis-Boire.	Big	Game	HunMng:	The	PeculiariMes	of	NaMon-State	Malware	Research.	
BlackHat	USA,	2015.	

06/10/17	 Fabio	Massacci	-	Offensive	Technologies	 52	

