
Offensive	technologies
Fall	2016

Lecture	1- General	Introduction	to	
Vulnerabilities	in	Web	Applications

Stanislav	Dashevskyi

https://securitylab.disi.unitn.it/doku.php?id=course_on_offensive_technologies

1



About	this	lecture

• The	whole	course	is	dedicated	to	the	
identification,	testing	and	mitigation	of	various	
forms	of	security	vulnerabilities

• The	purpose	of	this	lecture	is	to	briefly introduce	
the	background	needed	for	recognizing	some	of	
the	vulnerabilities	in	the	source	code

• We	will	test	this	ability	using	a	practical	exercise	
on	Wednesday:	it	is	important	for	the	latter	part	
of	the	course

2



Outline

• Vulnerabilities	in	web	applications
• Injection	vulnerabilities
• Information	Disclosure	vulnerabilities
• Session	Fixation	vulnerabilities
• Denial	of	Service	vulnerabilities

3



Vulnerabilities	in	web	applications

• Many	security	holes	in	corporate	IT	are	not	due	
to	worms	or	viruses,	but	due	to	vulnerabilities	in	
the	source	code	of	applications
– These	vulnerabilities	are	often	exploited	by	attackers	for	both	 fun	and	profit	

• Differences	between	web	and	client-server	
applications	open	enterprises	to	significant	risk	
– JavaScript	has	diffused	boundaries	 between	client	and	server
– Easier	to	deploy,	harder	to	maintain	securely

• Web	application	security	is	critical	for	businesses
• Finding	and	fixing	web	application	
vulnerabilities	is	mostly	about	looking	at	the	
source	code

4



Practical	Approaches	in	
Vulnerability	Discovery

• Software	security	is	a	problem	that	is	very	hard	to	
define

• ”A	system	is	secure	if	and	only	if	it	starts	in	a	secure	
state	and	cannot	enter	an	insecure	state”	– the	Bell-
LaPadula model
– Even	if	we	could	define	it,	it’s	impossible	 to	formalize:

• ”I	do	not	want	my	email	 to	be	read	by	others”
– There	is	no	way	to	define	a	desired	behavior	 for	a	considerably	complex	

system
• Different	stakeholders	act	according	to	the	“tragedy	of	commons"	dilemma

– It	is	nearly	impossible	 to	analyze	software	behavior	conclusively
• A.	Turing’s	halting	problem
• H.G.	Rice’s	 theorem

• For	now,	security	is	largely	a	non-algorithmic	problem
– Eventually,	security	field	 specialists	fall	back	to	set	of	empirical	recipes

5



Practical	Approaches	in	
Vulnerability	Discovery	(continued)

• Plan	to	have	everything	compromised
– Everything	is	vulnerable

• Rely	on	tools	to	detect	and	correct	SPECIFIC	
problems	but	not	replace	everything	by	tools
– Tools	can	help	finding	certain	vulnerabilities	but	
they	are	nothing	without	knowledge

• Learn	from	(preferably)	other’s	mistakes
–We	can	use	Open	Source	Software	to	learn

6



Why	looking	at	open	
source	software?

• There	is	little	difference	with	commercial	
software

• The	source	code	and	development	histories	are	
available

• Often,	open	source	maintainers	are	doing	a	
good	job	in	documenting	vulnerabilities,	so	it	is	
possible	to	reverse-engineer	them

• Many	commercial	systems	are	using	open	source	
components,	thus	the	learning	effort	will	be	
useful

7



A	quick	look	at	
vulnerabilities	taxonomy

• There	are	different	categories,	classifications	and	databases
– Open	Web	Application	Security	Project	(OWASP)	Top	10	list
– Common	Weakness	Enumeration	(CWE)
– Common	Weakness	Scoring	System	(CWSS)	
– The	National	Vulnerability	Database	(NVD)
– Open-sourced	Vulnerability	Database	(OSVDB)
– IARPA	Securely	Taking	On	New	Executable	Software	of	Uncertain	

Provenance	(STONESOUP)

• Almost	all	these	vulnerabilities	are	related	to	problems	in	the	
source	code
– Design	errors
– Implementation	errors
– Many	of	them	are	Language/Framework	independent

8



OWASP	Top	10	(2013)
A3:	Cross-site	
Scripting	(XSS)A1:	Injection

A2:	Broken	Auth.	
and	Session	
Management

A4:	Insecure	
Direct	Object
References

A5:	Security
Misconfiguration

A6:	Sensitive	
Data	Exposure

A7:	Missing	
Function	Level
Access	Control

A8:Cross-site	
Request	Forgery

(CSRF)

A9:	Using	
Component	With	
Known	Vulns.

A10:	Unvalidated
Redirects	and	
Forwards

9



Common	Weakness	
Enumeration	(CWE)

• https://cwe.mitre.org/
• A	formal	dictionary	of	common	software	
bugs/flaws	that	occur	in	software	architecture,	
design,	and	implementation	that	can	lead	to	
exploitable	security	vulnerabilities	(>	800	
entries)

• A	common	language	for	describing	and	a	
standard	for	measuring	such	bugs/flaws

• Information	about	
identification/mitigation/prevention	efforts

10



Common	Weakness	
Enumeration	(CWE)

11



Common	Weakness	
Enumeration	(CWE)

12



The	National	Vulnerability	
Database	(NVD)

• https://nvd.nist.gov/
• The	US	Government	repository	of	vulnerability	data
• Enables	automation	of	vulnerability	management,	
security	measurement	and	compliance

• Includes	databases	of	security-related	software	
flaws/bugs,	product	names,	and	impact	metrics

• Supports	the	Common	Vulnerability	Scoring	System	
(CVSS)	scores
– Quantifies	characteristics	of	each	vulnerability	so	that	they	
can	be	compared

13



The	National	Vulnerability	
Database	(NVD)

14



Outline

• Vulnerabilities	in	web	applications
• Injection	vulnerabilities
• Information	Disclosure	vulnerabilities
• Session	Fixation	vulnerabilities
• Denial	of	Service	vulnerabilities

15



Injection	vulnerabilities	

• Assume	an	application	is	written	in	multiple	languages:	
Java,	JavaScript,	HTML,	SQL	…

• An	application	accepts	any	user	input	without	sanitization
– Problem:	some	input	that	looks	like	a	String in	Java	can	be	

accepted	as	a	piece	of	executable	code	by	SQL,	JavaScript,	or	
HTML	interpreters

– These	are	also	called	”polyglot”	vulnerabilities
• Consequences?

– Website	defacement
– …
– Complete	control	over	the	machine	that	hosts	the	vulnerable	

application

16



SQL/NoSQL	injection

• Description:
– Due	to	insufficient	input	filtering	(or	output	
escaping)	attacker-controlled	input	may	be	
interpreted	as	code	by	a	database	interpreter	and	
executed	[1].	Eventual	outcome	is	code	execution.

• Related	Threats:	Information	Disclosure,	Data	
Modification/Deletion,	Elevation	of	
Privileges.

• Technical	Impact:		Severe.
17



SQL	injection:	example
UserData data = getDataFromUser();
String userId = data.getUserId();
String passwd = data.getPasswd();
SomeDB.executeQuery("SELECT * FROM users WHERE users.userId = ’ 

+ userId + ”’ AND users.passwd ='” + passwd + “'");

query <- "SELECT * FROM users WHERE users.userId = 
’Batman’ OR ’1’ == ’1’; DROP TABLE users; --’ AND users.passwd= ’’"

userId <- “Batman’ OR ’1’ == ’1’; DROP TABLE users; --”
passwd <- “”

userid <- ”John Doe”
passwd <- ”qweJk@#4kw”
query <- "SELECT * FROM users WHERE users.userId = 
’John Doe’ AND user.passwd = ’qweJk@#4kw’”

18



NoSQL	injection:	example

*The	image	is	taken	from	http://www.busanhlf4.org/
19



NoSQL	injection:	example

*The	image	is	taken	from	http://www.busanhlf4.org/
20



SQL/NoSQL	injection:	how	to	find	it?

• You	should	be	suspicious	if	an	application	
– Gets	user	input
– Does	not	check/sanitize	the	input	
– Uses	this	input	to	construct	a	query	to	a	database
– Uses	string	operations	(e.g.,	concatenation,	
replacement)		to	build	a	query

Language Keywords
Java (+JDBC)	 sql, java.sql

Python pymssql,

C# Sql, SqlClient, OracleClient, SqlDataAdapter

PHP mysql_connect

Node.js require("mysql”), require(”mssql"), 
require("mongodb") 21



Cross-Site	Scripting	(XSS)	

• Description:
– "Insufficient	input	validation	or	output	escaping	can	allow	
an	attacker	to	plant	his	own	HTML	or	scripts	on	a	
vulnerable	site.	The	injected	scripts	will	have	access	to	the	
entirety	of	the	targeted	web	application	…	"	[2].

– The	reflected	variant	takes	the	advantage	when	the	input	
is	incorrectly	echoed	back	to	the	browser;	the	persistent	
variant	goes	a	bit	further:	it	also	takes	the	advantage	on	
the	lack	of	sanitization	of	the	data	that	goes	to	a	DB.

• Related	Threats:	
– Information	Disclosure,	Elevation	of	Privileges.

• Technical	Impact:	
– Moderate/Severe

22



Cross-Site	Scripting	(XSS):	reflected

…
<% String userId = 
request.GetParameter(”userId") %>
…

<html>
...
<h1>

Hello, <%= userId %>!
</h1>
...

</html>

http://homepage.jsp?userId=John

23



Cross-Site	Scripting	(XSS):	reflected

…
<% String userId = 
request.GetParameter(”userId") %>
…

<html>
...
<h1>

Hello, <%= userId %>!
</h1>
...

</html>

http://homepage.jsp?userId=<script>alert(’XSS');</script>

24



Cross-Site	Scripting	(XSS):	stored

Database

*The	diagram	is	adapted	from	[3].

Step	0	->	developer	writes	vulnerable	pages:
1st one	stores	invalidated	input;
2nd one	reads	it	from	a	database	and	with	no	validation.

Step	1	->	
Attacker	sends	malformed
input	(code)	to	a	
vulnerable	web	page.

Step	2	->	User	browses	the	site.
Step	3	->	Web	site	reads	unchecked	data	
and	sends	it	along	with	attacker’s	code	
to	the	user’s	browser.

Step	4	->	User’s	browser	
renders	the	web	page	and
runs	the	attacker’s	code	
(every	time	the	page	
is	requested!)

25



Cross-Site	Scripting	(XSS):	
some	examples	(reflected)

public class XSS extends HttpServlet {
protected void doGet(HttpServletRequest request, 

HttpServletResponse response) {

/* ... */
response.sendError(HttpServletResponse.SC_NOT_FOUND,

"The page \"" + 
request.getParameter("page") +
"\" was not found.");

}
}

http://homepage.jsp?page=123

26



Cross-Site	Scripting	(XSS):	
some	examples	(reflected)

public class XSS extends HttpServlet {
protected void doGet(HttpServletRequest request, 

HttpServletResponse response) {

/* ... */
response.sendError(HttpServletResponse.SC_NOT_FOUND,

"The page \"" + 
request.getParameter("page") +
"\" was not found.");

}
}

http://homepage.jsp?page=<script>alert(’XSS')</script>

27



Cross-Site	Scripting	(XSS):	
some	examples	(stored)

<%
...
String eid = request.GetParameter(”eid”);
Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery(”select * 

from emp where id='” + eid + ”'”);
if (rs != null) {

rs.next();
}
String bio = rs.getString(”bio”);

Employee biography: <%= bio %>
…
%>

http://show-employee.jsp?eid=123

28



Cross-Site	Scripting	(XSS):	
some	examples	(stored)

<%
...
String eid = request.GetParameter(”eid”);
Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery(”select * 

from emp where id='” + eid + ”'”);
if (rs != null) {

rs.next();
}
String bio = rs.getString(”bio”);

Employee biography: <%= bio %>
…
%>

http://show-employee.jsp?eid=qwe‘	or	’1’	==	’1’;	insert	into	emp (bio)
values	('<script>alert(\"XSS\")</script>’)	select	*	from	emp;	--

29



Cross-Site	Scripting	(XSS):	
how	to	find	it?

• You	should	be	suspicious	if	an	application
– Gets	an	input	from	an	HTTP	entity	such	as	query	
string,	header	or	form,	or	request	object

– Does	not	check	the	input	for	validity	
– Echoes	it	back	to	the	browser	(either	HTML	or	
HTTP	headers),	saving	it	to	or	retrieving	from	a	
database	unchecked

30



Cross-Site	Scripting	(XSS):	
how	to	find	it?

Language Keywords

Java (JSP)	 addCookie,	getRequest,	request.getParameter
followed	by	<jsp:setProperty or	<%= or	
response.sendRedirect

Python form.getvalue, SimpleCookie when	the	data	is	not	
validated	correctly.	

C# Request.*, Response.*,	and	<%=when	the	data	is	not	
validated	correctly.	

PHP Accessing	$_REQUEST,	$_GET,	$_POST,	or	$_SERVER 
followed	by	echo,	print,	header,	or	printf.

Node.js request,	response, …

31



Outline

• Vulnerabilities	in	web	applications
• Injection	vulnerabilities
• Information	Disclosure	vulnerabilities
• Session	Fixation	vulnerabilities
• Denial	of	Service	vulnerabilities

32



Information	Disclosure	vulnerabilities

• Description:
– Attacker	is	able	to	get	data	that	leads	to	a	breach	in	security	or	

privacy	policy.	The	data	itself	could	be	the	goal,	or	the	data	can	
provide	information	that	leads	the	attacker	to	the	goal.

– Intentional:	the	design	team	has	a	mismatch	with	the	end	user	
as	to	whether	data	should	be	protected	(privacy	issues).

– Accidental:	the	data	could	leak	due	to	an	error	in	the	code,	or	a	
nonobvious	channel.	

– Mistake:	verbose	[error]	messages	that	developers	think	are	
safe,	but	attackers	find	them	helpful,	e.g.,	the	name	or	the	ip
address	of	a	server

– Three	main	categories:	hardcoded	credentials,	comments	in	the	
source	code, and	verbose	error	messages.

• Technical	impact:	could	be	anything

33



Information	Disclosure:	example	0

try {
/* ... */

}
catch (Exception e) {

System.out.println(e);
e.printStackTrace();

}

34



Information	Disclosure:	example	1

35



Information	Disclosure:	example	2

public boolean authenticate(Request req, Response res) {
/* ... */
if (config.getRealmName() == null) {  

authenticateCC.append(request.getServerName());        
authenticateCC.append(':');            
authenticateCC.append(Integer.toString(

request.getServerPort()));        
} 
else {            

authenticateCC.append(config.getRealmName());        
}        
return (false);    

}

36



Information	Disclosure:	example	2

public boolean authenticate(Request req, Response res) {
/* ... */
if (config.getRealmName() == null) {  

authenticateCC.append(request.getServerName());        
authenticateCC.append(':');            
authenticateCC.append(Integer.toString(

request.getServerPort()));        
} 
else {            

authenticateCC.append(config.getRealmName());        
}        
return (false);    

}

37



Information	Disclosure:	example	2

public boolean authenticate(Request req, Response res) {
/* ... */
if (config.getRealmName() == null) {  

authenticateCC.append(request.getServerName());        
authenticateCC.append(':');            
authenticateCC.append(Integer.toString(

request.getServerPort()));        
} 
else {            

authenticateCC.append(config.getRealmName());        
}        
return (false);    

}

38



Information	Disclosure:	example	3

Login	successful:	"authenticate"	method	returns	”true”

39



Information	Disclosure:	example	3
(continued)

password	=	null;

May	throw	null	reference	
exception

40



Information	Disclosure:	
how	to	find	it?

• Application	returns	”default ” information	
such	as	server	type/	configuration/ip
address/hostname.

• Too	many	details	in	error	messages,	
unhandled	exceptions,	stack	traces;	different	
error	messages	when	handling	user	login.

• Look	for	”password”,	”credentials”,	“login”	
and	similar	keywords,	you	might	find	
something	quite	interesting.	

41



Path	Traversal

• Description:
– An	application	can	be	tricked	into	reading	or	writing	
files	at	arbitrary	locations	(often	bypassing	
application-level	restrictions).	This	often	happens	due	
to	improper	recognition	of	”../”	segments	in	un	user-
supplied	parameters.	Unconstrained	file	writing	bugs	
are	often	exploited	for	deploying	attacker-controlled	
code	[2].

• Related	threats:	Information	disclosure,	code	
injection,	denial	of	service

• Technical	impact:	Moderate/Severe

42



Path	Traversal:	some	examples

String path = getInputPath();
if (path.startsWith("/safe_dir/")) {

File f = new File(path);
f.delete();

} The	code	attempts	
to	validate	the	input	

by	whitelisting.

If	the	file	is	within	
the	”/safe_dir/”	

folder,
the	file	gets	deleted.

An	attacker	could	
provide	an	input	such	

as	:
/safe_dir/../data.db

Database

43



Path	Traversal:	some	examples	
(continued)

public void sendUserFile(Socket sock, String user) {
BufferedReader filenameReader = new BufferedReader(

new InputStreamReader(sock.getInputStream(), "UTF-8"));

String filename = filenameReader.readLine();
BufferedReader fileReader =

new BufferedReader(new FileReader("/home/" + user +        
"/" + filename));

String fileLine = fileReader.readLine();
while(fileLine != null) {
sock.getOutputStream().write(fileLine.getBytes());
fileLine = fileReader.readLine();

}
}

44



Path	Traversal:	some	examples	
(continued)

public void sendUserFile(Socket sock, String user) {
BufferedReader filenameReader = new BufferedReader(

new InputStreamReader(sock.getInputStream(), "UTF-8"));

String filename = filenameReader.readLine();
BufferedReader fileReader =

new BufferedReader(new FileReader("/home/" + user +        
"/" + filename));

String fileLine = fileReader.readLine();
while(fileLine != null) {
sock.getOutputStream().write(fileLine.getBytes());
fileLine = fileReader.readLine();

}
}

45



Path	Traversal:	how	to	find	it?

• You	should	be	suspicious	if	an	application
– Gets	an	input	from	user
– The	input	is	used	to	construct	a	path	for	any	
purpose	(downloading/uploading	files,	redirects,	
etc.)

– Even	if	the	input	looks	like	it	is	sanitized,	
sanitization	functions	often	contain	errors,	so	you	
pay	close	attention	to	sanitizers

– Sometimes	there	are	no	path	constraints	at	all

46



Outline

• Vulnerabilities	in	web	applications
• Injection	vulnerabilities
• Information	Disclosure	vulnerabilities
• Session	Fixation	vulnerabilities
• Denial	of	Service	vulnerabilities

47



Session	Fixation	vulnerabilities

• Description:
– An	attack	that	allows	to	hijack	a	valid	user	session.	
When	authenticating	a	user,	an	app	doesn’t	assign	
a	new	session	ID,	making	it	possible	to	use	an	
existent	session	ID.	The	attacker	has	to	provide	a	
legitimate	Web	application	session	ID	and	try	to	
make	the	victim's	browser	use	it. [5]

• Technical	impact:	Severe

48



Session	Fixation:	example*

*This	example	is	taken	from	[4]. 49



Session	Fixation:	example

1. The	attacker	establishes	a	legitimate	connection	with	a	web	
server;

2. The	web	server	issues	a	session	ID;
3. The	attacker	has	to	send	a	link	with	the	established	session	ID	to	

the	victim;	she	has	to	click	on	the	link,	accessing	the	site;
4. The	web	server	”sees”	that	the	session	has	been	already	

established	(by	the	attacker),	so	it	doesn’t	create	a	new	one;	
5. The	victim	provides	her	credentials	to	the	web	server;	the	attacker	

can	access	her	account	knowing	the	session	ID.

(session	ID	can	be	also	sent	via	a	cookie	or	a	hidden
field	in	the	DOM	container)

50



Session	Fixation:	
example	(continued)

protected boolean parseRequest(Request req, Response res) {
if (isURLRewritingDisabled(req)) {

clearRequestedSessionURL(req);
}

/* ... */

String sessionID =                                                                              
req.getPathParameter(Globals.SESSION_PARAMETER_NAME);

if (sessionID != null) {
req.setRequestedSessionId(sessionID);
req.setRequestedSessionURL(true);

}

/* ... */
} 51



Session	Fixation:	
example	(continued)

protected boolean parseRequest(Request req, Response res) {
if (isURLRewritingDisabled(req)) {

clearRequestedSessionURL(req);
}

/* ... */

String sessionID =                                                                              
req.getPathParameter(Globals.SESSION_PARAMETER_NAME);

if (sessionID != null) {
req.setRequestedSessionId(sessionID);
req.setRequestedSessionURL(true);

}

/* ... */
} 52



Session	Fixation:	
example	(continued)

protected boolean parseRequest(Request req, Response res) {
if (isURLRewritingDisabled(req)) {

clearRequestedSessionURL(req);
}

/* ... */

String sessionID =                                                                              
req.getPathParameter(Globals.SESSION_PARAMETER_NAME);

if (sessionID != null) {
req.setRequestedSessionId(sessionID);
req.setRequestedSessionURL(true);

}

/* ... */
} 53



Session	Fixation:	
example	(continued)

protected boolean parseRequest(Request req, Response res) {
if (isURLRewritingDisabled(req)) {

clearRequestedSessionURL(req);
}

/* ... */

String sessionID =                                                                              
req.getPathParameter(Globals.SESSION_PARAMETER_NAME);

if (sessionID != null && !isURLRewritingDisabled(req)) {
req.setRequestedSessionId(sessionID);
req.setRequestedSessionURL(true);

}

/* ... */
} 54



Session	Fixation:	how	to	find	it?	[5]

• You	should	be	suspicious	if	the	usual	flow	is	
broken	[6]
– User	enters	correct	credentials
– The	application	authenticates	the	user	successfully
– Session	information	(temporary	data)	is	stored	in	a	
temporary	location

– Session	is	invalidated	(session.invalidate())
– Any	temporary	data	is	restored	to	new	session	(new	
session	ID)

– User	goes	to	successful	login	landing	page	using	new	
session	ID

55



Session	Fixation:	how	to	
find	it?	(continued)	[5]

• Check	for	session	fixation	if	a	user	tries	to	login	using	a	
session	ID	that	has	been	specifically	invalidated	(requires	
maintaining	this	list	in	some	type	of	URL	cache)

• Check	for	session	fixation	if	a	user	tries	to	use	an	existing	
session	ID	already	in	use	from	another	IP	address	(requires	
maintaining	this	data	in	some	type	of	map)

• Some	server	applications	(e.g.,	JBOSS,	Tomcat)	have	a	
setting	for	disabling	URL	rewriting	->	this	mitigates	the	
attack	when	session	ID	is	exposed	via	GET	parameter	of	a	
URL	(as	well	as	being	stored	in	browser	history,	proxy	
servers,	etc)

56



Outline

• Vulnerabilities	in	web	applications
• Injection	vulnerabilities
• Information	Disclosure	vulnerabilities
• Session	Fixation	vulnerabilities
• Denial	of	Service	vulnerabilities

57



Denial	of	Service	vulnerabilities

• Description:
– The	Denial	of	Service	(DoS)	attack	is	focused	on	
making	a	resource	(site,	application,	server)	
unavailable	for	the	purpose	it	was	designed.	If	a	
service	receives	a	very	large	number	of	requests,	
it	may	cease	to	be	available	to	legitimate	users.	In	
the	same	way,	a	service	may	stop	if	a	
programming	vulnerability	is	exploited,	or	the	way	
the	service	handles	resources	it	uses.

• Technical	impact:	Severe

58



Denial	of	Service:	example	1

We	may	"kill”	the	
server	by	filling	all	of	

its	memory

59



Denial	of	Service:	example	2

The	user	has	control	over	the	loop	
counter:	we	may	decrease	server’s	

performance	or	even	kill	it.
60



Denial	of	Service:	example	3

Both	Connection	and	
CallableStatement objects	
should	be	closed	in	the	

“finally”	block
61



Denial	of	Service:	how	to	find	it?

• You	should	be	suspicious	if
– User-controlled	values	define	the	size	of	allocated	
memory,	arrays	or	buffers;

– User-controlled	values	influence	loop	conditions;
– ”Heavy”	resources	are	never	released	(file	
locks/descriptors,	database	connections,	data	
streams,	etc.)

– There	is	an	"infinite"	amount	of	resources	that	a	
single	user	can	allocate	(e.g.,	the	number	of	
working	processes	or	server	sockets);

62



References
• [1]	Web	Application	Vulnerabilities	and	Avoiding	Application	Exposure	

https://f5.com/resources/white-papers/web-application-vulnerabilities-and-
avoiding-application-exposure

• [2]	Zalewski,	Michal. The	tangled	Web:	A	guide	to	securing	modern	web	
applications.	No	Starch	Press,	2012.

• [3]	Michael	Howard,	David	LeBlanc,	and	John	Viega. 24	deadly	sins	of	software	
security:	 programming	flaws	and	how	to	fix	them.	McGraw-Hill,	 Inc.,	2009.

• [4]	OWASP:	the	free	and	open	software	security	 community	
https://www.owasp.org/index.php/Main_Page

• [5]	The	White	Hat	Security	 blog	on	Session	Fixation	prevention:	
https://www.whitehatsec.com/blog/session-fixation-prevention-in-java/

• [6]	The	OWASP	Enterprise	Security	 API	session	handling	example:	
https://code.google.com/p/owasp-esapi-
java/source/browse/trunk/src/main/java/org/owasp/esapi/reference/DefaultH
TTPUtilities.java

• [7]	Secure	Coding	Guidelines	 for	Java	SE	
http://www.oracle.com/technetwork/java/seccodeguide-139067.html

63


