Offensive technologies
Fall 2016

Lecture 1- General Introduction to
Vulnerabilities in Web Applications

Stanislav Dashevskyi

https://securitylab.disi.unitn.it/doku. php?id=course_on_offensive_technologies

(eit) Digital
MASTER SCHOOL

About this lecture

* The whole course is dedicated to the
identification, testing and mitigation of various
forms of security vulnerabilities

* The purpose of this lecture is to briefly introduce
the background needed for recognizing some of
the vulnerabilities in the source code

* We will test this ability using a practical exercise
on Wednesday: it is important for the latter part
of the course

Outline

Vulnerabilities in web applications
Injection vulnerabilities

Information Disclosure vulnerabilities
Session Fixation vulnerabilities
Denial of Service vulnerabilities

@ Digital

(N
’GE Digital

Vulnerabilities in web applications

Many security holes in corporate IT are not due
to worms or viruses, but due to vulnerabilities in
the source code of applications

— These vulnerabilities are often exploited by attackers for both fun and profit
Differences between web and client-server
applications open enterprises to significant risk

— JavaScript has diffused boundaries between client and server
— Easier to deploy, harder to maintain securely

Web application security is critical for businesses

Finding and fixing web application
vulnerabilities is mostly about looking at the
source code

Practical Approaches in &

Vulnerability Discovery

Software security is a problem that is very hard to
define

"A system is secure if and only if it starts in a secure
state and cannot enter an insecure state” — the Bell-
LaPadula model

— Even if we could define it, it’s impossible to formalize:
* ”I'do not want my email to be read by others”

— There is no way to define a desired behavior for a considerably complex
system

» Different stakeholders act according to the “tragedy of commons" dilemma

— ltis nearly impossible to analyze software behavior conclusively
* A.Turing’s halting problem
* H.G. Rice’s theorem

For now, security is largely a non-algorithmic problem

— Eventually, security field specialists fall back to set of empirical recipes

)
(eit Digital

Practical Approachesin ~
Vulnerability Discovery (continued)

* Plan to have everything compromised
— Everything is vulnerable
* Rely on tools to detect and correct SPECIFIC
problems but not replace everything by tools

— Tools can help finding certain vulnerabilities but
they are nothing without knowledge

* Learn from (preferably) other’s mistakes
— We can use Open Source Software to learn

Why looking at open
source software?

There is little difference with commercial
software

The source code and development histories are
available

Often, open source maintainers are doing a
good job in documenting vulnerabilities, so it is
possible to reverse-engineer them

Many commercial systems are using open source
components, thus the learning effort will be

useful

'y A

% oy

e, &S TN

3
C

<) [A

A quick look at
vulnerabilities taxonomy

* There are different categories, classifications and databases
— Open Web Application Security Project (OWASP) Top 10 list
— Common Weakness Enumeration (CWE)
— Common Weakness Scoring System (CWSS)
— The National Vulnerability Database (NVD)
-) bilitv Datal OSVDB)

— IARPA Securely Taking On New Executable Software of Uncertain
Provenance (STONESOUP)

 Almostall these vulnerabilities are related to problems in the
source code

— Design errors
— Implementation errors
— Many of them are Language/Frameworkindependent

@ Digital

omE UNIVERSITY
s> OF TRENTO - Italy

@ Digital
MASTER SCi HOOL

OWASP Top 10 (2013)

Al: Injection

A4: Insecure
Direct Object
References

A7: Missing
Function Level
Access Control

A2: Broken Auth.
and Session
Management

A5: Security
Misconfiguration

A8:Cross-site
Request Forgery
(CSRF)

A10: Unvalidated
Redirects and
Forwards

A3: Cross-site
Scripting (XSS)

Ab6: Sensitive
Data Exposure

A9: Using
Component With
Known Vulns.

)
(eit Digital

Common Weakness =
Enumeration (CWE)

https://cwe.mitre.orq/

A formal dictionary of common software
bugs/flaws that occur in software architecture,
design, and implementation that can lead to
exploitable security vulnerabilities (> 800
entries)

A common language for describing and a
standard for measuring such bugs/flaws

Information about
identification/mitigation/prevention efforts

Nature
ChildOf
ChildOf

ChildOf
ChildOf
ChildOf
ChildOf
ChildOf
ChildOf
ChildOf
ChildOf
ChildOf
ChildOf
CanPrecede
PeerOf
ParentOf

ParentOf
ParentOf
ParentOf
ParentOf
ParentOf
ParentOf
MemberOf
MemberOf

CanFollow
CanFollow

931
990
494

Type ID
© 20
© 74
442
712
722
725
751
801
811
864
()

Fy

COKl & & &€ & & & €

352
80

81
83
84
85
86
87
635
884

113
184

Common Weakness
Enumeration (CWE)

Improper Input Validation
Improper Neutralization of Special Elements in Output Used by a Downstream Component (‘Injection’

Web Problems

OWASP Top Ten 2007 Category Al - Cross Site Scripting (XSS)
OWASP Top Ten 2004 Category Al - Unvalidated Input

OWASP Top Ten 2004 Category A4 - Cross-Site Scripting (XSS) Flaws
2009 Top 25 - Insecure Interaction Between Components

2010 Top 25 - Insecure Interaction Between Components

OWASP Top Ten 2010 Category A2 - Cross-Site Scripting (XSS

2011 Top 25 - Insecure Interaction Between Components

OWASP Top Ten 2013 Category A3 - Cross-Site Scripting (XSS)

SFP Secondary Cluster: Tainted Input to Command

Download of Code Without Integrity Check
Cross-Site Request Forgery (CSRF

Improper Neutralization of Script-Related HTML Tags in a Web Page (Basic XSS)

Improper Neutralization of Script in an Error Message Web Page

Improper Neutralization of Script in Attributes in a Web Page
Improper Neutralization of Encoded URI Schemes in a Web Page
Doubled Character XSS Manipulations

Improper Neutralization of Invalid Characters in Identifiers in Web Pages

Improper Neutralization of Alternate XSS Syntax

Weaknesses Used by NVD

CWE Cross-section

Improper Neutralization of CRLF Sequences in HTTP Headers ("HTTP Response Splitting’
Incomplete Blacklist

@

Digital

MASTER SCHOOL

v oo
700
699
1000
1003
699
629
711
711
750
800
809
900
928
888
1000
1000
699
1000
699
1000
699
1000
699
1000
699
1000
699
1000
699
1000
635
884
1000
1000 692

11

Common Weakness
Enumeration (CWE)

v Observed Examples

Reference
CVE-2008-
5080
CVE-2006-
4308
CVE-2007-
5727
CVE-2008-
5770
CVE-2008-
4730
CVE-2008-
5734
CVE-2008-
0971
CVE-2008-
5249
CVE-2006-
3568
CVE-2006-
3211
CVE-2006-
3295

Description
Chain: protection mechanism failure allows XSS

Chain: only checks "javascript:" tag

Chain: only removes SCRIPT tags, enabling XSS

Reflected XSS using the PATH_INFO in a URL

Reflected XSS not properly handled when generating an error message
Reflected XSS sent through email message.

Stored XSS in a security product.

Stored XSS using a wiki page.

Stored XSS in a guestbook application.

Stored XSS in a guestbook application using a javascript: URI in a bbcode img tag.

Chain: library file is not protected against a direct request (CWE-425), leading to reflected XSS.

12

Digital

The National Vulnerability &
Database (NVD)

https://nvd.nist.gov/
The US Government repository of vulnerability data

Enables automation of vulnerability management,
security measurement and compliance

Includes databases of security-related software
flaws/bugs, product names, and impact metrics

Supports the Common Vulnerability Scoring System
(CVSS) scores

— Quantifies characteristics of each vulnerability so that they
can be compared

The National Vulnerability SR
Database (NVD)

National Cyber Awareness System

ulnerability Summary for CVE-2014-0075
Original release date: 05/31/2014
Last revised: 08/22/2016
Source: US-CERT/NIST

Overview

Integer overflow in the parseChunkHeader function in java/org/apache/coyote/http11/filters/ChunkedInputFilter.java in Apache Tomcat before 6.0.40, 7.x before 7.0.53, and 8.x before
8.0.4 allows remote attackers to cause a denial of service (resource consumption) via a malformed chunk size in chunked transfer coding of a request during the streaming of data.

Impact
CVSS Severity (version 2.0):
CVSS v2 Base Score: 5.0 MEDIUM
Vector: (AV:N/AC:L/Au:N/C:N/I:N/A:P) (legend)

Impact Subscore: 2.9

Exploitability Subscore: 10.0
CVSS Version 2 Metrics:

Access Vector: Network exploitable
Access Complexity: Low
Authentication: Not required to exploit

Impact Type: Allows disruption of service

14

Outline

Vulnerabilities in web applications
Injection vulnerabilities

Information Disclosure vulnerabilities
Session Fixation vulnerabilities
Denial of Service vulnerabilities

@ Digital

15

N —
@JE Dlgltal

Injection vulnerabilities

* Assume an application is written in multiple languages:
Java, JavaScript, HTML, SQL ...
* An application accepts any user input without sanitization

— Problem:some input that looks like a in Java can be
accepted as a piece of executable code by SQL, JavaScript, or
HTML interpreters

— These are also called "polyglot” vulnerabilities
 Consequences?
— Website defacement

— Complete control over the machine that hosts the vulnerable
application

Digital

SQL/NoSQL injection

* Description:

— Due to insufficient input filtering (or output
escaping) attacker-controlled input may be
interpreted as code by a database interpreter and
executed [1]. Eventual outcome is code execution.

* Related Threats: Information Disclosure, Data
Modification/Deletion, Elevation of
Privileges.

* Technical Impact: Severe.

OS2
> 4

SQL injection: example

A A eit) Digital
W&:{:\ MASTER SCHOOL

UserData data = getDataFromUser();
String userId = data.getUserId();
String passwd = data.getPasswd();
SomeDB.executeQuery("SELECT * FROM users WHERE users.userId =~
+ userId + ”’ AND users.passwd ='” + passwd + “'");

userid <- ”John Doe”

passwd <- ”qwelk@#4kw”

query <- "SELECT * FROM users WHERE users.userld =
>John Doe’ AND user.passwd = ’qwelk@#4kw’”

userId <- “Batman’ OR ’1’ == ’1’; DROP TABLE users; --”
passwd <-

query <- "SELECT * FROM users WHERE users.userId =
’Batman’ OR ’1° == 21’ ; DROP TABLE users; --’ AND users.passwd= ’’"

18

@ _Digital

NoSQL injection: example

exports.insecure = function(request, response) {
var login = request.body.userid;
var password = request.body.passwd;
var loginParam = eval("({ _id: '" + login + "', pword : '" + password + "'})");

server.dbprovider. findOne("users", loginParam, function(error, item) {
(error null) {

response.send("MongoDB ERROR: " + error);

’

(item null) {
response.send("Hello,

SR

response.send("A¢

ApC
5P L

Ny
S 2

*Theimage is taken from http://www.busanhlf4.org/

St

Rt @ Dol
NoSQL injection: example

exports.insecure = function(request, response) {
var login = request.body.userid;
var password = request.body.passwd;
var loginParam = eval("({ _id: '" + login + "', pword : '" + password + "'})");

server.dbprovider. findOne("users", loginParam, function(error, item) {
(error null) {
response. send(''MongoDB

’

}
(item null) {
response.send("Hello, "

{ This webpage is not available

response.send("Access d
=N

Batman'}); process.exit(); //

20
*Theimage is taken from http://www.busanhlf4.org/

SQL/NoSAQL injection: how to find it?

* You should be suspicious if an application
— Gets user input
— Does not check/sanitize the input
— Uses this input to construct a query to a database

— Uses string operations (e.g., concatenation,
replacement) to build a query

Java (+JDBC) sql, java.sql

Python pymssql,

CH Sql, SglClient, OracleClient, SqglDataAdapter
PHP mysql connect

Node.js require("mysql”), require(”mssql"),

require("mongodb") 21

N —
@JE Dlgltal

Cross-Site Scripting (XSS)

* Description:

— "Insufficientinputvalidation or output escaping can allow
an attacker to plant his own HTML or scripts on a
vulnerable site. The injected scripts will have access to the
entirety of the targeted web application ... " [2].

— The reflected variant takes the advantage when the input
is incorrectly echoed back to the browser; the persistent
variant goes a bit further: it also takes the advantage on
the lack of sanitization of the data that goes to a DB.

* Related Threats:
— Information Disclosure, Elevation of Privileges.

* Technical Impact:
— Moderate/Severe

= @) oo
Cross-Site Scripting (XSS): reflected

http://homepage.jsp?userld=John

<% String userld =
request.GetParameter (”userId") %>

00 /D horﬁepa;é.jsp | VX
<html> — C @ http://homepage.jsp?userid=John
<h1> Hello, Jonh!
Hello, <%= usef
</h1>
</html>

23

= @) oo
Cross-Site Scripting (XSS): reflected

http://homepage.jsp?userld=<script>alert(’XSS');</script>

<% String userld =
request.GetParameter (”userId") %>

o o homepage.jsp ¢
<html> <« C @ http://homepage.jsp?userid=<script>alert('XSS');<script/>
<hl>
Hello, <%= usey Te page seys:
? XSS
</h1>
e o o OK
</html>

24

9
€2

R Et) ogtal
Cross-Site Scripting (XSS): stored

Step 0 -> developer writes vulnerable pages:
15t one storesinvalidated input;

2"d one reads it from a database and with no validation.

Step 2 -> User browses the site.

Step 3 -> Web site reads unchecked data
and sends it along with attacker’s code
to the user’s browser.

q
—

‘ Step 1->
Attacker sends malformed

input (code) to a
vulnerable web page.

Database

Step 4 -> User’s browser
renders the web page and
runs the attacker’s code
(every time the page

is requested!)
*The diagramisadapted from[3]. 25

Cross-Site Scripting (XSS): et
some examples (reflected)

http://homepage.jsp?page=123

public class XSS extends HttpServlet {
protected void doGet(HttpServletRequest request,
HttpServletResponse response) {

/* oo %/

response.sendError(HttpServletResponse.SC NOT FOUND,
IIThe page \llll +
request.getParameter("page") +

"\" was not found.");

} 7
}
26

o Cross-Site Scripting (XSS): Sz
some examples (reflected)

http://homepage.jsp?page=<script>alert(’XSS')</script>

public class XSS extends HttpServlet {
protected void doGet(HttpServletRequest request,
HttpServletResponse response) {

/* o0 %/

response.sendError(HttpServletResponse.SC NOT FOUND,
llThe page \llll +
request.getParameter("page") +

"\" was not found.");

} 7
}
27

Cross-Site Scripting (XSS): b

some examples (stored)
http://show-employee.jsp?eid=123
<%

String eid = request.GetParameter(”eid”);
Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery(”select *
from emp where id='” + eid + »'”);
if (rs != null) {
rs.next();

}
String bio = rs.getString(”bio”);

Employee biography: <%= bio %>

%> ZC;;;7
28

s ST
&
DN

Cross-Site Scripting (XSS): O
some examples (stored)

http://show-employee.jsp?eid=qwe’or’1’ =="1’; insert into emp (bio)
values ('<script>alert(\"XSS\")</script>’) select * from emp; --

<%

String eid = request.GetParameter(”’eid”);
Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery(”select *
from emp where id='” + eid + »”'”);
if (rs != null) {
rs.next();

}
String bio = rs.getString(”bio”);

Employee biography: <%= bio %>

%> ‘Z;;;7 29

Cross-Site Scripting (XSS): €)oo
how to find it?

* You should be suspicious if an application

— Gets an input from an HTTP entity such as query
string, header or form, or request object

— Does not check the input for validity

— Echoes it back to the browser (either HTML or
HTTP headers), saving it to or retrieving from a
database unchecked

e Cross-Site Scripting (XSS): Sz
how to find it?

Java (JSP) addCookie, getRequest, request.getParameter
followed by <jsp:setProperty or <%= or
response.sendRedirect

Python form.getvalue, SimpleCookie whenthe datais not
validated correctly.

CH# Request.*, Response.*, and <%= when the datais not
validated correctly.

PHP Accessing$ REQUEST, $ GET,$ POST, or$ SERVER
followed by echo, print, header, or printf.

Node.js request, response, ...

31

Outline

Vulnerabilities in web applications
Injection vulnerabilities

Information Disclosure vulnerabilities
Session Fixation vulnerabilities
Denial of Service vulnerabilities

@ Digital

32

g 2
W ‘.
=
/e

@ Digital

Information Disclosure vulnerabilities

* Description:

Attacker is able to get data that leads to a breachin security or
privacy policy. The data itself could be the goal, or the data can
provideinformationthat leads the attacker to the goal.

Intentional: the design team has a mismatch with the end user
as to whether data should be protected (privacyissues).

Accidental: the data could leak due to an errorin the code, or a
nonobviouschannel.

Mistake: verbose [error] messages that developers thinkare
safe, but attackers find them helpful, e.g., the name or the ip
address of a server

Three main categories: hardcoded credentials,commentsin the
source code, and verbose error messages.

* Technical impact: could be anything

'}: 7
50, N

G
Information Disclosure: example 0

try {
/¥ ... %/
}

catch (Exception e) {
System.out.println(e);
e.printStackTrace();

34

<?php
SUName = " 3
sPWord = " -
sDB=" i

7>

user name: pb-admin
pword: -

def authenticate(uname,pword):

it uname=="' " and pword==

return True
else:
return False

(et Digital
MASTER SCHOOL

Information Disclosure: example 1

def authenticate(uname, pword):

if uname == ""
return False
elif pword != " -
return False
else:
return True

35

SE =R
Information Disclosure: example 2

public boolean authenticate(Request req, Response res) {

/* ... X/

if (config.getRealmName() == null) {
authenticateCC.append(request.getServerName());
authenticateCC.append(':");
authenticateCC.append(Integer.toString(

request.getServerPort()));

}

else {
authenticateCC.append(config.getRealmName());

}

return (false);

| 4

36

SEEEN
Information Disclosure: example 2

public boolean authenticate(Request req, Response res) {

/* ... X/

if (config.getRealmName() == null) {
authenticateCC.append(request.getServerName());
authenticateCC.append(':");
authenticateCC.append(Integer.toString(

request.getServerPort()));

}

else {
authenticateCC.append(config.getRealmName());

}

return (false);

| y

37

Information Disclosure: example 2

public boolean authenticate(Request req, Response res) {

/* .0 %/

if (config.getRealmName() == null) {
authenticateCC.append(request.getServerName());
authenticateCC.append(':");
authenticateCC.append(Integer.toString(

request.getServerPort()));

}

else {
authenticateCC.append(config.getRealmName());

}

return (false);

| y

38

bf @ Z N
Information Disclosure: example 3

Login successful: "authenticate" method returns “true”

O O [login.jsp X

< C @ https://logjn.isp

® O ® /[loginjsp X

Welcome! — C @ nhttps://login.jsp

Access denied.

39

2Ly
CALLD eit) Digital
\:s' ‘r‘\.‘:‘%:\ MASTER SCHOOL

Information Disclosure: example 3
(continu

Connection dbConnection Connection("..

password = null;

boolean authenticate(String username, String password) {

HTTP Status 500 -
User user = Users.getUser(username);

boolean hasAccess = false; '
(user null) { (3722 Exception report
hasAccess = getDigest(password) . e(message

The server encountered an internal error () that prevented it from fulfiling this request.

(hasAccess) { exception|
true;

java.lang.NullPointerException
false;

May throw null reference
String getDigest(String pass:

MessageDigest md = MessageDiosa " except|0n
byte[] bytes = password.getBytes();
md.update(bytes);

(HexUtils.convert(md.digest()),

40

Information Disclosure: ©
how to find it?

* Application returns “default ” information

such as server type/ configuration/ip
address/hostname.

 Too many details in error messages,
unhandled exceptions, stack traces; different
error messages when handling user login.

* Look for “password”, “credentials”, “login”
and similar keywords, you might find
something quite interesting.

Digital

(et

Digital
Y &

Path Traversal

* Description:

— An application can be tricked into reading or writing
files at arbitrary locations (often bypassing
application-level restrictions). This often happens due
to improper recognition of ”../” segments in un user-
supplied parameters. Unconstrained file writing bugs
are often exploited for deploying attacker-controlled
code [2].

* Related threats: Information disclosure, code
injection, denial of service

» Technical impact: Moderate/Severe

'r'",'; UNIVERSITY @ Digital
Path Traversal: some examples

An attacker could

provide an input such
String path = getInputPath();

das .
if (path.startsWith("/safe dir/")) { _
File f = new File(path); /safe_dir/../data.db

f.delete();

J The code attempts

W to validate the input
by whitelisting.

If the file is within
the ”/safe_dir/”
folder,
the file gets deleted.

Datubase

2 "path Traversal: some example@
(continued)

public void sendUserFile(Socket sock, String user) {
BufferedReader filenameReader = new BufferedReader(
new InputStreamReader(sock.getInputStream(), "UTF-8"));

String filename = filenameReader.readlLine();
BufferedReader fileReader =
new BufferedReader(new FileReader("/home/" + user +
"/" + filename));

String filelLine = fileReader.readlLine();

while(fileLine != null) {
sock.getOutputStream().write(fileLine.getBytes());
fileLine = fileReader.readlLine();

}

} 7
44

d

.\::ﬁ X

Sy ’
$e
=
AT

Path Traversal: some examples® ™"
(continued)

public void sendUserFile(Socket sock, String user) {
BufferedReader filenameReader = new BufferedReader(
new InputStreamReader(sock.getInputStream(), "UTF-8"));

String filename = filenameReader.readlLine();
BufferedReader fileReader =
new BufferedReader(new FileReader("/home/" + user +
"/" + filename));

String filelLine = fileReader.readlLine();

while(filelLine != null) {
sock.getOutputStream().write(fileLine.getBytes());
fileLine = fileReader.readlLine();

}

} 7
45

N —
@E Dlgltal

Path Traversal: how to find it?

* You should be suspicious if an application
— Gets an input from user

— The input is used to construct a path for any
purpose (downloading/uploading files, redirects,
etc.)

— Even if the input looks like it is sanitized,
sanitization functions often contain errors, so you
pay close attention to sanitizers

— Sometimes there are no path constraints at all

Outline

Vulnerabilities in web applications
Injection vulnerabilities

Information Disclosure vulnerabilities
Session Fixation vulnerabilities
Denial of Service vulnerabilities

@ Digital

47

@ Digital
Session Fixation vulnerabilities

* Description:

— An attack that allows to hijack a valid user session.
When authenticating a user, an app doesn’t assign
a new session ID, making it possible to use an
existent session ID. The attacker has to provide a

legitimate Web application session ID and try to
make the victim's browser use it. [5]

* Technical impact: Severe

(eit) Digital
MASTER SCHOOL

*

http://website.kom/
login.php?sessionid=abcd

®©
sessionid=abcd
8, ¢ &
% POST account.php

® [_Cookie: abcd]

Attack .
— Web Server

*This example is taken from [4]. 49

(i —
’G.IE/ Digital

Session Fixation: example

1. The attackerestablishes a legitimate connection with a web
server;

2. The web server issues a session ID;

3. The attacker has to send a link with the established session ID to
the victim; she has to click on the link, accessing the site;

4. The web server "sees” that the session has been already
established (by the attacker), so it doesn’t create a new one;

5. The victim provides her credentials to the web server; the attacker
can access her account knowing the session ID.

(session ID can be also sent via a cookie or a hidden
field in the DOM container)

Session Fixation: ©eee..

example (continued)

protected boolean parseRequest(Request req, Response res) {
if (isURLRewritingDisabled(req)) {
clearRequestedSessionURL(req);

}
/* .. %/

String sessionlID =
req.getPathParameter(Globals .SESSION PARAMETER NAME);

if (sessionID != null) {
req.setRequestedSessionId(sessionID);
req.setRequestedSessionURL(true);

}

/* o0 */
} 51

Session Fixation: o

example (continued)

protected boolean parseRequest(Request req, Response res) {
if (isURLRewritingDisabled(req)) {
clearRequestedSessionURL(req);

}
/* .. %/

String sessionlID =
req.getPathParameter(Globals .SESSION PARAMETER NAME);

if (sessionID != null) {
req.setRequestedSessionId(sessionID);
req.setRequestedSessionURL(true);

}

/* o0 */
} 52

@ . . . eit) Digital
v Session Fixation: S

example (continued)

protected boolean parseRequest(Request req, Response res) {
if (isURLRewritingDisabled(req)) {
clearRequestedSessionURL(req);

}
/* .. %/

String sessionlID =
req.getPathParameter(Globals .SESSION PARAMETER NAME);

if (sessionID != null) {
req.setRequestedSessionId(sessionID);
req.setRequestedSessionURL(true);

}

/* ... %/
} 53

b{gﬁx o . . eit) Digital
* Session Fixation: O

example (continued)

protected boolean parseRequest(Request req, Response res) {
if (isURLRewritingDisabled(req)) {
clearRequestedSessionURL(req);

}
/* .. %/

String sessionlID =
req.getPathParameter(Globals .SESSION PARAMETER NAME);

if (sessionID != null && !isURLRewritingDisabled(req)) {
req.setRequestedSessionId(sessionID);
req.setRequestedSessionURL(true);

}

ALY
} 54

@ Digital
Session Fixation: how to find it? [5]

* You should be suspicious if the usual flow is
broken [6]
— User enters correct credentials
— The application authenticates the user successfully

— Session information (temporary data) is stored in a
temporary location

— Session is invalidated (session. invalidate())

— Any temporary data is restored to new session (new
session ID)

— User goes to successful login landing page using new
session ID

(i —
’G.IE/ Digital

Session Fixation: how to
find it? (continued) [5]

* Check for session fixation if a user tries to login using a
session ID that has been specifically invalidated (requires
maintaining this list in some type of URL cache)

* Check for session fixation if a user tries to use an existing
session ID already in use from another IP address (requires
maintaining this data in some type of map)

 Some server applications (e.qg., JBOSS, Tomcat) have a
setting for disabling URL rewriting -> this mitigates the
attack when session ID is exposed via GET parameter of a
URL (as well as being stored in browser history, proxy
servers, etc)

Outline

Vulnerabilities in web applications
Injection vulnerabilities

Information Disclosure vulnerabilities
Session Fixation vulnerabilities
Denial of Service vulnerabilities

@ Digital

57

N —
@JE Dlgltal

Denial of Service vulnerabilities

* Description:

— The Denial of Service (DoS) attack is focused on
making a resource (site, application, server)
unavailable for the purpose it was designed. If a
service receives a very large number of requests,
it may cease to be available to legitimate users. In
the same way, a service may stop if a
programming vulnerability is exploited, or the way
the service handles resources it uses.

* Technical impact: Severe

<8it Digital

Denial of Service: example 1

String TotalObjects
int NumOfObjects

request.getParameter(“numberofobjects”);
Integer.parselnt(TotalObjects);

ComplexObject[] anArray Complex0Object [NumOfObjects];

We may "kill” the
server by filling all of
Iits memory

59

@ Digical_

Denial of Service: example 2

MyServlet ActionServlet {
void doPost(HttpServletRequest request,
HttpServletResponse response)
ServletException, IOException {

String [] values = request.getParameterValues('CheckboxField");

(int i=0; i<values.length; i++) {

The user has control over the loop
counter: we may decrease server’s
performance or even kill it.

Gﬁi Digital

Denial of Service: example 3

AccountDAO {

void createAccount(AccountInfo acct)
AcctCreationException {

{

Connection conn = DAOFactory.getConnection();
CallableStatement calStmt = conn.prepareCall(..);

calStmt.executeUpdate();

calStmt.close();

conn.close();
(java.sqUBALE;

AcctCreatl Both Connection and
CallableStatement objects
should be closed in the

“finally” block

@ Digital

Denial of Service: how to find it?

* You should be suspicious if

— User-controlled values define the size of allocated
memory, arrays or buffers;

— User-controlled values influence loop conditions;

— "Heavy” resources are never released (file
locks/descriptors, database connections, data
streams, etc.)

— There is an "infinite" amount of resources that a
single user can allocate (e.g., the number of
working processes or server sockets);

@ Qigital
References

[1] Web Application Vulnerabilities and Avoiding Application Exposure
https://f5.com/resources/white-papers/web-application-vulnerabilities-and-
avoiding-application-exposure

[2] Zalewski, Michal. The tangled Web: A guide to securing modern web
applications. No Starch Press, 2012.

[3] Michael Howard, David LeBlanc, and John Viega. 24 deadly sins of software
security: programming flaws and how to fix them. McGraw-Hill, Inc., 2009.

[4] OWASP: the free and open software security community
https://www.owasp.org/index.php/Main Page

[5] The White Hat Security blog on Session Fixation prevention:
https://www.whitehatsec.com/blog/session-fixation-prevention-in-java/

[6] The OWASP Enterprise Security API session handling example:
https://code.google.com/p/owasp-esapi-
java/source/browse/trunk/src/main/java/orqg/owasp/esapi/reference/DefaultH
TTPUtilities.java

[7] Secure Coding Guidelines for Java SE
http://www.oracle.com/technetwork/java/seccodequide-139067.html

63

