HT core-android analysis

Martin Pozdena
Zhongying Qiao

Introduction

We analysed leaked Hacking Team repository core-android containing HT's Remote Control
System resources related to Android platform backdoor. The fundamental backdoor resources
are to be found in folder RCSAndroid. The remaining folders and files in the repository are
either related to the build system (HT used Gradle system to build its Android backdoor),
application obfuscation (crypter) or they are related to signing the resulting apk file
(./export/sign.bat). Presence of bat files suggests that most of development work inside
Hacking Team was done on Windows machines. The following sections describe our findings
concerning the main backdoor components in RCSAndroid.

RCSAnNdroid

First glance reveals that the most interesting resources of backdoor in RCSAndroid are located
in folder src (backdoor resources developed in Java) and jni (backdoor resources developed
in C to run natively on Android). We calculated that RCSAndroid consists of 656 Java source
files with total count of 116,626 lines of code and 118 C source files summing up to 9,117 lines
of code. Although this figures also contain external open source resources it was clear to us that
given the limited timeframe our analysis of Android backdoor needs to be more high-level than
that of Linux backdoor.

Java resources

Most of relevant Java resources are located in folder RCSAndroid/src/com/android/dvci.
Java part of a backdoor runs as Android Service, component that unlike Activity provides
background services and does not provide any graphical interface to the user. It starts of by
determining whether the application runs inside of a debugger or virtual machine (if yes then
backdoor immediately terminates):

S/ ANTIDEBUG ANTIEMU
if (!core.checkstatic()) {
if (cfg.DEBUG) {
Check.log(TAG + 1
}

if (cfg.DEMO) {
Status.self().makeToast(M. el 11;
1

return;

checkStatic() method checks whether the application runs inside the emulator or inside
debugger. Emulator check (implemented in AntiEmulator.java) checks for multiple
parameters in hunt to determine whether it is running in emulated device including:
Build.FINGERPRINT

Build. TAGS

Build.PRODUCT

Build.DEVICE

Build.BRAND

Build. MANUFACTURER

tm.getDeviceld()

tm.getSubscriberld()

tm.getSimOperatorName()

tm.getLine1Number()

Anti debugger is implemented in AntiDebug. java class and it determines whether application
runs in the debugger environment based on information it can receive from the system. For
instance it checks if flag FLAG_DEBUGGABLE is set at Status.self().getAppContext().
getApplicationInfo().flags orituses android.os.Debug library as follows:

public boolean checkConnected(]) {
if (Cfg.DEBUGANTI) {
Log.wi , + Debug.1sDebuggerConnected(]);

return Debug.isDebuggerConnected();

If application determines that it is not running inside the emulator or debugger it creates 5
broadcast receivers checking for change of state of the following system components:

bst = new BSt(); //BroadcastReceiver standby

bac = new BAc(); //BroadcastRecelver AC connected
bsm = new BSm(); //BroadcastRecelver SMS

bc = new BC(); //BroadcastRecelver Call

wr = new WR(); //BroadcastRecelver Wifi

Receivers change the behavior of backdoor according to the broadcasts spreading across the
Android system.

Another interesting feature of Android backdoor is that it contains features for demonstrations to
Hacking Team’s customers (Law Enforcement Agencies). The following snippet of code was
taken from the main background service. It informs user that agent (running silently in the
background) was successfully created through Android Toast (pop-up message that appears at
the bottom of screen).

if (cfg.DEMO) {
Toast.makeText(this, M.el J, Toast.LENGTH_LONG).show(]);
I

Actual capture of victim’s data is again implemented in various backdoor modules, each
targeting different sort of information. Majority of modules also reveal that they cannot steal
user's data without having root privileges on the phone (thanks to Android OS application
sandboxing). On the other hand, Android backdoor is able to escalate privileges in using some
of its natively running components. For example ModuleDevice.java implements
functionality allowing to capture detailed information about infected device including IMEI, batery
charge, how much free space is available or whether backdoor has root priviliges or not:

sb.insert(0, M.e() + Build.DISPLAY + 1;
sb.insert(0, M.el) + Device.self(). getIme1E) + 1;
sh.insert(o, M.el } + (root 7 : 1+ M.el 1+
(su 7 : 1+ Moel 1+ (admin 7 1+
M.el) + Status. getPer51stencyStatusStrE) +);
sb.insert(o, M.el) + freeSpace + +
M.el)+);
sb.insert(o, M.e(1 + battery + + 1;

Another interesting module is ModuleChat.java which allows attacker to collect victim’s
messages directly from messanger’s storage inside the phone. It supports the following
messenger applications:

if (Cfg.ENABLE_EXPERIMENTAL_MODULES) {
subModuleManager.add(new ChatTelegram());

} else {

subModuleManager.add(new ChatBEM(]);
subModuleManager.add(new ChatFacebook()];
subModuleManager.add({new ChatWhatsapp()];
subModuleManager.add(new ChatSkype());
subModuleManager.add (new ChatViber()];
subModuleManager.add(new ChatlLine());
subModuleManager.add(new ChatweChat());
subModuleManager.add(new ChatGoogle());
subModuleManager.add(new ChatTelegram(]);

For example in case of Telegram, Android backdoor tries to access the following files:

String pObserving = M.el 1;
string dbFile = M.e(1;
String dbAccountFile = M.e(1;

Data is not being transmitted from victim’s device to command and control server immediately
when recorded, but it is rather stored in the local storage and synchronized with C&C server in
batch. This is ensured through several Java classes where backdoor modules first utilize the
class EvidenceBuilder. java for example as follows:

final EvidenceBuilder log = new EvidenceBuilder (EvidenceType.DEVICE);
log.write(wChar.getBytes(content, true));
log.close();

EvidenceBuilder stores the data in form of class Packet, which is subsequently passed to
the class EvDispatcher. This class stores data in form of Packets in the queue and ensures
that data in the queue is periodically flushed from memory to the device storage. Victim’'s data
are again encrypted and stored in files that are hard to locate on the filesystem. It was
complicated to determine the storage without running the application, but file paths are
generated in class EvidenceCollector and method makeNewName as follows:

Path.logs(]);

final String basePath
prefix + (progressive / LOG PER DIRECTORY); //$MOM-MNLS- 1%

final String blockDir

// http://www.rgagnon.com/javadetails/java-0021.html

final String mask = M.el V; /7 ENOM-NLS- 1%
final String ds = Long.toString(progressive % 10000); // double to
J/ string

final int size = mask.length() - ds.length();
if (cfg.DpEBUG) {

Check .assertsisize »= 0, Vi JSENON-MLS- 1%
I

final String paddedProgressive = mask.substring(o, size) + ds;

tinal String fileName = paddedProgressive + + logType + + makeDateName (timestamp) ;
final String encName = encryptName(fileMame + LOG_EXTENSION);

C resources

Android runs on the top of Linux kernel and many aspects of Linux and Android architecture are
similar on the native level. Android allows developers to implement some computationally
intensive application tasks in C and access it through Java Native Interface (JNI). It is therefore
possible to exploit for example some known Linux kernel vulnerabilities using natively running
code in order to escalate privileges to root or escape SELinux Mandatory Access Control
mechanism (SELinux is configured in enforcing mode since Android version 5.0).

As it was already mentioned in the previous section overwhelming maijority of Java backdoor
modules required root access in order to function properly. The reason for this is that every
single Java Android application runs in Operating System level sandbox. Each application runs
under different Linux user and as a such is unable to write or read information stored in the

folders of other Applications (“Linux users”). This security mechanism can be only defeated by
escalating privileges to root. As Android device manufacturers are infamous for providing
delayed or no system updates at all, majority of Android devices run with outdated and
vulnerable native components including Linux kernel. Therefore, such a privilege escalation
does not need to be necessarily so complicated to achieve.

Relevant C source codes from RCSAndroid are to be found in jni folder and they indeed
seem to be trying to achieve local privilege escalation. They indicate that Hacking Team was
able to escalate privileges or break SELinux using its Android backdoor. For example file
exploit.c checks whether device:

1. is already rooted:

int fildes = openl , O_ROWR);
status = fstat(fildes, &sustat);
close(fildes);

mode t mode = sustat.st mode;
uid t uid = sustat.st uid;
gid t gid = sustat.st gid;
off t size = sustat.st _size;

int executable = (mode & 5 _IXOTH) && (mode & S_IROTH);
int suidded = (mode & S _ISUID);

int root = uld == ©;

int regular = S_ISREG(mode);

sprintf (buf, ’
executable, suidded, root, regular];
LOG(buf);

return executable && suidded && root && regular;

2. is of version 2.2-3.0 and can be exploited using known GingerBreak privilege escalation
(http://c-skills.blogspot.de/2011/04/yummy-yummy-gingerbreak.html)

There are more versions of privilege escalation exploit which we believe is targeting more recent
Kernel versions. They are all invoked from file exploit_list.c and upon successful
escalation runs the following code:

/* ask for root */
ret = setresuid(o, 0, 0);

ifiret) {
cleanup(exp);
return O;

¥

// If everything was ok we are root now
exec_payload(args, cmd);

Although exec_payload implementation is not to be found among the source codes it is likely
that backdoor executes for instance code from suidext.c which provides the following

http://c-skills.blogspot.de/2011/04/yummy-yummy-gingerbreak.html

functionality:

LOG(1;
, argv[ol);
).

r

Apart from privilege escalation exploits jni folder also contains exploits allowing to break
SELinux (in folder selinux_exploit).

Conclusion

Hacking Team’s Android backdoor was at the first glance complex piece of malware. In fact
some Internet resources including Trend Micro Security Intelligence Blog describes it as one of
the most sophisticated Android malwares ever exposed. Its functionality goes far beyond the
functionality of Linux backdoor we also investigated. Given the malware complexity and limited
timeframe for malware analysis it was impossible to provide in-depth analysis of its functionality.
Nevertheless, we believe that we provided a basic insight into some of the fundamental malware
components.

