

UNIVERSITÀ DI TRENTO

Stateless Firewall Implementation

Network Security Lab, 2016 Group 16

B.Gamaliel

K.Noellar

O.Vincent

I. Enviroment Setup

II. Today's Task

III. Conclusion

Lab Objectives :

After this lab we expect all of you to know:

- 1. What is a FW with stateless rules and how it works
- 2. Set policies using iptables
- 3. Test the efficacy
- 4. Recommended Security Practises

I. Enviroment Setup :

- → WinHost(Windows server 2008)
 - Putty
- → UbuntuHost
- Hping3 for port scanning
- → Firewall(Debian)
 - Apache2 web server
 - Iptables

- UbuntuHost \rightarrow
- **Password**: ubuntuhost

Check Settings :

- ifconfig _
- → Should be 192.168.1.6
- Note : Access as root
- Type on terminal : sudo su \succ **Password**: 123 >

: 192.168.1.1 : 255.255.255.0

Windows server 2008 \rightarrow

Password : password@1

Check Settings :

ipconfig -

IPv4 Address.

Subnet Mask

Should be 192.168.1.1 \rightarrow

- → Debian
- **Password** : secclass
- Check Settings :
 - ifconfig
- → Should be 192.168.1.2

link/ether 08:00:27:41:78:09 brd ff:ff:ff:ff:ff:ff inet 192.168.1.2/24 brd 192.168.1.255 scope global eth0

Note : Login as *root*

- > Type on terminal : su -
- Password : password@1

II. Today's Task

1. USING STATELESS RULES TO FILTER TRAFFIC

- → Default Accept Policy on chains for the filter table
- → Block all ICMP echo(8) packets coming to the firewall
- → Default Drop Policy on chains for the filter table
- → Whitelist traffic for a specific Mac address
- → Allow access to tcp port 22 (ssh)

2. ALLOWING SPECIFIC TCP FLAGS(SYN, FIN ACCEPT)

→ Commands for accepting packets containing SYN & FIN

3. NAT & PORT FORWARDING

→ Redirect Traffic from port 8080 to common http port 80 on DMZ interface.

★ Firewall Basics

→ A Firewall is a perimeter network component that filters incoming or outgoing traffic to and from the network.

OSI vs TCP/IP Model

★ Port Communication

Communication via TCP/IP operates by IP-Addresses and Ports.

- Certain applications are associated with specific port numbers ranging from 0 to 65535
- The ports below 1024 are standardized (standard ports), which are allocated to dedicated services, i.e.
- → 25 smtp
- → 80 http
- → 443 https
- → 22 ssh

★ Policies for Packet Filtering

There are 2 different strategies :

Deny every packet (Only well defined kind of packets are allowed)

Allow every packet (Only well defined kind of untrusted packets are discarded).

→ Reject VS Drop :

Reject: The Packets will be discarded and an ICMP-Error message will be delivered to the sender.

Drop: The Packets will be discarded. Better choice, because:

- → Less traffic,
- → Some packets could be part of an attack
- → An error message could contain useful information for an attacker

★ Iptables (Packet filter in Linux) :

Three Chains:

- → INPUT : Filters traffic destined to fw machine itself
- → OUTPUT : Filters traffic generated by fw machine.
- → FORWARD : Filters traffic routed through the fw.

NOTE : "Accept is the default policy of iptables."

Some handy rules :

where

- → -p = Protocol like TCP, UDP and ICMP,
- → -i and -o flags respectively input and output interfaces.
- \rightarrow -s and -d are source and destination.

Let's Get Our Hands DIRTY!!

1. USING STATELESS RULES TO FILTER TRAFFIC

- → Default Accept Policy on chains for the filter table
- → Block all ICMP echo(8) packets coming to the firewall
- → Default Drop Policy on chains for the filter table
- → Whitelist traffic for a specific Mac address
- \rightarrow Allow access to tcp port 22 (ssh)

1. USING STATELESS RULES TO FILTER TRAFFIC

→ Default-Allow

-

- On **Firewall Vm**, check that the rules are on "default Allow" (accepting all traffic) using iptables -L -n

root@StatelessFw:/home/secclass# iptak	ples -L
chain INPUT (policy ACCEPT)	
target prot opt source	destination
Chain FORWARD (policy ACCEPT)	
target prot opt source	destination
Chain OUTPUT (policy ACCEPT)	
target prot opt source	destination

Open terminal and ping from WinHost & UbuntuHost to the Firewall

```
C:\Users\Administrator>ping 192.168.1.2

Pinging 192.168.1.2 with 32 bytes of data:

Reply from 192.168.1.2: bytes=32 time<1ms TTL=64

Reply from 192.168.1.2: bytes=32 time<1ms TTL=64

Reply from 192.168.1.2: bytes=32 time<1ms TTL=64

Ping statistics for 192.168.1.2:

Packets: Sent = 3, Received = 3, Lost = 0 (0% loss),

Puppeximate would twin times in milli-seconds:
```


→ Block all ICMP echo(8) packets coming to the server

- Perform a continous ping from WinHost terminal : ping 192.168.1.2 -t
- On **UbuntuHost** Implement the following rules :

Note : ICMP (Internet Control Message Protocol) is an *error-reporting protocol*, It is *not* a transport protocol that sends data between systems. Any IP network device has the capability to send, receive or process ICMP messages.

Testing:

As it can be observed, initially there was a contionuous flow of packets, but after the rules are implemented the ICMP packets are dropped.

→ <u>Default Drop Policy on chains for the filter table</u>

- From the terminal on the Firewall
- Type the following commands to set all policies to DROP from ACCEPT

root@StatelessFw:/home/secclass# iptables -P INPUT DROP root@StatelessFw:/home/secclass# iptables -P OUTPUT DROP root@StatelessFw:/home/secclass# iptables -P FORWARD DROP

List the new policies using iptables -L -n -v

Open terminal on the UbuntuHost and ping the Firewall

-

→ Whitelist traffic from the WinHost's mac address

S C:\Users\Administrator> ipconfig	
ndows IP Configuration	
Host Name	. : WIN-RTEGRM526CU ipconfig /all
Primary Dns Suffix Node Type IP Routing Enabled WINS Proxy Enabled	: Hybrid : No : No
thernet adapter Local Area Connect	tion:
thernet adapter Local Area Connect Connection-specific DNS Suffix	tion: .:
thernet adapter Local Area Connect Connection-specific DNS Suffix Description	tion: . : . : Intel(R) PRO/1000 MT Desktop Adapter . : 08-00-27-57-5F-20
thernet adapter Local Area Connect Connection-specific DNS Suffix Description Physical Address. DHCP Enabled.	tion: .: Intel(R) PRO/1000 MT Desktop Adapter .: 08-00-27-57-5F-20 .: No .: No .: No .: No
thernet adapter Local Area Connect Connection-specific DNS Suffix Description Physical Address DHCP Enabled Autoconfiguration Enabled IPv4 Address	tion: : Intel(R) PRO/1000 MT Desktop Adapter : 08-00-27-57-5F-20 : No : Yes : 192.168.1.1(Preferred) : 2000 MT Desktop Adapter Server Mac
thernet adapter Local Area Connect Connection-specific DNS Suffix Description	tion: : Intel(R) PRO/1000 MT Desktop Adapter : 08-00-27-57-5F-20 : Yes : 192.168.1.1(Preferred) : 255.255.255.0 : 192.168.1.2

Define policy to allow outgoing traffic from the firewall :

root@StatelessFw:/home/secclass# iptables -P OUTPUT ACCEPT

- Allow traffic for the Winhost's mac address

-

root@StatelessFw:/home/secclass# iptables -A INPUT -m mac --mac-source 08:00:27: 57:5F:20 -d 192.168.1.2/32 -j ACCEPT

Testing :

- On WinHost, Open Putty located on the taskbar and connect to the Firewall :

Pings from UbuntuHost to Firewall vm doesn't work

C root@hacking-VirtualBox:/home/hacking# ping 192.168.1.2 PING 192.168.1.2 (192.168.1.2) 56(84) bytes of data. ^C --- 192.168.1.2 ping statistics ---

12 packets transmitted, 0 received, 100% packet loss, time 11050ms

→ Allow access to tcp port 22(ssh) from UbuntuHost

- Open Terminal on Firewall
- Flush the Iptables using root@StatelessFw:/home/secclass# iptables -F
- Allow access for 192.168.1.6

root@Statel	lessFw:/h	ome/secclass#	# iptables	-A INPUT -	i eth0	-p tcp	dport	22 -s	192.168.
1.6/32 -d 1	192.168.1	.2/32 -j ACCE	PT						
root@State	lessFw:/h	ome/secclass#	<pre># iptables</pre>	- L					
Chain INPUT	T (policy	DROP)							
target	prot opt	source		destination	Î.				
ACCEPT	tcp	192.168.1.6		StatelessFw	1	tcp	dpt:ssh		
Chain FORW#	ARD (poli	cy DROP)							
target	prot opt	source		destination	l.				
Chain OUTPL	UT (polic	y ACCEPT)							
target	prot opt	source		destination	1				

- Testing :

Test by Telnet 192.168.1.2 22 from UbuntuHost

2. FILTERING SPECIFIC TCP FLAGS(SYN, FIN ACCEPT)

→ Accepting only packets containing SYN & FIN

where

- → URG Urgent, ACK Acknowledgement, PSH Push, RST Reset, SYN -Synchronize, and FIN - Finished are Flags contained in Transiting Packets Lists All Flags
- on **Firewall** , insert the following rules :

root@StatelessFw:~# iptables -A INPUT -p tcp -m tcp --tcp-flags ALL SYN -j ACCEPT root@StatelessFw:~# iptables -A INPUT -p tcp -m tcp --tcp-flags ALL FIN -j ACCEPT

implement rule

3. NAT & PORT FORWARDING

- → Redirect Traffic from port 8080 to common http port 80
 - Flush iptables with iptables -F & iptables -t nat -F
 - Define all policies to accept traffic

root@StatelessFw:/home/secclass# iptables -P INPUT ACCEPT root@StatelessFw:/home/secclass# iptables -P FORWARD ACCEPT root@StatelessFw:/home/secclass# iptables -P OUTPUT ACCEPT

- Uncomment the following line in the sysctl.conf file

		sysctl.conf (/etc) - gedit	
)pen 🔻	F	sysctl.conf /etc	Save 📃

- check iptables iptables -L & check the nat policies by using iptables -t nat -L

<pre>root@StatelessFw:/home/secclass# ipt Chain PREROUTING (policy ACCEPT)</pre>	ables -t nat -L
Chain INPUT (policy ACCEPT)	destination
target prot opt source Chain OUTPUT (policy ACCEPT)	destination
target prot opt source	destination
target prot opt source	destination

- Insert the following rules to activate port redirection :

root@StatelessFw:/home/secclass#_echo 1 > /proc/sys/net/ipv4/ip forward
root@StatelessFw:/home/secclass# iptables -t nat -A POSTROUTING -o eth0 -j MASQU
ERADE
root@StatelessFw:/home/secclass# iptables -A FORWARD -i eth0 -o eth1 -j ACCEPT
root@StatelessFw:/home/secclass# iptables -t nat -I PREROUTINGsrc 192.168.1.0
/24dst 172.16.1.2 -p tcpdport 80 -j REDIRECTto-ports 8080
root@StatelessFw:/home/secclass# <u>CONFIG IP NF NAT LOCAL=y</u>
root@StatelessFw:/home/secclass# iptables -t nat -I OUTPUTsrc 192.168.1.0/24
dst 172.16.1.2 -p tcpdport 80 -j REDIRECTto-ports 8080

Testing :

- Open a browser on WinHost and Type "172.16.1.2:80"

- It Works!!

III. Conclusion

→ How can I protect my own PC

- **Uninstall** all programs which are not permanently used.
- Uninstall all programs with well known security gaps e.g. Adobe Flash
- Update your applications and operating systems as soon as stable updates are available

30

- Invest in a good antivirus system e.g. Kaspersky
- Install a **personal firewall** (Freeware:ZoneAlarm)
- Encrypt your hard drive
- Scan all external usbs
- Use a trusted VPN service provider to encrypt your traffic

→ <u>Best practices for firewall administrators</u>

- Document all firewall rule changes.
- Install all access rules with minimal access rights. Eg. Avoid rules where the service field is 'ANY', it opens up 65,535 TCP ports as well as udp & icmp ports
- Verify every firewall change against compliance policies and change requests.
- Remove unused rules from the firewall rule bases when services are decommissioned.
- Perform a complete firewall review at least twice per year.

Thanks!!

