
On Stateful Firewalls
or Bob’s story

Lorenzo Angeli, Liviu Bogdan, Bertalan Borsos

— Firewalls are Layer-3 entities
— They are used to filter traffic going through networks
— Filters can be set up for multiple factors

‐ IPs
‐ Ports
‐ Flags
‐ Packet content
‐ Amount of traffic
‐ …

Recap - Firewalls

Stateless firewalls…
— Are simpler, easier to

configure
— Look at packets one at a

time, independent of
context

— Only look at headers
— Generally perform faster

Recap - Stateless vs Stateful
Stateful firewalls…

— Are less immediate to
configure

— Examine packets keeping
track of connection history

— Can also check content

Usernames and passwords are always netsec

Lab Architecture

— First, we’ll spin a masterful tale to give you the setting
— Then, we’ll give you some scenarios that you can

solve with a stateless configuration
— Hopefully, these will show the limitations of that

model
— Which will lead us to stateful extensions

Outline

— In this lab, we’ll only provide guidance
— We’ll leave you time to actually think about the

problems on your own

You have these tools:
— wireshark - Use this to monitor network traffic
— Web browser - To check availability of the website
— iptables - Your friendly neighborhood firewall

Context and tools

— Bob works at a particle accelerator
— Bob has a web server on his workstation (not good)
— Bob’s favourite thing in the universe is his cat
— He decided to set up a website for his cat
— ...but he also got a virus
— ...and now he’s on vacation

The Scenario

— You are the the sysadmin
— You do not have access to Bob’s personal computer
— But you still have to stop any information leakage

The Scenario - part 2

— You realized with WireShark that Bob’s computer is
infected by mal.py

— You want to stop mal.py from leaking Bob’s secret
data

— But you don’t want to call Bob, so you can only
operate on the firewall

— Exception: For convenience, you’ll have to launch
mal.py

The current situation

— Behaves like a simplified Trojan Horse
— “Leaks” a TCP packet with information
— It will “evolve” under certain circumstances

‐ To simulate this, you’ll launch different versions of mal.py
— Your task is, of course, to stop the data leakage

mal.py

— To launch the python SimpleHTTPServer…
‐ Open a terminal
‐ sudo su -

‒ (password is “netsec”)
‐ cd /var/www/html
‐ python -m SimpleHTTPServer 80
‐ Keep that terminal open!

One more setup step...

HTTP server is now running on port 80

 We try to test
 the server

— Launch mal1.py with Wireshark open
— ...ideas on how to block it?

Now, get a clearer picture

— As a first solution, you may think of blocking the
target IP address

— iptables in stateless mode can do this
— ...check your cheat sheet if you need help with the

syntax

1 - Filter by IP

— Use iptables to filter outbound packets that go to
the attacker

— Verify that the firewall is actually blocking the traffic
— Check that Bob’s website is still available

First task

iptables -A FORWARD -d 10.x.y.z -j DROP
“Drop all packets that the firewall would forward to destination 10.x.y.z”

— You blocked the IP - good
— ...but try running it again (mal1.py)

...okay, that’s a first step

— ...it’s randomizing IPs!
— Is it sensible to block all IPs?

Notice

No.

Okay, next!

The answer

— For the sake of convenience, flush iptables
‐ Check your friendly cheat sheet if you forgot how to do that

— What else can we do?

Moving on...

— You think a bit more...
— This time, you may want to filter traffic by port
— …but remember not to block port 80
— Again, iptables in stateless mode can do it

2 - Filter by port

— Run mal1.py
— Use iptables to block the port mal.py is using to

leak info
— Again, check that you blocked the trojan
— Again, check for website availability

Second task

iptables -A FORWARD -p tcp --sport # --dport # -j DROP
“Drop all packets that the firewall would forward from a specific port to
a specific port”

— The website is accessible!
— The malware is blocked!

Operation successful!

— Run mal2.py
— Check Wireshark - something changed

The first “evolution”

— Again, remember to flush iptables

Next..?

— Notice that mal.py is always sending SYNs
— So you might want to block flags instead
— iptables can still do it statelessly

3 - Filter by flags

— Use iptables to filter outgoing SYNs
— For the record: can you do this safely?
— Verify you blocked the trojan
— Check Website availability

Third task

iptables -A FORWARD -i enp0s3 -p tcp --tcp-flags ALL SYN -
j DROP
“Of TCP packets forwarded by the firewall through interface enp0s3,
inspect them all and drop those that are flagged with exactly SYN”

— Okay, that’s all good
— ...but you know what’s about to happen, right?

Aha!

— Now, launch mal3.py
— With more careful WireShark inspection you should

notice something, though…

Another “evolution”

— Now, launch mal3.py
— With more careful WireShark inspection you should

notice something, though…
— Now the Trojan sends SYN_ACKs!

Another “evolution”

— ...can you block those?
— As usual, flush iptables

‐ You know how to do this by now, right?
— What could we do?

When the going gets tough...

— You probably guessed that we could do stateful
filtering...

— But you don’t want to eat your dessert before you’re
finished with the rest, right?

Okay, good job

Server is no longer
working

3-Way Handshake
Why?

— Hint: mal.py is sending out secret messages...

So… Any more ideas?

— This time, we inspect the packet, not just the header
— iptables has a module that can match packet

content!

4 - Deep inspection

— Block packets that contain the word secret in them
— As usual, refer to the syntax cheat sheet
— Check that the attack is blocked
— And that the website is working

Fourth task

iptables -A FORWARD -m string --string “secret” --algo bm
-j DROP
“Take forwarded packet, and deeply inspect the text content. If it

contains the substring secret (matched with Boyer-Moore), drop it”

— The filter is correct
— ...but something was in the HTML code

What just happened here?

https://en.wikipedia.org/wiki/Boyer%E2%80%93Moore_string_search_algorithm

— A “secret” class in the HTML
code means that packet will be
blocked

— Which, in turns, breaks the
page

— How?

Here’s the culprit

— Okay, time to launch mal4.py
— It’s not sending secret anymore
— So, what are we doing?

Time to evolve again!

— We can track the connection statefully
— This way, we can filter out unsolicited SYN_ACKs

At long last

— Well, we can now say that the server will allow only
established connections

5 - Stateful Filtering

— Add a stateful rule to iptables: only allow
established connections

Fifth (and final?) task

iptables -A FORWARD -m state --state INVALID -j DROP
“Inspect forwarded packets by state. Keep only those that are valid
connections”

— Website is accessible
— The Trojan isn’t leaking any more information
— Moving on to some recap...

We did it?

What happened today…
1. Stateless filtering by IP

‐ You can’t really block possibly legitimate IPs
2. Stateless filtering by port only

‐ Malicious traffic could piggyback on legitimate traffic ports
3. Stateless filtering by flags

‐ Can still be worked around
4. Deep packet inspection

‐ There might be too many sub-cases, might filter legit content
5. Stateful filtering

‐ Stops packets with “illogical” flags

Reflection and recap

Thanks for joining!

