On Stateful Firewalls

or Bob's story

Lorenzo Angeli, Liviu Bogdan, Bertalan Borsos

Recap - Firewalls

— Firewalls are Layer-3 entities
— They are used to filter traffic going through networks

— Filters can be set up for multiple factors

IPs

Ports

Flags

Packet content
Amount of traffic

Recap - Stateless vs Stateful

Stateless firewalls...

Are simpler, easier to
configure

Look at packets one at a
time, independent of
context

Only look at headers
Generally perform faster

Stateful firewalls...

Are less immediate to
configure

Examine packets keeping
track of connection history
Can also check content

Lab Architecture

192.168.0.0/24 10.0.0.0/24
Bob's Server Alice
]
enpO0s3
‘ 192.1650.1 SN 10001 | |
L ;
192.168.0.2 10.0.0.2

Usernames and passwords are always netsec

Outline

— First, we'll spin a masterful tale to give you the settin

— Then, we'll give you some scenarios that you can
solve with a stateless configuration

— Hopefully, these will show the limitations of that

model
— Which will lead us to stateful extensions

Context and tools

— In this lab, we'll only provide guidance
— We'll leave you time to actually think about the
problems on your own

You have these tools:

— wireshark - Use this to monitor network traffic
— Web browser - To check availability of the website
— iptables - Your friendly neighborhood firewall

The Scenario

— Bob works at a particle accelerator

— Bob has a web server on his workstation (not good)
— Bob's favourite thing in the universe is his cat

— He decided to set up a website for his cat

— ...but he also got a virus

— ...and now he’s on vacation

The Scenario - part 2

— You are the the sysadmin
— You do not have access to Bob’s personal computer
— Butyou still have to stop any information leakage

The current situation

You realized with WireShark that Bob’s computer is
infected by mal.py

You want to stop mal.py from leaking Bob's secret
data

But you don't want to call Bob, so you can only
operate on the firewall

Exception: For convenience, you'll have to launch
mal.py

mal . py

— Behaves like a simplified Trojan Horse
— “Leaks” a TCP packet with information

— lt will “evolve” under certain circumstances
To simulate this, you'll launch different versions of mal.py

— Your task is, of course, to stop the data leakage

One more setup step...
— To launch the python SimpleHTTPServer...

Open a terminal

- sudo su -
— (password is “netsec”)

- cd /var/www/html
- python -m SimpleHTTPServer 80
- Keep that terminal open!

S @ O @ root@netsec-VirtualBox: fvar/www/html
_;‘?"f‘ netsec@netsec-VirtualBox: ~

We try to test
Bob's webpage — the Server

& 192.168.0.2

Bob's cat (which is not a bobcat)

Now, get a clearer picture

— Launchmall.py with Wireshark open
— ...Ideas on how to block it?

Capturing from enp0s3

Wireshark 1.12.7 (Git Rev Unknown From un Capture packets
dit View-Gn Capture .”ralyze Skatistics Telephony Tools Internals Help n:oming from the

® m & - Q v T - server's interface
tcp v | Expression...
Time Source Protocol

s ' Destination IP

ICMP ﬁ

B8 8@ 27 95 79 52 08 80 27 07 5f dc 08 0@ 45 80 PRPRRY, | | TR g
B0 74 00 61 00 00 40 06 af 75 c@ a8 00 02 Ba 00 S SRR R | S
08 64 85 39 1c a3 08 00 0O 0O G0 00 B8 PO 58 B2 i [- B I
7 AR 57 9a AR AR 54 AB A5 28 73 RS A 72 A T4 W...Th e secn

enp0s3: <live capture in progre... Packet... Profile: Default

*Frame 3: 138 bytes on wire (1848 bits), 130 bytes captured (1640 bits) on inferface
*Ethernet II, Src: CadmusCo 87:5f:dc (08;08s P s dousCo 95:79452 (08:00:27:¢
» Internet Protocol Version 4, 5Sr 9/.168.0.2 (192.168.0.2), Dst: 10.0.0™AQN(10.0.0.100)

+Transmission Control Protocol,Src Port: 1337 (1337), Dst Port: 7331 (7331), ¥eq: 8, Len: 3
»Data (76 bytes)

.. A

Jeee 08 0@ 27 95 79 52 08 @@ 27 @7 5T dc 88 60 45 @6 co W Ve caoBEs
I8l 00 74 00 B1 00 60 490 06 af 75 cO aB 00 02 Oa B8O iCeetlls: Miuees
Jo20 ©0 64 65 39 1c a3 €60 60 €0 00 0O 0O 60 60 50 62 e Deas seee P

Jo3e 20 60 57 9a 08 08 54 68 65 20 73 65 63 72 65 74 .W...Th e secret

. e e e mm s e e 1 e PP TP P

1 - Filter by IP

— As afirst solution, you may think of blocking the
target |P address

— 1iptables in stateless mode can do this

— ...Check your cheat sheet if you need help with the
syntax

First task

— Use iptables to filter outbound packets that go to

the attacker
— Verify that the firewall is actually blocking the traffic

— Check that Bob's website is still available

...okay, that's a first step

iptables -A FORWARD -d 18.x.y.z -j DROP

“Drop all packets that the firewall would forward to destination 10.x.y.z”

— You blocked the IP - good
— ..but try running it again (mall.py)

Notice

— ...it'srandomizing IPs!
— Is it sensible to block all IPs?

The answer
NoO.

Okay, next!

Moving on...

— For the sake of convenience, flush iptables
Check your friendly cheat sheet if you forgot how to do that

— What else can we do?

2 - Filter by port

— You think a bit more...

— This time, you may want to filter traffic by port
— ...but remember not to block port 80

— Again, iptables in stateless mode can do it

Second task

— Runmall.py
— Use iptables to block the port mal.py is using to

leak info
— Again, check that you blocked the trojan
— Again, check for website availability

Operation successful!

iptables -A FORWARD -p tcp --sport # --dport # -j DROP
“Drop all packets that the firewall would forward from a specific port to
a specific port”

— The website is accessible!
— The malware is blocked!

The first “evolution”

— Runmal2.py
— Check Wireshark - something changed

Next..?

— Again, remember to flush iptables

3 - Filter by flags

— Notice thatmal.py is always sending SYNs
— So you might want to block flags instead
— 1iptables can still do it statelessly

. | kcp v | Expression... Clear Save

Time Source Destination Protocol Length Info .

4 0.003038000 10.0.8.2 192.168.68.2 54 44469-1185. [RST, ACK] Seg=1 A

Third task

— Use iptables to filter outgoing SYNs
— For the record: can you do this safely?
— Verify you blocked the trojan

— Check Website availability

Aha!

iptables -A FORWARD -i enp@s3 -p tcp --tcp-flags ALL SYN -
j DROP

“Of TCP packets forwarded by the firewall through interface enp(0s3,
inspect them all and drop those that are flagged with exactly SYN”

— Okay, that's all good
— ...butyou know what's about to happen, right?

Another “evolution”

— Now, launchmal3.py
— With more careful WireShark inspection you should
notice something, though...

Another “evolution”

— Now, launchmal3.py

— With more careful WireShark inspection you should
notice something, though...

— Now the Trojan sends SYN_ACKS!

tcp v | Expression... Clear Save

[ime Source Destination Protocol Length Info

4 0.004670000 10.0.0.2 192.168.0.2 54 59962-31217 [RST] Seq=1 Win=0

When the going gets tough...

— ...can you block those?

— As usual, flush iptables
- You know how to do this by now, right?

— What could we do?

Okay, good job

— You probably guessed that we could do stateful
filtering...

— Butyou don't want to eat your dessert before you're
finished with the rest, right?

-

Problem loading page - Mozilla Firefox

@ Problem loading page x Server is nNo Ionger
- @192.168.0.2 »| € ||Q search Working

(D The connection was reset

The connection to the server was reset while the page was loading.

* The site could be temporarily unavailable or koo busy. Try again in a
moments.

» If you are unable to load any pages, check your computer's network
connection.

» If your computer or network is protected by a firewall or proxy, mak
sure that Firefox is permitted to access the Web.

Try Again

Why?
3-Way Handshake

nitiator

SYN

oy + ACK

ACK

Responder

So... Any more ideas?

— Hint: mal.py is sending out secret messages...

File Edit View Go Capture Analyze Statistics Telephony Tools Intermals Help

© ® a Q ¥ T & & = @ v
Filter: | tcp ¥ | Expression... Clear Apf Save

Mo. Time Source Destination Protocol Length Info

3 0.8827060680 192.168.8.2 168.8.8.2 TCP 130 1105744469 [SYN] Seq=0 Win=8192
4 0.003038000 10.0.0.2 192.168.0.2 54 44469-11057 [RST, ACK] Seg=1 AcK

» Chel) Tnternet Protocol Version 4, Src: 192.168.6.2 (192.168.8.2), Dst: 10.6.6.2 (10.0.8.2)
Urgts Transmission Control Protocol, Src Port: 11057 (11057), Dst Port: 44469 (44469), Seq: 0, Le

uuuuuuuuuuuuuuuuu T N)

» [SEl" source Port: 11057 (11057) . s
~Data
Datipp3e 20 00 a3 ed 60 60 54 68 65 20 73 65 63 72 65 ¢ Th e secret PAYLOAD
[Lelppge 20 73 79 73 74 65 6d 20 74 69 6d 65 20 6T system time of r

ge3g | ©9e50 42 6f 62 27 73 20 70 61 72 74 69 63 6C 65
geg4g | 0060 63 63 65 6c 65 72 61 74 6T 72 20 69 73 3a
pese 10078 30 31 36 2e 30 35 22 32 33 20 31 31 3a 35 3
aese /0088 35 39

61 Bob's pa rticle a
ccelerat or is: 2
816.85.2 3 11:52:
9

4 - Deep inspection

— This time, we inspect the packet, not just the header
— iptables has a module that can match packet
content!

Fourth task

— Block packets that contain the word secret in them
— As usual, refer to the syntax cheat sheet

— Check that the attack is blocked

— And that the website is working

What just happened here?

iptables -A FORWARD -m string --string “secret” ——algo bm
-j DROP

“Take forwarded packet, and deeply inspect the text content. If it
contains the substring secret (matched with Boyer-Moore), drop it”

— The filter is correct
— ...but something was in the HTML code

https://en.wikipedia.org/wiki/Boyer%E2%80%93Moore_string_search_algorithm

netsec@netsec-VirtualBox:~

File Edit View Go

¥ T &

Filter: | kcp * | Expression... Clear Apply Save

No. Time Source Destination Protocol Length Info
1 6.0600000008 10.0.8.2 192.168.6.2 TCP 74 43028-80 [SYN] Seq=0 Win=29280
2 B.00685520080 192.168.0.2 18.8.8.2 TCP 74 88-+43028 [SYN, ACK] Seq=0 Ack=l
3 0.gelelleee 18.8.8.2 192.168.6.2 TCP 66 43028-80 [ACK] Seq=1 Ack=1 Win=
4 g.00lle3008 18.0.8.2 192.168.0.2 HTTP 355 GET / HTTP/1.1
5 0.081463000 192.168.8.2 10.0.8.2 LR 66 80-43028 [ACK] Seg=1 Ack=290 Wi
6 0.8082954000 192.168.8.2 16.0.0.2 TCP 83 [TCP segment of a reassembled F
7 0.883457808 192.168.8.2 16.0.8.2 TCP 7306 [TCP segment of a reassembled F
e

7 0.003457000 192.168.0.2 10.0.0.2 TCP 7306 [TCP segment of a reassembled PDU]

’Frame S f. FfJOU UYLED Wil WLIT 1\ JOYY0 ULLDdJ, FfJUU UYLED LApPLUICU L\ JOYYD ULL3J Wil LiLEl 1ave o

» Ethern rpet II, Src: CadmusCo @7:5f:dc (08:00:27:87:5f:dc), Dst: CadmusCo 95:79:52 (©8:00:27:95:79:52)
*Intern rpet Protocol Version 4, Src: 192.168.8.2 (192.168.6.2), Dst: 10.0.0.2 (10.0.0.2)
~Transmspission Control Protocol, Src Port: 88 (88), Dst Port: 43028 (43028), Seq: 18, Ack: 290, Len: 7240
SOUr€ rce Port: 80 (80)
Destl
[Strep150 6e 6f 74 20 61 20 62 6f 62 63 61 74 29 3c 2f 78 not a bo bcat)</p
[TCP p166 3e Ba 3c 69 6d 67 20 77 69 64 74 68 3d 22 36 30 >,<img w 1dth="68
Sequ€pl7e 30 70 78 22 28 63 6C 61 73 73 3d 22 73 65 63 72 Bpx" cla ss="secr
[Nextp18e 65 74 22 20 73 72 63 3d 22 64 61 74 61 3a 69 6d et" src= "data:im
Acknd p190 61 67 65 2f 6a 70 65 67 3b 62 61 73 65 36 34 2c age/jpeg ;base64, E
geee @elae 2f 39 6a 2f 34 41 41 51 53 6b 53 4a 52 67 41 42 /97 /4AA0 SkZIRgAB
8010 L01be 41 51 41 41 41 51 41 42 41 41 44 2f 32 77 43 45 AQAAAQAB AAD/2wCE

0028 @(01c® 41 41 55 44 42 41 6b 4a 43 51 67 49 43 41 67 47 AAUDBAK] CQgICAgG
aA30 @lelda 43 41 A7 AG 49 AT A3 AR 49 77 A7 AR 47 77 A3 AR CAnTRacH RwnHRwcH

Here's the culprit

— A'secret” class in the HTML
code means that packet will be

blocked

— Which, in turns, breaks the
page fimg Wwidth="600px" class="2ecret" =rc=

"data: image/ jpeqg base6d, /935 /4AADSKE JRgA
— How? “

Time to evolve again!

— Okay, time to launch mal4.py
— It's not sending secret anymore
— So, what are we doing?

tcp * | Expression... Clear Apply Save

Time Source Destination Protocol Length| Info
3 9.813513880 192.168.8.2 10.9.6.2 TCP 130 44584-44997 [SYN, ACK] !
4 0.814157680 10.0.0.2 192.168.6.2 54 44997-44584 [RST] Seg=1

3 0.013813000 192.168.0.2 10.0.0.2 TCP 130 4458444997 [SYN, ACK] Seq=0 Ack=1 Win=8192 Ler

FLILETINEL FIQLULUDL VEI2LUI %, aluw. 1J7£.1U00.0.£L 112£.1U00.0..4L)0, Wal., LU.0.0.L |\ 10.0.0.£)
~Transmission Control Protocol, Src Port: 44584 (44584), Dst Port: 44997 (44937), Seq: 8, A«
Source Port: 44584 (44584)

., 3./6016 ©0 74 60 01 60 @0 40 66 af d7 c@ a8 00 62 Ba 00O |
net | 6020 00 82 ae 28 af c5 00 00 00 00 66 0 00 €@ 56 12 saafese sove P.
net 0830 20 68 78 eB B0 80 54 68 65 28 24 65 63 72 65 T4 .p...Th e s$ecret
miss§ ee4e 20 73 79 73 74 65 6d 20 74 69 6d 65 20 6f 66 20 system time o

-ce §005@ 42 6f 62 27 73 20 70 61 72 74 69 63 6C 65 20 61 Bob's pa rticle a
-inat ©06@ 63 63 65 6c 65 72 61 74 6T 72 20 69 73 3a 20 32 ccelerat or is: 2
-eam 070 30 31 36 2e 30 35 2e 32 33 20 31 32 33 32 34 33 016.05.2 3 12:24.:

At long last

— We can track the connection statefully
— This way, we can filter out unsolicited SYN_ACKSs

5 - Stateful Filtering

— Well, we can now say that the server will allow only
established connections

Initiator Responder

SYN

/W
W

Fifth (and final?) task

— Add a stateful rule to iptables: only allow
established connections

We did it?

iptables -A FORWARD -m state --state INVALID -j DROP

“Inspect forwarded packets by state. Keep only those that are valid
connections”

— Website is accessible
— The Trojan isn't leaking any more information
— Moving on to some recap...

Reflection and recap

What happened today...
1. Stateless filtering by IP

You can't really block possibly legitimate IPs

2. Stateless filtering by port only

Malicious traffic could piggyback on legitimate traffic ports

3. Stateless filtering by flags

Can still be worked around

4. Deep packet inspection
There might be too many sub-cases, might filter legit content

5. Stateful filtering
Stops packets with “illogical” flags

Thanks for joining!

