Course of Network Security

UNIVERSITA DEGLI STUDI
DI TRENTO

Stateless Firewall Lab Report

Group 16

18th May 2016, Trento

AUTHORS:

Gamaliel Bepa
Vincent Ogwara
Noellar Kappa
Teweldebrhan Haile

Submitted To:
Luca Allodi(PHD)

Table of Contents
Topic

L . INTPOAUCTION. ... e e eee e e es e eee e e e e o o e

1.1 Firewall Basics...

1.2 TCP/IP for Flr'ewalls e ere s
1.3 Introduction to S‘ra’reless Flr'ewall

2.Attacks and Firewalls

2.1 ATTACKS AN FIr@WAIIS.......ooeeoeeeeoeeeeeee e e,

2.2.DefaUIT POLICY ...t e e
2.3 FIOW OF FPATFIC .ottt e e s

3. Iptables

3.1 Tables....

3.2 Chains....

4. Envur'onmem‘ se'rup

4.1 WIinHOST ...

A 2 UBUNTUHOST ..o et eee e e e eee e eee e e et e ene s eeneean e
B 3 FP@WANL ... oo et ees et e et e eet e res e s e s sen s aenverane

5.Tasks and exercise

5.1 Using Stateless Rules To Filter Traffic........cvcieierinenane,
5.2 Filtering specific TCP flags..........cccocorvvvervemercsnerees s
5.3 Nat & Port Forwarding............cccovieeneeeeriee s,
6.CONCIUSION...........oee ettt et et e s ses s st o
T . REFEIPENCES........ooeeeeee ettt et et s e

page

w NN

N NN

ol

oo

9-15

15-18
18-22

.23
.24

Stateless Firewall Implementation 1

1.Introduction

1.1 Firewall basics :

A Firewall is a network component that filters incoming or outgoing traffic to and from a
network. It is placed at the perimeter/border of your network. A firewall controls access to
network resources by allowing only traffic defined in the firewall policy and denying all other
traffic. A network firewall resides on a network node such that host or router. Its main role is
to inspect all the forwarding traffic. based on its configuration, the firewall makes a decision
regarding what action like accept or deny in order to perform on a given packet. The firewall
configuration is composed by a set of ordered rules. Each rule consists of conditions and an
action.

1.2 TCP/IP for Firewalls:

The OSI model is a reference framework for how messages should be transmitted between
any two points in a network. It is composed of seven layers, Application, Presentation,
Session, Transport , Network, Data-Link & Physical. The seven layers have different
functions. The Physical layer is for transmission of bits of data. The Data-Link layer is for
physical addressing, flow control and error checking. The Network layer allows end to end
delivery and logical addressing on different network segments. The Transport layer allows
reliable delivery through sequence numbers and error recovery. Session layer controls
conversations or sessions by establishing and maintaining connections. Presentation
controls data formats ensuring data is received in an acceptable format and the Application
Layer provides services/protocols to applications. Firewalls generally operate on the
Network, Transport and Application layer.

TCP traffic is handed over to the network layer as packets, which consist of an ip header, tcp
header that contains control information such as source and destination addresses, packet
sequence information and the data also known as a payload. While the control information in
each packet helps to ensure that its associated data gets delivered properly, the elements it
contains also provides firewalls a variety of ways to match packets against firewall rules.

It is important to note that successfully receiving incoming TCP traffic requires the receiver to
send an acknowledgement back to the sender. The combination of the control information in
the incoming and outgoing packets can be used to determine the connection state of
between the sender and receiver.

1.3 Introduction to Stateless Firewall:

There are three different types of firewalls; static packet filters/stateless firewalls, stateful
packet filtering and proxies which are application-level gateways & circuit level gateways.
A firewall is stateless if the rules or conditions are based on header information in a packet
such as source address,destination address, protocol,source port and destination port. In
this case the firewall treats each packet in isolation. Such packet filters operate at the

Stateless Firewall Implementation 2

network layer and function more efficiently because they only look at the header part of
packet. A drawback of pure packet filters is that they are stateless; they have no memory of
previous packets which makes them vulnerable to spoofing attacks. Such a firewall has no
way of knowing if any given packet is part of an existing connection, is trying to establish a
new connection, or is just a rogue packet.

2 .Attacks and Firewalls

Firewalls are configured to protect network resources against attacks. Some of the steps
taken by hackers to infiltrate your network and launch attacks include operating system
footprinting/scanning, enumeration by determining vulnerable exploits, launching the attack
by taking advantage of vulnerable exploits and leaving systems open for future exploits.

2.1 Management and Configuration of Firewalls :

Network traffic that traverses a firewall is matched against rules to determine if it should be
allowed through or not.

If we have a server with this list of rules that apply to incoming traffic.
1. Accept new and established incoming traffic to the public network interface on port
80 and 443(HTTP and HTTPS web traffic)
2. Drop incoming traffic from IP addresses of the unauthorized user in your office to port
22(SSH)
3. Accept new and established incoming traffic from your office IP range to the
private network interface on port 22(SSH)

In each of these examples, the filter is either "accept","reject",or "drop". This specifies the
action that the firewall should do in the event that a piece of network traffic matches a rule.
Accept means to allow the traffic through,reject means to block the traffic but reply with an
"unreachable" error, and drop means to block the traffic and send no reply. The rest of each
rule consists of the condition that each packet is matched against for example the port
number or source and destination ip addresses. Traffic is matched against a list of firewall
rules in a sequence, or chain, from first to last once a rule is matched, the associated action
is applied to the network traffic in question. In our example, if an accounting employee
attempted to establish an ssh connection to the server they would be rejected based on rule
2, before rule 3 even checked. A system administrator, however, would be accepted
because they would match only rule 3.

Stateless Firewall Implementation 3

2.2 Default policy

Default policy caters for traffic that is not matched to any of the rules explicitly defined.
Firewall chains will have a default policy specified which either allows traffic unmatched by
previous rules or deny that traffic.

Suppose the default policy for the example chain above was set to drop. If any computer
outside of your office attempted to establish an ssh connection to the server, the traffic would
be dropped because it does not match the conditions of any rules. If the default policy were
set to accept, anyone,except the source ip address you give permission, would be able to
establish a connection to any open service on your server. This would be an example of a
very poorly configured firewall because it only keeps a subset of your employees out.

2.3 Flow of traffic

Traffic can be either incoming or outgoing, a firewall maintains a distinct set of rules for
either case. Traffic that originates elsewhere, incoming traffic, is treated differently than
outgoing traffic that the server sends. It is typical for a server to allow most outgoing traffic
because the server is usually, to itself,trustworthy. Still , the outgoing rule set can be used to
prevent unwanted communication in the case that a server is compromised by an attacker or
a malicious executable.

In order to maximize the security benefits of firewall, we should identify all of the ways we
want other systems to interact with server, create rules that explicitly allow them, then drop
all other traffic. Keep in mind that the appropriate outgoing rules must be in place so that a
server will allow itself to send outgoing acknowledgements to any appropriate incoming
connections. Also, as a server typically needs to initiate its own outgoing traffic for various
reasons

3. Iptables:

The implementation for stateless firewall policies and rules is to be configured with the use of
iptables. Iptables is a generic table structure for the definition of rulesets pre-installed with

the linux operating system._lptables is included in most Linux distributions by default

Before you start configuring your firewall, you need to make sure that iptables/neffilters is
installed on your Linux environment. If it is not there, then you can download it using the
following commands :

sudo apt-get update

sudo apt-get install iptables

iptables is used to inspect, modify, forward, redirect, and/or drop IPv4 packets. The
code for filtering IPv4 packets is already built into the kernel and is organized into a
collection of tables, each with a specific purpose. The tables are made up of a set of
predefined chains, and the chains contain rules which are traversed in order. iptables is the
user utility which allows you to work with these chains/rules.

Stateless Firewall Implementation 4

3.1 Tables :

iptables contains five tables:

1. Raw is used only for configuring packets so that they are exempt from connection
tracking.

2. Filter is the default table, and is where all the actions typically associated with a
firewall take place.

3. Nat is used for network address (e.g. port forwarding).

4. Mangle is used for specialized packet alterations.

5. Security is used for mandatory access control networking rules

In this case we shall use two of these: Filter and Nat-.

3.2 Chains :

Tables consist of chains, which are lists of rules which are followed in order. The default
table, filter, contains three built-in chains: INPUT, OUTPUT and FORWARD. Input Chain is
for managing packets input to the server. Here we add rules to control remote input
connections. The Output Chain controls packets from the server to the outside. Here we add
rules to manage local outbound connections. The Forward chain is used to add rules to
manage connections from one network interface to another on the same device. The nat
table includes PREROUTING, POSTROUTING, and OUTPUT chains. The Prerouting chain
translates packets before routing. The Postrouting chain translates packets after routing
completes.

If iptables is now installed and running on your machine, it will have a default policy, which
is generally set to ACCEPT. To view the rules in your iptables, use the following syntax to list
the rules in a chain;-

#iptables -L;

root@StatelessFw: /home/secclass# iptables -L
hain INPUT (policy ACCEPT)
target prot opt source destination

hain FORWARD (policy ACCEPT)
arget prot opt source destination

hain OUTPUT (policy ACCEPT)
arget prot opt source destination

It shows that currently the input, forward, and output chain’s values are all set to ACCEPT.
The general iptables syntax for writing all stateless firewall rules is as show bellow:
Syntax

#iptables < option >< chain >< matching_criteria>< target >

Stateless Firewall Implementation 5

https://en.wikipedia.org/wiki/Network_address_translation
https://wiki.archlinux.org/index.php/Security#Mandatory_access_control

To clear all previous/old rules which are previously set, you need to use this syntax to

flush out the old rules in the chain.

#iptables —F or #iptables —flush
We are now ready to create our custom rules for this lab.

4 .Environment Setup:

In this illustration, see Figure 1, our network is made up of two hosts and one server which
serves as firewall(where the rules are implemented). The firewall has two interfaces, one
acting as the gateway for our two hosts on the common local area network (192.168.1.0/24)
and the second interface acting as a gateway for a different external network with a web
service locally hosted the same firewall on port 8080 in the 172.16.10/24 network.

e Firewall
WinHost UbuntuHost Firewall running
webservice on port

8080

192.168.1.0/24 172.16.1.0/24

Figure 1 : Network made of 2 hosts and server(Firewall)

4.1 WinHost (windows server 2008)

— A windows operating Vm used as a host to test the effectiveness of our rules.

Stateless Firewall Implementation 6

Y 4

(Google Chrome

o

\map - Zenmap

GUL

vl Bl L € 2 B - ‘R ORD L.

Fig : Winhost Vm

Login to WinHost :

= Windows server 2008
Use the password “password@1” to login on

Password : password@1 WinHost
Check Settings : - Check settings from terminal by typing “ipconfig”
)) and ensure ip -> 192.168.1.1
- Ipconﬁg IPv4 Address. . . - - « =« = = - - = 192.168.1.1

Subnet Mask = 255.255.255.0

=> Should be 792.768.1.1

Note:
— Has putty installed which is a free and open-source terminal emulator, serial console

and network file transfer application. It supports several network protocols, including, SSH,
Telnet, rlogin, and raw socket connection. It can also connect to a serial port.

4.2 UbuntuHost (ubuntu 15.04)

— Alinux based Vm host used to test and operate across the firewall.

Stateless Firewall Implementation 7

https://en.wikipedia.org/wiki/Free_and_open-source
https://en.wikipedia.org/wiki/Terminal_emulator
https://en.wikipedia.org/wiki/Serial_console
http://ssss/
https://en.wikipedia.org/wiki/Secure_Shell
https://en.wikipedia.org/wiki/Rlogin

UbuntuHost

- UbuntuHost

Password : ubuntuhost

Check Settings :

- ifconfig
-> Should be 792.768.1.6

Istantanea

Note : Access as root

> Type on terminal : sudo su _

Login to UbuntuHost :

- Use the password “ubuntuhost” to both login on Vm and access as root(sudo su)

on terminal.

- Check by typing “ifconfig” from terminal and ensure the ip— 192.768.1.6

— A network security tool Hping3 is installed on this Vm.
Hping3 is a
- command-line oriented TCP/IP packet assembler/analyzer.
- The interface is inspired to the ping(8) unix command, but hping isn't only able to
send ICMP echo requests.
- It supports TCP, UDP, ICMP and RAW-IP protocols,
- Has a traceroute mode and has the ability to send files between a covered channel,
and many other features.
We shall use it in our case for firewall testing.

4.3 Firewall (Debian)

Stateless Firewall Implementation 8

Firewall &

=> Debian
Password : secclass

Check Settings :

- ifconfig
- Should be 7192.7168.1.2

> Type on terminal : su-
> Password : password@1

Fig : Firewall Vm

— Debian Vm is used as our Firewall where rules are implemented.
— An apache2 server is installed

— |Iptables are installed by default. (Basic rules on iptables were covered in previous
chapters)

Login to Firewall :

— Login using the password “secclass” and check the ip settings from terminal by typing
“ifconfig” and should be jp-> 192.168.1.2

— Login as root from terminal too using password “password@1”

With all the Vms set, we are set to proceed with the various tasks of our Lab.
5.Tasks and exercise

5.1 Using Stateless Rules To Filter Traffic

Types of Policies

There are two types of policies in these types of firewalls.

1. Permissive(Default Allow):

Generally it allows all packets to pass through the network using relative ports and block
just some packets, such as IRC, TELNET, SNMP, etc. If you forget to block something, it
can be a vulnerability for the network.

In our first task, we will use the default allow condition. From firewall :

Stateless Firewall Implementation 9

- List the iptables rules and ensure they are all on Accept
> Use iptables -L

root@StatelessFw:/home/secclass# iptables -L
Chain INPUT (policy ACCEPT)
target prot opt source destination

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

- As we can observe, all the policies are all set to ACCEPT
- An easy test can be to ping from both WinHost/UbuntuHost and ensure every
system is reachable : ping 192.168.1.2 .See figure below

C:N\Users™\Administrator>ping 192.168.1.2

Pinging 192.168.1.2 with 32 bytes of data:

Reply from 192.168.1.2: bhytes=32 time<ims TTL=64
Reply from 192.168.1.2: bytes=32 timed{ims TTL=64
Reply from 192.168.1.2: bytes=32 time<ims TTL=64

Ping statistics for 192.168.1.2:
Pagkcts: Sent = 3. RQGeiuqd ﬁ_3,_Lust = B (Bx loss).

Now we can proceed with the second task which is specifically to block all icmp echo
packets coming to their server.

2. Block all ICMP Echo packets coming to the server

The idea is to block all ICMP packets coming to the server. To facilitate our task we shall
start :
- Do a continuous ping on WinHost : ping 192.168.1.2 -t
- Implement the following rules on the “Firewall” :
#iptables -A INPUT -p icmp -d 192.168.1.2 —icmp-type 8 - DROP
Where -A (Allow) INPUT -p(protocols) icmp to destination 192.168.1.2 type 8, if packet
matchesv jump to (-j) DROP
root@StatelessFw: /etc# iptables -A INPUT -p icmp -d 192.168.1.2 --icmp-type 8 -j DROP

Here we have defined the destination IP address where we want to block/DROP all icmp
echo packets.

Stateless Firewall Implementation 10

Icmp has some number types starting from 0 to 41-255 and each number has some
meaning, for example number 8 stands for echo. If you want to know more about that, refer
to REC 792.

Here we want to describe some options used in this command which will remain constant
throughout our exercise.

Option -A stands for append. Its work is to append the given rule to the relevant rule chain.
Here our rule chain is INPUT.

The “-p” option is used to define the protocol such as ICMP,

The “-d” option is used to specify the destination IP address.

The -j option, this specifies the target of the rule; i.e., what to do if the packet matches it.

Testing:
Initially, having performed a continuous ping from one of the host(WinHost) terminal, after

the rules has been implemented we can observe packets being dropped. See figure below :

i [&+.] Administrator: Command Prompt

HC:“UszsersvAdninistrator>ping 192.168.1.2 —t

Pinging 192.168.1.2 u1th 32 hytes of data:
from 192_168. bytes=32 time=2ms TTL=6(4
from 192_168. : bytes=32 time<ims TTL=64
from 192_168. : bytes=32 time<ims TTL=6(4
from 192_168. : hytes=32 time<ims TTL=64
from 192_168. : bytes=32 time<ims TTL=0(4
from 192_168. : hytes=32 time<{ims TTL=64
timed out.
timed out.
timed out.
timed out.
timed out.
timed out.
Reguest timed out.

HHHHHH

Ping statistics for 192.168.4.2:

Packets: Sent = 13. Heceived = 6. Lost = 7 (53 loss>.
Approximate round trip times in milli-—seconds:

Minimum = Bms. Maximum = Zms. Average = Bms
Control—C

3. Restrictive(Default Deny):

By default it blocks all packets and allows some packets to pass through the network using
certain ports and allows SSH, HTTP/s etc. This policy is more secure, compared to the
permissive one. Here if you forget to allow any port, someone will complain to you and you
can allow that port; on the other hand, in permissive policy, if ports are open without you
knowing, then no one will complain or tell you.

To implement the default Deny policy, all our primary policies should be set in such a way
that all chain policy will be set to DROP in order to drop all the packets initially at the firewall
level so that they don’t come inside or go outside the network, and then we will set different
specific rules to let them come inside our network, or go out of our network.

- The commands to set default Deny policy are as follows :

Stateless Firewall Implementation 11

http://www.faqs.org/rfcs/rfc792.html

iptables -P INPUT DROP
iptables -P OUTPUT DROP
iptables -P FORWARD DROP

- On Firewall implement the previous rules :

root@StatelessFw: /home/secclass# iptables -P INPUT DROP
root@StatelessFw:/home/secclass# iptables -P OUTPUT DROP

root@StatelessFw: /home/secclass# iptables -P FORWARD DROP

Where
- Option -P stands for Policy. Set the policy for the chain to the given target
With this rules, both INPUT and OUTPUT traffics are blocked.

- List the new policies using iptables -L -n -v

root@statelessFw:~# iptables -L -n -v
Chain INPUT (policy DROP 0 packets, 0 bytes)
pkts bytes target prot opt in out source destination

Chain FORWARD (policy DROP 0 packets, 0 bytes)
pkts bytes target prot opt in out source destination

Chain OUTPUT (policy DROP 0 packets, 0 bytes)
bytes target prot opt in out source destination

Testing :
- Open terminal on the UbuntuHost and ping the Firewall
root@hacking-VirtualBox: /home/hacking# ping 192.168.1.2
PING 192.168.1.2 (192.168.1.2) 56(84) bytes of data.
e
--- 192.168.1.2 ping statistics ---
11 packets transmitted, © received, 100% packet loss, time 10081ims

root@hacking-VvirtualBox: /home/hacking# [

Note : As expected, there is no traffic, since all are being dropped.
Check traffic on the Firewall using iptables -L -n -V

root@StatelessFw:~# iptables -L -n -v
Chain INPUT (policy DROP 96 packets, 8488 bytes)
pkts bytes target prot opt in out source destination

Chain FORWARD (policy DROP 6 packets, 0 bytes)

pkts bytes target prot opt in out source destination

Chain OUTPUT (policy DROP 0 packets, 0 bytes)
pkts bytes target prot opt in out source destination

Stateless Firewall Implementation 12

4. Whitelist traffic from the WinHost's mac address

Generally we use |IP addresses to allow/deny a client via iptables, but it's not necessary or
automatic that each client has static IP on their side. In that case it's hard to open port time
to time for their IPs. In this situation we used MAC based filtering in iptables as we know that
MAC addresses are fixed and can’t be changed. MAC addresses are also knowns as
physical/hardware address of network interface card. We used MAC based Filtering Iptables
rules to whitelist trafics from the WinHost MAC address.

Since the current primary policy is default Deny, it means that all the chain’s policy value

was set to DROP.
We define a policy to allow outgoing traffic from the firewall, we set the output policy value as

ACCEPT, as there won’t be any harm if some packets are going out from our Server.
So here are those terminal commands.

iptables -P INPUT DROP

iptables -P OUTPUT ACCEPT

iptables -P FORWARD DROP

Then Allow traffic for the WinHost's MAC address using the following rules
root@tatelessFw:/home/secclass# iptables -A INPUT -m mac --mac-source 08:00:27:

57:5F:20 -d 192.168.1.2/32 -j ACCEPT

The --mac-source option Match source MAC address. It must be of the form
XXXXXX:XX:XX:XX. Note that this only makes sense for packets coming from an Ethernet
device and entering the PREROUTING, FORWARD or INPUT chains.

Test :
On WinHost, Open Putty located on the taskbar and connect to the Firewall :

Stateless Firewall Implementation 13

% PuTTY Configuration x|
i Category:
= S_ession | Basic options for your PuTTY session |
g T:"" I_loglgmg — Specify the destination you want to connect to
|- Temminal
i Host Mame (or IP address) Port
- Keyboard
- Bel [192.168.1.2 [22
- Features Connection type:
= Window " Raw € Telnet Rlogin © SSH Serial
- Appearance B 3
- B Load, save or delete a stored session
- Translation Saved Sessions
- Selection
- Colours Default Settings Lond
B Connection
.. Data P
- Prosey _i
Telnet Delete
Rlogin
[#-S5H
S Close window on exdt:
" Aways (Mever % Only on clean exit
About Open Cancel

It is clearly seen the the connection from WinHost to the Firewall is Successful whereas a
ping from UbuntuHost whose MAC address was not whitelisted in out rule is not possible as
shown below.

root@hacking-virtualBox: fhome/hacking# ping 192.168.1.2
PING 192.168.1.2 (192.168.1.2) 56(84) bytes of data.
i

--- 192.168.1.2 ping statistics ---
12 packets transmitted, © received, 100% packet loss, time 11850ms

Fig : Shows ping to firewall not working

5. Open port 22(SSH) for Specific client

- We begin by flashing the existing iptables rules using

Stateless Firewall Implementation 14

root@StatelessFw:/home/secclass# iptables -F

- We set the default OUTPUT policy to ACCEPT since a tcp connection works on 3
hand-shake, so opening in INPUT, OUTPUT has to be opened too.
#iptables -A OUTPUT ACCEPT
- We open the SSH port whose port number is 22 to allow access from UbuntuHost
whose IP address is 192.168.1.6 using the command :
#iptables -A INPUT -i eth0 -p tcp --dport 22 -s 192.168.1.6/32 -d
192.168.1.2 -j ACCEPT

root@StatelessFw:/home/secclass# iptables -A INPUT -i eth® -p tcp --dport 22 -s 192.168.
1.6/32 -d 192.168.1.2/32 -j ACCEPT
root@StatelessFw:/home/secclass# iptables -L
Chain INPUT (policy DROP)
prot opt source destination
tcp -- 192.168.1.6 StatelessFw tcp dpt:ssh

Chain FORWARD (policy DROP)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

Fig : Commands to implement on Firewall

Here we have new options which which we want to explain the meaning. The “-i" option
stands for interface declaration. We had more than one interface, so it is important to set
which interface you want to apply these rules. According to our challenge, we wanted to
apply these rules on our ethQ interface.

The "-p” option is used to define the protocol such as tcp and udp. Here we are defining
our SSH port, so we will use the tcp option

The "-dport" option, which stands for destination port. In our case, we are working on SSH
and the port number of SSH is 22. So we defined dport value as 22.

The “-s" option is used for the source IP address. We mentioned it in our command.
Testing:
We tested this implementation by Telnet from the UbuntuHost using this command

telnet 192.168.1.2 22
root@hacking-virtualBox:/home/hacking# telnet 192.168.1.2 22
Trying 192.168.1.2...

Connected to 192.168.1.2.

Escape character is '~]'.
SSH-2.08-0penSSH_6.7p1 Debian-5+deb8u2
i
Connection closed by foreign host.
Fig : Shows Telnet on port 22 of firewall

Stateless Firewall Implementation 15

Exercise: Allow traffic to a different port on the firewall from the UbuntuHost or
WinHost. Ensure there is a service running on this port.
Here the students were ask to perform a similar task as the one before ie. opening a
common port on the firewall accessible by the WinHost.

Solution: Using the same rule as before and just changing the port number resolves the
exercise #iptables -A INPUT -i eth0 -p tcp --dport 111 -s 192.168.1.6/32
-d 192.168.1.2 -j ACCEPT

For the testing, execute telnet 192.168.1.2 111

5.2 Filtering specific TCP flags

Before we explain and set our firewall rule let's describe a little bit what TCP flags are with
brief explanation.

U, URG (Urgent): This flag is used to identify incoming data as urgent. Such incoming
segments do not have to wait until the previous segments are consumed by the receiving
end but are sent directly and processed immediately.

An Urgent could be used during a stream of data transfer where a host is sending data to an
application running on a remote machine. If a problem appears, the host machine needs to
abort the data transfer and stop the data processing on the other end. Under normal
circumstances, the abort signal will be sent and queued at the remote machine until all
previously sent data is processed, however, in this case, we need the abort signal to be
processed immediately.

A, ACK(Acknowledgement): This flag is used to acknowledge the successful receipt of
packets. This will be happen if you run a packet sniffer while transferring data using the TCP,
you will notice that, in most cases, for every packet you send or receive, an
Acknowledgement follows. So if you received a packet from a remote host, then your
workstation will most probably send one back with the ACK field set to 1.

R,RST(Reset) : The reset flag is used when a segment arrives that is not intended for the
current connection. In other words, if you were to send a packet to a host in order to
establish a connection, and there was no such service waiting to answer at the remote host,
then the host would automatically reject your request and then send you a reply with the
RST flag set. This indicates that the remote host has reset the connection.

While this might prove very simple and logical, the truth is that in most cases this 'feature’ is
used by most hackers in order to scan hosts for 'open' ports. All modern port scanners are
able to detect 'open' or 'listening' ports thanks to the 'reset' function.

The method used to detect these ports is very simple: When attempting to scan a remote
host, a valid TCP segment is constructed with the SYN flag set (1) and sent to the target
host. If there is no service listening for incoming connections on the specific port, then the
remote host will reply with ACK and RST flag set (1). If, on the other hand, there is a service
listening on the port, the remote host will construct a TCP segment with the ACK flag set (1).
This is, of course, part of the standard 3-way handshake.

Stateless Firewall Implementation 16

Once the host scanning for open ports receives this segment, it will complete the 3-way
handshake and then terminate it using the FIN that we will see below flag, and mark the
specific port as "active".

S, SYN (Synchronization): This flag contains in the TCP flag options is the most well
known flag used in TCP communications. As you might be aware, the SYN flag is initially
sent when establishing the classical 3 way handshake between two hosts.

-way Handshake

Host B
5YN, ACK Host B
ACK Host B

Conn. Established Host B

Fig :3 way handshake

Let's assume we have two hosts A and B as shown in this diagram, Host A needs to
download data from Host B using TCP as its transport protocol. The protocol requires the
3-way handshake to take place so a virtual connection can be established by both ends in
order to exchange data.

During the 3-way handshake we are able to count a total of 2 SYN flags transmitted, one by
each host. As files are exchanged and new connections created, we will see more SYN flags
being sent and received.

P, PSH (Push): The Push flag, like the Urgent flag, exists to ensure that the data is given
the priority (that it deserves) and is processed at the sending or receiving end. This particular
flag is used quite frequently at the beginning and end of a data transfer, affecting the way the
data is handled at both ends.

F, FIN (Finished): The final flag available is the FIN flag, standing for the word FINished.
This flag is used to tear down the virtual connections created using the previous flag (SYN),
so because of this reason, the FIN flag always appears when the last packets are
exchanged between a connections.

So for illustration purpose we will choose two flags out of all flags we have mentioned earlier.
In this case we will choose only SYN and FIN as accept in firewall by typing the following
command in terminal.

iptables —-A INPUT -p tcp —-m tcp —tcp-flags ALL SYN —-J ACCEPT

iptables —-A INPUT -p tcp -m tcp —tcp-flags ALL FIN —-J ACCEPT

root@tatelessFw:~# iptables -A INPUT -p tcp -m tcp --tcp-flags ALL SYN -j ACCEPT

root@tatelessFw:~# iptables -A INPUT -p tcp -m tcp --tcp-flags ALL FIN -j ACCEPT

Stateless Firewall Implementation 17

Where -p stands for match protocol, unlike when -m isn't used, they do not have to be
within a range, SYN is flag symbol for synchronization, -J stands for Jump to the specified
target chain when the packet matches the current rule.

Testing:
In ubuntu host we have already installed special tool packet analyser,tracer called
hping3.so that using this too we can hping to the firewall using the following command
#$hping3 -¢ 1 -S 192.168.1.2
Where -c stand for count, 1 for number of packet,-S is symbol of flag for SYN and lastly
ip address of our firewall.
So in this case we keep testing by changing each flag symbol as a result we will see those
flag which have been accepted in firewall,will display a description with successfully
acceptance meaning O packet loss and the rest 100% packet loss

root@hacking-VirtualBox: /home/hacking#

HPING 192.168.1.2 (enp8s3 192.168.1.2): S set, 40 headers + 0 data bytes
len=46 ip=192.168.1.2 ttl=64 DF 1d=32627 sport=0 flags=RA =0 win=0 rit=1 S :
£ P 2 S'Ie‘i:zu:\'ket with SYN flag transmitted

~-- 192,168.1.2 hoing statistic --- and received successfully
1 packcts transmitted, 1 packets received 0% |packet loss
round-trip minjavg max =

root@hacking-VirtualBox: /home/hacklng# p1ng3 -C 1 A 192.168.1.2

HPING 192.168.1.2 (enp8s3 192.168.1.2):

---.192.168.1.2 hpina statistic ---

1 packets transmitted, © packets received,| 100%)packet loss

round-trip minfavg/max = 0.0/0.0/0.0 n

root@hacking-VirtualBox: /home/hacking#|hping3 -c 1 -P 192.168.1.2

HPING 192.168.1.2 (enp8s3 192.168.1.2): P data bytes

--- 192.168.1.2 hping statistic ---

1 packets transmitted, © packets received, 100%)packet loss

round-trip min/avg/max = 0.0/0.0/0.0 m

root@hacking-VvirtualBox: fhome/hacking#|hping3 -c 1 -R 192.168.1.2

HPING 192.168.1.2 (enp@s3 192.168.1.2): R set, 40 headers + @ data bytes

--- 192.168.1.2 hpoina statistic ---

1 packets transmitted, © packets received) 100% Jpacket loss

round-trip min/avg/max = 0.0/0.0/0.0 m

root@hacking-VirtualBox: /home/hacking#|hping3 -c¢ 1 -U 192.168.1.2

HPING 192.168.1.2 (enp8s3 192.168.1.2): data bytes

--- 192.168.1.2 hping statistic ---

1 packets transmitted, © packets received | 100%)packet loss

round-trip min/avg/max = 0.0/0.0/0.0 ms

root@hacking-VirtualBox: /home /hacking#

HPING 192.168.1.2 (enp8s3 192.168.1.2): Set,]ﬁytes

len=46 ip=192.168.1.2 ttl=64 DF 1d=40004 sport=0 flags RA seq=0 win=0 rtt=9.3 ms

--- 192,168 hoing statistic --- I packet with FIN flag transmitted and

1 packets transmitted, 1 packets received)| 8%)packet loss received successfully
round-trip minjavg/max = 9.3/9.3/9.3 ms

Fig : SYN and FIN packets accepted while rest are dropped

Exercise: Exploiting the open port 22 (ssh) from previous task,define default deny

OUTPUT policy and allow traffic for tcp flags SYN and ACK. In other words make traffic
possible. Test with ssh as per task 1 above

Solution: Use the commands to enable traffic for SYN and ACK on port 22 :
iptables -A INPUT -p tcp -m tcp —-tcp-flags ALL SYN -J ACCEPT
iptables -A INPUT -p tcp —-m tcp —tcp-flags ALL ACK —J ACCEPT

Stateless Firewall Implementation 18

In otherwords, we are permitting 2 important flags for connection establishment ie. SYN and
ACK. Note that for a traffic to be possible, packets have to flow to and fro, so having in
INPUT packets on port 22, on OUTPUT only the SYN(ok) and ACK packets will be
transmitted back.

Testing: Using #hping3 -c¢ 1 -S 192.168.1.2 and #hping3 -¢ 1 -A

192.168.1.2as in previous task and changing the flags, we can observe that ONLY SYN
and ACK packets are forwarded.

5.3 NAT & PORT FORWARDING

Network address translation(NAT) is a general term for mapping ip addresses in order to
redirect them to an alternative address. NAT is usually used to increase security, using a
single IP address to represent multiple IP addresses. Port forwarding is also used to redirect
incoming traffic from a low numbered port to software listening on a higher port. This
software can be running as a normal user, which avoids the security risk caused by running
as the root user.A host that implements NAT typically has access to two or more networks
and is configured to route traffic between them.

Port forwarding also called “port mapping” is the process of forwarding requests for a
specific port to another host, network, or port. The network address translator /gateway in
this case, the firewall, changes the destination address or destination port of the packet to
reach a host within a masqueraded, typically private, network. We will be redirecting traffic
from port 8080 to the common http port 80 for this task

The nat table has the following built-in chains:

e Pre-routing chain: maps packets when the destination address of the packet
needs to be changed before routing

e Post-routing chain: maps packets when the source address of the packet needs
to be changed after routing

e Output chain: maps packets originating from the different firewall interfaces.

Stateless Firewall Implementation 19

Below is a scheme on how packets are processed by these chains

PACKET IN
|
PREROUTING--[routing] -->--FORWARD-->--POSTROUTING-->--0UT
- nat (dst) | - Filter - nat ([src)

|
INPUT SUDRIT

- filter - nat

Yomom-3o———-[app]----=3-——---

During port forwarding, the packet entering the firewall is inspected by the rules in the nat
table PREROUTING chain to see whether it requires destination modification (DNAT). The
packet is then routed by Linux router after leaving the PREROUTING chain.

To carry out this task, carry out the following steps;-

- Flush filter tables with iptables -F - flushes the rules in the filter
table

- Flush nat table iptables -t nat -F, -t selects the table in this case nat and
flushes the rules

- Define all policies to accept traffic in the filter table

root@StatelessFw:/home/secclass# iptables -P INPUT ACCEPT

root@StatelessFw:/home/secclass# iptables -P FORWARD ACCEPT
root@StatelessFw:/home/secclass# iptables -P OUTPUT ACCEPT

- Uncomment the following line in the sysctl.conf file to enable ip forwarding for
IPv4

root@StatelessFw:~# gedit /etc/sysctl.conf

sysctl.conf (/etc) - gedit

Open ~ m 5y5ctl..cunf Save

Uncomment the next line to enable packet forwarding for IPv4
net.ipv4.ip_forward=1

- checkiptables iptables -L Dby listing the rules in the filter table
- check the nat policies by using iptables -t nat -L by listing the rules in the
nat table

Stateless Firewall Implementation 20

- Insert the following rules to activate port redirection :

Enable linux IP forwarding

echo 1 > /proc/sys/net/ipv4/ip forward

The MASQUERADE extension is so that packets which are forwarded to the new
destination IP can be properly routed back to the origin of the request.

iptables -t nat -A POSTROUTING -o ethO -j MASQUERADE

Redirect http-Traffic going to Port 80 to port 8080

#iptables -t nat -I PREROUTING --src 192.168.1.0/24 --dst 172.16.1.2
-p tcp --dport 80 -j REDIRECT -- to-ports 8080

iptables -A FORWARD -i ethO -o ethl -j ACCEPT
CONFIG_IP NF_NAT LOCAL=y

iptables -t nat -I OUTPUT --src 192.168.1.0/24 --dst 172.16.1.2 -p
tcp --dport 80 -j REDIRECT --to- ports 8080

echo 1 = /p et/ipvd/ip forwar
iptables -t OSTROUTING -

192.168.1.8/24

Stateless Firewall Implementation 21

Testing :

- Open a browser on WinHost and Type “172.16.1.2:80"

E’:‘ Tnitial Canfinneabinn Tocks

[#pacheZ Debian Default Pz

L W
€« = C [h17216.12 w =

Apache2 Debian Default Page

This is the default welcome page used to test the correct operation of the Apache2 server after
installation on Debian systems. If you can read this page, it means that the Apache HTTP server

installed at this site is working properly. You should replace this file (located at
Jvarfwww/html/index . html) before continuing to operate your HTTP server.

If you are a normal user of this web site and don't know what this page is about, this probably mea
that the site is currently unavailable due to maintenance. If the problem persists, please contact th
site’s administrator.

Configuration Overview

Mealicmes A alemT Al ille mm el memkimem im Al m vt Formomm Flem stimmbmm i emm A mfmiile mmem i mm e A maa]

- We can observe that the web service can be accessed on port 80

Stateless Firewall Implementation 22

6.Conclusion:

By now, you should be comfortable with forwarding ports on a Linux server with iptables.
The process involves permitting forwarding at the kernel level, setting up access to allow
forwarding of the specific port's traffic between two interfaces on the firewall system, and
configuring the NAT rules so that the packets can be routed correctly. This may seem like an
unwieldy process, but it also demonstrates the flexibility of the netffilter packet filtering
framework and the iptables firewall. This can be used to disguise your private networks
topology while permitting service traffic to flow freely through your gateway firewall machine.

Best Practices in firewall implementation

— Document all firewall rule changes.

While this tip sounds like a no-brainier, firewalls do not have a change management process
built into them, so documenting changes has never become a best (or even a standard)
practice for many organizations. If a firewall administrator makes a change because of an
emergency or some other form of business disruption, chances are he is under the gun to
make it happen as quickly as possible, and process goes out the window. But what if this
change cancels out a prior policy change, resulting in downtime? This is a fairly common
occurrence.

Firewall management products provide a central dashboard that provides full visibility into all
firewall rule bases, so all members of the team have a common view and can see who made
what change, when they made it and from where. This makes troubleshooting and overall
policy management much easier and more efficient.

— Install all access rules with minimal access rights.

Another common security issue is overly permissive rules. A firewall rule is made up of three
fields: source (IP address), destination (network/subnet) and service (application or other
destination). In order to ensure there are enough open ports for everyone to access the
systems they need, common practice has been to assign a wide range of objects in one or
more of those fields. When you allow a wide range of IP addresses to access a large group's
networks for the sake of business continuity, these rules become overly permissive, and as a
result, insecure. A rule where the service field is 'ANY' opens up 65,535 TCP ports. Did the
firewall administrator really mean to open up 65,535 attack vectors for hackers?

— Verify every firewall change against compliance policies and change requests.

In firewall operations, daily life centers around finding problems, fixing problems and
installing new systems. In the cycle of installing new firewall rules to solve problems and
enable new products and business units, we often forget that the firewall is also the physical
implementation of the corporate security policy. Every rule should be reviewed to understand

Stateless Firewall Implementation 23

that it meets the spirit and intent of the security policy and any compliance policies, not just
the letter of the law.

— Remove unused rules from the firewall rule bases when services are
decommissioned.

"Rule bloat" is a very common occurrence with firewalls because most operations teams
have no process for deleting rules. Business units are great at letting you know they need
new rules, but they never let the firewall team know they no longer need a service. Getting
into the loop on server and network decommissioning as well as application upgrade cycles
is a good start for understanding when rules need to come out. Running reports on unused
rules is another step. Hackers like the fact that firewall teams never remove rules. In fact, this
is how many compromises occur.

— Perform a complete firewall review at least twice per year.

If you are a merchant with significant credit card activity, then this one is not just a best
practice but a requirement; PCI requirement 1.1.6 calls for reviews at least every six months.

Firewall reviews also are a critical part of the maintenance of your firewall rule base. Your
networks and services are not static so your firewall rule base should not be either. As
corporate policies evolve and compliance standards change, you need to review how you
are enforcing traffic on the firewalls. This is a good place to clean up all those redundant
rules that have been replaced by new rules, rules for services no longer used that you were
not informed about, and all those temporary exceptions that were added to get projects,
acquisitions, mergers and so on finished. The best way to keep bad things from happening is
to not create an environment where they can.

Stateless Firewall Implementation 24

References

e https://www.digitalocean.com/community/tutorials/how-to-forward-ports-through-a-lin
ux-gateway-with-iptables
http://csrc.nist.gov/publications/nistpubs/800-41-Rev1/sp800-41-rev1.pdf
http://www.networkworld.com/article/2247 110/network-security/top-5-best-practices-f
or-firewall-administrators.html

e https://www.digitalocean.com/community/tutorials/what-is-a-firewall-and-how-does-it-
work

e https://wiki.archlinux.org/index.php/Iptables#installation

Stateless Firewall Implementation 25

https://www.digitalocean.com/community/tutorials/how-to-forward-ports-through-a-linux-gateway-with-iptables
https://www.digitalocean.com/community/tutorials/how-to-forward-ports-through-a-linux-gateway-with-iptables
http://www.networkworld.com/article/2247110/network-security/top-5-best-practices-for-firewall-administrators.html
http://www.networkworld.com/article/2247110/network-security/top-5-best-practices-for-firewall-administrators.html
https://www.digitalocean.com/community/tutorials/what-is-a-firewall-and-how-does-it-work
https://www.digitalocean.com/community/tutorials/what-is-a-firewall-and-how-does-it-work

