
DNS CACHE POISONING
LAB

GROUP #15:

MATTEO FIORANZATO

MATTEO MATTIVI

ANDREA SIMONELLI

MICHELA TESTOLINA

University of Trento
Network Security - Malware lab
2th May 2016

DON’T CLOSE OR MOVE ANY
WINDOW

Lab Objectives

Ø The main objective of this lab is to
understand how DNS cache poisoning works.

Ø The laboratory is divided into the following
steps:

1.Introduction to the scenario
2.Understand how to create the attack
3.Poison the cache of the local DNS
4.Verify the results

1) CLIENT asks to
its local DNS to
look in its cache
and look for the

information that we
want, e.g. an IP

How do we visit a website?

ROOT
DNS

LOCAL
DNS

AUTHORITATIVE
DNS

1

CLIENT

2) If it doesn't
have any clue,
LOCAL DNS will
ask to the ROOT

DNS.

How do we visit a website?

ROOT
DNS

LOCAL
DNS

AUTHORITATIVE
DNS

1 2

CLIENT

3) If ROOT DNS doesn't
have any clue either,
it will redirect us to
the AUTHORITATIVE DNS

server that will
answer.

How do we visit a website?

ROOT
DNS

LOCAL
DNS

AUTHORITATIVE
DNS

1 2 3

CLIENT

How do we visit a website?

ROOT
DNS

LOCAL
DNS

AUTHORITATIVE
DNS

1 2 3

4

CLIENT

4) The local DNS server
stores the information in

its cache and then it tells
to the client what it has

discovered

How do we visit a website?

ROOT
DNS

LOCAL
DNS

AUTHORITATIVE
DNS

1 2 3

4

CLIENT

WEBSITE

5

5) The
client

contacts the
WEBSITE at
the IP just
given by the
LOCAL DNS

What is DNS poisoning?

Example of attack:

1

2

3
4

1. The attacker poisons the
cache of a DNS server
with a fake IP address
for the site
www.nicebank.com

4. The user is addressed to
the fake website.

2. The user asks to its
local DNS the location
of www.nicebank.com

3. It gives to the user the
IP address of the fake
server www.n1cebank.com

The cache poisoning attack consists in creating a fake
RR for a certain website and succesfully inject it into
the cache of a DNS server. So from that moment on, if
the client asks for that specific website it will be
redirected where the attacker wanted and not to the
right one.

A typical man-in-the-middle
attack:

In order to perform a DNS cache poisoning attack, we
will use the man-in-the middle technique. But what is
it?

In this technique an attacker is in the middle of a
connection between two devices and sniffs the packets
that are exchanged. Then it can partially or totally
modify those packets to its will.

Structure of the lab

In this lab, we will use the software Netkit (
http://wiki.netkit.org/)

Netkit is an environment for setting up and performing
networking experiments at low cost and with little
effort developed by the University of Rome.

It allows to create several virtual network devices
such as routers, switches, computers, that can be
easily interconnected in order to form a network on a
single PC.

Networking equipments are virtual but feature many of
the characteristics of the real ones, including the
configuration interface.

Netkit? So what?
Emulating a network with Netkit is a matter of:

1) Creating a folder that defines the lab

2) Writing a simple file describing the link-level
topology of the network to be emulated.

3) Writing some simple configuration files that are
identical to those used by real world networking
tools

Netkit then takes care of starting
the emulated network devices and
of interconnecting them as required!

client
198.168.0.111

attacker
10.0.0.6

dns-local
10.0.0.3

dns-root
10.0.0.4

dns-com
10.0.0.5

facebook.com
192.168.0.222

A

C

B

r1 r2
attserver
10.0.0.9

Structure of the lab

Our lab in Netkit

1) The cachePoisoningLab folder defines our LAB

2) Each folder inside the LAB defines a DEVICE of the
network

3) The lab.conf file defines the CONNECTIONS between
devices

4) The device.startup files defines the TYPE of device
and its parameters

The lab.conf file

Inside it, we define the LANs and the connections
between all interfaces:

The client.startup file
Inside it, we will find a very basic network configuration:

(1) Definition of the interfaces

ifconfig eth0 192.168.0.111 netmask 255.255.255.128 up

(2) Definition of the routes

route add default gw 192.168.0.1 dev eth0

Gateway IP: 192.168.0.1

Client interface eth0
IP: 192.168.0.111

The dns-root.startup file

Inside we will find a very basic network configuration:
(1) Definition of the interfaces:

ifconfig eth0 10.0.0.4 netmask 255.255.255.0 up

(2) Definition of the routes and DNS initialization

route add -net 192.168.0.0/25 gw 10.0.0.1 dev eth0
route add -net 192.168.0.128/25 gw 10.0.0.2 dev

eth0/etc/init.d/bind start

Inside a DNS server: dns-local

1) db.local: the dns-local
database parameters
and static hosts
(client)

2) db.root: who is
the DNS root?

3) named.conf: defines
the names of the
zones as well as
the hierarchy

client
198.168.0.111

attacker
10.0.0.6

dns-local
10.0.0.3

dns-root
10.0.0.4

dns-com
10.0.0.5

facebook.com
192.168.0.222

A

C

B

r1 r2
attserver
10.0.0.9

Structure of the lab

Structure of the lab
Your desktop looks like this

(1) Cache cleaning

Before starting, we have to clean the cache of our local DNS.

⇒ On the dns-local terminal type:

rndc flush

⇒ Repeat it also for dns-root and dns-com (all three green
terminals)

Step1) Try the network out: rndc
flush

Step1) Try the network out: ping
(2) Ping facebook.com

Now the network is ready to go! We will try out some basic
requests to find out if the configuration is working properly:

⇒ On the client terminal try to ping the server facebook.com:
ping facebook.com

⇒ In order to see what's happening, let the server listen to

the traffic. On facebook terminal type:

tcpdump

You should now see something like this:

⇒ Press Ctrl+C to stop the process

Step1) Try the network out: http
request

(3) HTTP request to facebook.com

Now we will go a step further, we will make an HTTP request to

facebook.com:

⇒ In order to see that the traffic is really flowing, make
dns-root and facebook listen for http requests/responces:

tcpdump -n port 80

⇒ Proceed with the request. On client terminal type:

links facebook.com

Note: links is the browser of netkit which will perform an
http request and visualize the content of the page

client
198.168.0.111

attacker
10.0.0.6

dns-local
10.0.0.3

dns-root
10.0.0.4

dns-com
10.0.0.5

facebook.com
192.168.0.222

A

C

B

r1 r2
attserver
10.0.0.9

Network structure

It is the user
that wants to
reach the
server

facebook.com

client
198.168.0.111

attacker
10.0.0.6

dns-local
10.0.0.3

dns-root
10.0.0.4

dns-com
10.0.0.5

facebook.com
192.168.0.222

A

C

B

r1 r2
attserver
10.0.0.9

It is the local
DNS server for
the client. It
has a cache for
all the most
visited sites

and it knows the
location of the

root DNS.

Network structure

At the
beginning
of this
lab its
cache is
empty

client
198.168.0.111

attacker
10.0.0.6

dns-local
10.0.0.3

dns-root
10.0.0.4

dns-com
10.0.0.5

facebook.com
192.168.0.222

A

C

B

r1 r2
attserver
10.0.0.9

Network structure

It is the root
DNS of the
hierarchy,

which knows the
address of all
the top level
domain DNS.

client
198.168.0.111

attacker
10.0.0.6

dns-local
10.0.0.3

dns-root
10.0.0.4

dns-com
10.0.0.5

facebook.com
192.168.0.222

A

C

B

r1 r2
attserver
10.0.0.9

Network structure
It is the .com

top level
domain DNS. It

knows the
addresses of

all .com
domains

client
198.168.0.111

attacker
10.0.0.6

dns-local
10.0.0.3

dns-root
10.0.0.4

dns-com
10.0.0.5

facebook.com
192.168.0.222

A

C

B

r1 r2
attserver
10.0.0.9

It is the
web server
that client
wants to
reach.

Network structure

client
198.168.0.111

attacker
10.0.0.6

dns-local
10.0.0.3

dns-root
10.0.0.4

dns-com
10.0.0.5

facebook.com
192.168.0.222

A

C

B

r1 r2
attserver
10.0.0.9

Network structure

It puts the
fake IP address
in the cache of
the local DNS,
in order to
poison it

client
198.168.0.111

attacker
10.0.0.6

dns-local
10.0.0.3

dns-root
10.0.0.4

dns-com
10.0.0.5

facebook.com
192.168.0.222

A

C

B

r1 r2
attserver
10.0.0.9

Network structure

It is the
server where
the attacker
redirects
the client

client
198.168.0.111

attacker
10.0.0.6

dns-local
10.0.0.3

dns-root
10.0.0.4

dns-com
10.0.0.5

facebook.com
192.168.0.222

A

C

B

r1 r2
attserver
10.0.0.9

LAN C with IP
10.0.0.0/24,
holds the

three servers,
the attacker
and his server

LAN A with IP
192.168.0.0/25,
holds only
the client.

LAN B with IP
192.168.0.128/25,
it holds only
the web server
facebook.com

r1 connects
respectively
LAN A with

LAN C

r2 connects
respectively
LAN A with

LAN B

Network structure

(1) Cache cleaning

Before starting, we have to clean the cache of our local DNS.

⇒ On the dns-local terminal type:

rndc flush

⇒ Repeat it also for dns-root and dns-com (all three green
terminals)

Step2) Network discovery – dig

Step2) Network discovery – dig
(2) Understanding the DIG command

The command dig is a tool for querying DNS nameservers
for information about host addresses, mail exchanges,
nameservers and related information. This tool can be
used from any Operating System based on Unix. The most
typical use of dig is to simply query a single host.

(3) Network discovery from client side:

To discover the structure of the network we will use
the command dig. In order to find the IP of local DNS
and the hostname of the authoritative DNS of
facebook.com:

⇒ On the client terminal type:

dig facebook.com

Step2) Network discovery – dig

⇒ The output will tell us:

IP of
facebook.com
(192.168.0.222)

Hostname
of its DNS
server

(dnscom.com)

IP of
local DNS
(10.0.0.3)

Step2) Network discovery – dig

(3) Network discovery from client side:

Now we have discovered that dnscom.com is the hostname
of authoritative DNS of facebook.com, so we will find
its IP address:

⇒ On the client terminal type:

dig dnscom.com

Step2) Network discovery – dig

⇒ The output will tell us:

IP address
of

dnscom.com

(4) Network discovery from attacker side:

Now, we want to to find the IP of local DNS and the
hostname of the authoritative DNS of facebook.com from
the attacker side:

⇒ On the attack terminal type:

dig facebook.com

Step2) Network discovery – dig

Step3) Network discovery – dig
⇒ The output will tell us:

IP of
facebook.com

(192.168.0.222)
Hostname of
its DNS
server

(dnscom.com)

IP of local
DNS

(10.0.0.3)

Step2) Network discovery – dig

(4) Network discovery from attacker side:

Now we have discovered that dnscom.com is the hostname
of authoritative DNS of facebook.com, so we will find
its IP address:

⇒ On the attack terminal type:

dig dnscom.com

Step3) Network discovery – dig
⇒ The output will tell us:

IP address
of

dnscom.com

facebook.com

attack attserver
A

C

B

r1 r2

client

dns-local dns-root dns-com

Scenario without poisoning

A client decides to
go on the website

facebook.com

facebook.com

attack attserver
A

C

B

r1 r2

client

dns-local dns-root dns-com

Scenario without poisoning
1) Client asks to

his local DNS the IP
address of the
server where the
website is located

A client decides to
go on the website

facebook.com

1

facebook.com

attack attserver
A

C

B

r1 r2

client

dns-local dns-root dns-com

Scenario without poisoning
2) Initially the cache of
the local DNS is empty, so
it will ask to the root

A client decides to
go on the website

facebook.com

1

2

facebook.com

attack attserver
A

C

B

r1 r2

client

dns-local dns-root dns-com

3) The root says
that it doesn’t
know where the

website is, so it
says to the local
to ask to the .com
top level domain

DNS

Scenario without poisoning

A client decides to
go on the website

facebook.com

1

2

3

facebook.com

attack attserver
A

C

B

r1 r2

client

dns-local dns-root dns-com

Scenario without poisoning
4)The local asks
to the top level
domain where the

server of
facebook.com is

located

A client decides to
go on the website

facebook.com

1

4

2

3

facebook.com

attack attserver
A

C

B

r1 r2

client

dns-local dns-root dns-com

Scenario without poisoning

A client decides to
go on the website

facebook.com

5) Top level
domain replies

with the real IP
address of the

server

1 5

4

2

3

facebook.com

attack attserver
A

C

B

r1 r2

client

dns-local dns-root dns-com

Scenario without poisoning

A client decides to
go on the website

facebook.com

1

4

5

2

3
6

6) The local will
update his cache
with IP address
of facebook.com

facebook.com

attack attserver
A

C

B

r1 r2

client

dns-local dns-root dns-com

Scenario without poisoning

A client decides to
go on the website

facebook.com

1

4

5

8

7

7) DNS local
replies to the
client the IP
address of
facebook.com

2

3
6

facebook.com

attack attserver
A

C

B

r1 r2

client

dns-local dns-root dns-com

Scenario without poisoning

A client decides to
go on the website

facebook.com

8) Finally the
client is able to
reach facebook.com

1

8

4

5

2

3

facebook.com

attack attserver
A

C

B

r1 r2

client

dns-local dns-root dns-com

Scenario with poisoning

A client decides to
go on the website

facebook.com

facebook.com

attack attserver
A

C

B

r1 r2

client

dns-local dns-root dns-com

Scenario with poisoning
1) Client asks to

his local DNS the IP
address of the
server where the
website is located

A client decides to
go on the website

facebook.com

1

facebook.com

attack attserver
A

C

B

r1 r2

client

dns-local dns-root dns-com

Scenario with poisoning
2) Initially the cache of
the local DNS is empty, so
it will ask to the root

A client decides to
go on the website

facebook.com

1

2

facebook.com

attack attserver
A

C

B

r1 r2

client

dns-local dns-root dns-com

3) The root says
that it doesn’t
know where the

website is, so it
says to the local
to ask to the .com
top level domain

DNS

Scenario with poisoning

A client decides to
go on the website

facebook.com

1

2

3

facebook.com

attack attserver
A

C

B

r1 r2

client

dns-local dns-root dns-com

Scenario with poisoning
4)The local asks
to the top level
domain where the

server of
facebook.com is

located

A client decides to
go on the website

facebook.com

1

4

2

3

facebook.com

attack attserver
A

C

B

r1 r2

client

dns-local dns-root dns-com

Scenario with poisoning

A client decides to
go on the website

facebook.com

5) The attacker is located
between the local and the
authoritative DNS in the
network. When it sniffs a

packet passing between them,
it sends to the local the

fake answer, quicker than the
.com DNS.

1 5

4

2

3

facebook.com

attack attserver
A

C

B

r1 r2

client

dns-local dns-root dns-com

Scenario with poisoning

A client decides to
go on the website

facebook.com

6) The local will
update his cache
with the fake IP
address and will
reply it to the

client.

1 5

6

4

2

3

facebook.com

attack attserver
A

C

B

r1 r2

client

dns-local dns-root dns-com

Scenario with poisoning

A client decides to
go on the website

facebook.com

1

2

3

4

5

8

7

7) DNS local
replies to the
client the fake

IP address

6

facebook.com

attack attserver
A

C

B

r1 r2

client

dns-local dns-root dns-com

Scenario with poisoning

A client decides to
go on the website

facebook.com

8) Finally the
client will reach
the fake server

1 5

8

4

2

3

6

(1) Cache cleaning

Which are the DNS request/responses exchanged during the http request

for facebook.com?

Due to the fact that we already asked for facebook.com before, the RR

is already in the DNS servers cache. We therefore have to clean it:

⇒ Clean the cache of ALL the three DNS servers:

rndc flush

⇒ Repeat it for dns-root, dns-local and dns-com

Step3) Scenario without
poisoning

(2) See the traffic

⇒ In order to see the traffic, make dns-root listen for DNS
requests/responses, on dns-root terminal type:

tcpdump -n port 53

⇒ To generate traffic, on client terminal type:

wget facebook.com

Step3) Scenario without
poisoning

(2) See the traffic

In order to see the traffic, make dns-root listen for DNS
requests/responses:

tcpdump -n port 53

Step3) Scenario without
poisoning

The dns-
local

(10.0.0.3)
asked the

dns-root for
facebook.com

The dns-root
(10.0.0.4)

redirected the
request to
dns-com

The dns-com
(10.0.0.5)
server

responded
with

192.168.0.222

Now dns-local has a RR of

type “A” in its cache

saying that

“facebook.com” is at

192.168.0.222

Step4) Cache cleaning

Before starting the attack, we have to clean the cache of our
local DNS. In fact, when we did the dig command, the correct
address has been saved into the cache of the local DNS so the
attack would not work.

⇒ On the dns-local terminal type:

rndc flush

⇒ Repeat it also for dns-root and dns-com (all three green
terminals)

Step5) DNS poisoning
If you verified that everything in the network is
correct, we can start with the attack. Carefully follow
these steps:

(1)Delay the dns-com machine:

In a real scenario: there are many delays during one
communication, due to the distances and congestions.

On our network: we will report this situation by
delaying the dns-com machine (just one for simplicity).

⇒ On the dns-com terminal type:

orig-tc qdisc add dev eth0 root netem delay 1000ms

Something about Scapy

For our attack we will use scapy. But what is it?

Scapy is a networking tool written in python. It is
very useful as it allows us to get our hands directly
on packets to perform capturing, manipulation and
other operations.

In our lab we will use it for:

1. Sniffing packets
2. Filter them by their characteristics
3. Read interesting fields on them
4. Write a new packet and send it

(2) Create a fake packet using Scapy:

We already wrote a function in scapy that creates fake
packets, so now we will run it.

⇒ On the attack terminal go on the directory where the
scapy function is stored:

cd /hosthome/Desktop/NetSecLab/scapy

⇒ Run the function:

python cachePoisoning.py

Since now, the attacker starts listening for the client
and his request access to facebook.com .

Step5) DNS poisoning

About Scapy function
Now, open the file cachePoisoning.py on the desktop
folder and this will be what you will find:

Here we define a function that reads:
- The input IP header
- Some input DNS header

We will use those variables later.

About our Scapy function:

Now we write a new DNS packet that contains:

- The source and destination IP address (dst & src)
- The input and the destination port (dport & sport)
- The transaction type (id)
- If it’s a query or an answer (qr)
- If it’s an authoritative answer (aa)
- The sequence number (qd)
- The real answer (an) where is reported the name of
the web site and his correlated IP address.

About our Scapy function:

About our Scapy function:

Here we define the infinite while loop that permits to
the attacker to listen on the network and wake up for a
specific packet that:

- Use the port 53
- Has as source the host 192.168.0.111 (the user)
- Has as a destination the host 10.0.0.3 (the dns-
local)

About our Scapy function:

Now that the attacker has woken up, it will send the
poisoning packet created before, as it will see the
request of the LOCAL DNS. That will contain:

- Use the port 53
- Has as source the host 10.0.3 (the local)
- Has as a destination the host 10.0.0.5 (the dns-com)

What happens if we discover the network now?

Lets try to listen what pass now on the network, in particular
on the dns-root (the centre of our hierarchy) and on the
server of facebook.com .

⇒ On the dns-root terminal listen what pass by:

tcpdump –n port 53

⇒ On the facebook terminal listen what pass by:

tcpdump –n src host 192.168.0.111 and port 80

⇒ On the client terminal ask again the location of
facebook.com by:

wget facebook.com

⇒ When everything is done, press CTRL+C to stop listening
both on facebook and dns-com

Step6)Network discovery…again

Take a look what pass into the facebook terminal…
NOTHING!

Step6)Network discovery…again

And what about the dns-root?

Step6)Network discovery…again

On the previous slide you can see all the questions and
answers exchanged between the DNSs.

Here the focus is at the two last lines:

Step6)Network discovery…again

- The first line represents the answer from the LOCAL
DNS to the client with the fake address for
facebook.com

- The second line is the real answer from the dns-com
to the dns-local

The real answer arrived later and will not be accepted,
so the cache has been poisoned!

Now the network is configured and the attacker is ready
to send fake packets to the local DNS. It’s time to
start with the attack.

(1) Try the attack:

⇒ To try the attack we simulate an HTTP request, so on
client terminal type the command:

wget facebook.com

Now the request has been sent and if you take a look at
the IP address of facebook.com you won’t see
192.168.0.222, but 10.0.0.9! The attack works!!!!!!

Step7) Results verification

Step7) Results verification

The IP address
is 10.0.0.9
instead of

192.168.0.222!
The attack
works!!!!!!

So the client is redirected to the
Attacker’s server rather than on

facebook.com

(2) Open the fake webpage:

⇒ To open a simple HTML webpage, on the client terminal
type:

links facebook.com

This is the webpage of the attacker’s server

Step7) Results verification

THANK YOU

