
Network	Security
AA	2015/2016
Vulnerabilities
Dr.	Luca	Allodi

Dr.	Luca	Allodi	- Network	Security	- University	
of	Trento,	DISI	(AA	2015/2016)

1

Software	bugs

• A	bug	is	a	problem	in	the	execution	of	the	software	that	
leads	to	unexpected	behaviour
• Software	crashes
• Wrong	entries	are	displayed/stored	in	a	backend	database
• Execution	loops	infinitely
• ..

• Characteristics	of	a	bug
• Replicability
• Logic/configuration/design/implementation
• Fix	priority
• If	it’s	documented,	it’s	a	feature

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 2

An	example	of	a	sw bug	
(pseudocode)
int login(database,	context){

char	username[10];
char	password[10];
printf(“login:”);	gets(username);
printf(“password:”);	gets(password);
correct_pwd=lookup(username,	database);
if	(correct_pwd!=password)

printf(‘Login	failed’);
return;

else{
printf(‘login	succeeded’);
exec(context);

}
return	1;

}

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 3

Swap	it	around..

int login(database,context){
char	username[10];
char	password[10];
printf(“login:”);	gets(username);
printf(“password:”);	gets(password);
correct_pwd=lookup(username,	database);
if	(correct_pwd==password)

printf(‘Login	succeeded’);
exec(context);

else{
printf(‘Login	failed’);
return;

}
return	1;

}

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 4

Vulnerabilities

• A	flaw	or	weakness	in	system	security	procedures,	
design,	implementation,	 or	internal	controls	that	
could	be	exercised	(accidentally	triggered	or	
intentionally	 exploited)	 and	result	in	a	security	
breach	or	a	violation	 of	the	system's	security	policy	

Definition	 from	NIST	SP	800-30

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 5

Types	of	vulnerabilities

• Vulnerabilities	can	be	found	at	any	level	in	an	information	system
• Configuration	vulnerabilities
• Infrastructural	vulnerabilities
• Software	vulnerabilities

• Configuration	vulnerabilities
• Software	or	system	configuration	does	not	correctly	implement	security	
policy
• e.g.	accept	SSH	root	connections	 from	any	IP

• Infrastructural	vulnerabilities
• Design or	implementation	 problems	that	directly	or	indirectly	affect	the	
security	of	a	system
• e.g.	a	sensitive	database	in	a	network’s	DMZ

• Software	vulnerabilities
• Design	or	implementation	 of	a	software	module	can	be	exploited	to	
bypass	security	policy
• e.g.	authorisation mechanism	can	be	bypassed

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 6

Software	vulnerabilities

• Our	focus	in	this	course
• Thousands	of	software	vulnerabilities	are	discovered	
each	year
• Some	are	publicly	disclosed
• Some	are	not

• MITRE	à non-profit	organisation (Massachusetts,	
U.S.A.)
• Supports,	among	others,	activities	from

• Department	of	Homeland	Security	(DHS)
• Department	of	Defense	(DoD)
• National	 Institute	for	Standards	and	Technology	(NIST)

• Maintaines standard	for	vulnerability	identification
• Common	Vulnerabilities	and	Exposures	(CVE)

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 7

Vulnerability	discovery

• Vulnerabilities	are	widely	different	in	nature
• Often	implementation-dependent
• May	require	deep	understanding	of	sw module	
interaction

• Necessary	 in-depth	knowledge	of	system	
design
• e.g.	kernel	structure,	memory	allocation,..

• Two	main	discovery	techniques
• Code	lookups

• Manual/semi-automatic	search	in	codebase	for	
known	 patterns

• Fuzzing
• Semi-automatic	random	input	generation-->	try	to	

crash	program
• Bonus	technique:	“Google	hacking”

• Look	for	known	 vulnerable	functions	 in	google	à
returns	vulnerable	webpages

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 8

Vulnerability	discovery	and	
disclosure
• Can	be	found	either	internally	or	externally	to	a	
company
• Internallyàmanaged	within	the	company	

• Patch	(fixing)	prioritisation
• Communication	to	customers

• Externallyà found	by	an	external	security	researcher
• Disclosure	to	vendor

• Payment
• Patching	prioritisation
• Disclosure	to	public

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 9

Vulnerability	handling

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 10

• Internal	process	must
• Accept	information	about	new	
vulnerabilities
• Internal	or	external	sources

• Verify	vulnerability	report
• If	vulnerability	exists

• Develop	resolution
• Post-resolution	activities

• ISO	30111

Vulnerability	handling	–
verification	phase
• Initial	investigation

1. The	reported	problem	is	a	security	vulnerability
• Must	have	repercussions	over	security	policy

2. The	vulnerability	affects	a	supported	version	of	the	
software	the	vendor	maintains	(e.g.	not	caused	by	3rd party	
modules).
• Else,	exit	process

3. The	vulnerability	is	exploitable	with	currently	known	
techniques
• Else,	exit	process

4. Root	cause	analysis	
• Underlying	causes	of	vulnerability	and	look	for	similar	problems	in	
the	code

5. Prioritisation
• Evaluate	potential	threat	posed	by	the	vulnerability

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 11

Vulnerability	handling	– resolution	
and	release	phases
• Resolution	decision

• Vendor	must	decide	how	to	resolve	the	vulnerability
• Different	decisions	for	different	types	of	vulnerabilities

• Configuration	vulnerabilities	à advisory	may	be	enough
• Code	vulnerabilities	à patch
• Critical	vulnerabilities	à release	a	mitigation	before	full	patch

• Remediation	development	
• Every	resolution	must	be	tested	before	being	delivered	to	clients

• minimize	negative	impacts	caused	by	software	change

• Release
• Web	services	à vendor	deploys	patch	itself
• Stand-alone	product	à patch	release	(see	 ISO	29147)

• Post-release
• Monitor	situation	(e.g.	patch	may	not	be	always	effective)

• Support	 to	final	client

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 12

Vulnerability	disclosure

• Vulnerabilities	are	information	sets
• The	vulnerability	disclosure	process	is	about	
information	exchange	– ISO	29147
• Finder	à vendor
• Vendor	à user

Picture	from	ISO	29147

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 13

Confidentiality	of	vulnerability	
information
• Vulnerability	information	is	considered	sensitive	
and	confidential	by	vendors
• Pose	a	threat	to	end	users
• May	affect	vendor’s	reputation

• Build	secure	communication	channels	to	preserve	
confidentiality	and	integrity	of	information
• Vulnerability	advisories	are	typically	published	after	
patching
• Internal	policies	determine	whether	a	vulnerability	will	
be	published	or	not
• Typically	a	function	of	vulnerability	severity

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 14

Issues	with	vulnerability	disclosure	–
the	case	of	external	finders
• Security	researcher	that	finds	vulnerability	may	expect	

• Economic	return
• Credit	(to	mention	on	curriculum)

• Issue	à how	to	communicate	vulnerability	to	vendor?
• Say	too	little	à vulnerability	not	reproducible	à no	$$$
• Say	too	much	à vulnerability	fully	known	à thanks	for	the	info	à no	$$$

• Agreement	between	sec	researcher	and	vendor
• Third	party	mediates	(e.g.	ZDI)
• Bug	bounty	programs	(e.g.	Microsoft,	Google)
• Credit	assured	(e.g.	Apple?)

• Often	involves	development	of	Proof-of-Concept	exploit	that	shows	the	
vulnerability	is	exploitable

• For	more	on	vuln disclosure	issues	see	“Miller,	Charlie.	"The	legitimate	
vulnerability	market:	Inside	the	secretive	world	of	0-day	exploit	sales."	
In	Sixth	Workshop	on	the	Economics	of	Information	Security.	2007.”

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 15

Third	party	mediators

• Several	on	the	market,	act	as	proxy	between	security	
researcher	and	vendor
• Communicate	vulnerability	to	vendor
• Hold	vulnerability	information	for	a	certain	amount	of	time	
(typically	60-90	days)

• When	hold	period	expires	they	disclose	the	vulnerability
• Mechanism	to	push	vendors	to	patch

• Secunia,	ZDI,	SecurityFocus,	…
• If	vulnerability	is	known	before	vendor	releases	patch	
à “zero	day	vulnerability”
• Google	Zero	Day	Project

• Discover	vulnerabilities	(often	in	competitors’	software)
• Aggressively	release	vuln info	after	deadline	expires

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 16

National	vulnerability	database

• NVD	for	short	à NIST-maintained	database	of	
disclosed	vulnerabilities
• The	“universe”	of	vulnerabilities

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 17

National	Vulnerability	Database	
(2)

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 18

Vulnerability	feeds

• Vulnerabilities	are	disclosed	by	publication	in	the	
NVD	and	other	vulnerability	feeds
• Public	and	private

• Private	feeds	release	information	earlier
• “early	advisories”
• Secuina,	SecurityFocus,	ZDI

• Public	feeds	typically	release	weekly	or	monthly	
updates
• SANS@RISK
• https://www.sans.org/newsletters/at-risk

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 19

Vulnerability	life-cycle	overview

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 20

1.	Software	
release

4.	Vulnerability	and	
PoC exploit	disclosure

5b.	Exploitation	in	the	wild

5c.	AV	company	attack	signature	development	 and	detection

2.	Vulnerability	
discovery

time

3.	Patch	release
interval

5a.	Vulnerability	known	by	attacker

Types	of	vulnerabilities

• Different	types	of	vulnerabilities
• “The	Open	Web	Application	Security	Project	
(OWASP)	is	a	501(c)(3)	worldwide	not-for-profit	
charitable	organization	focused	on	improving	the	
security	of	software”
• https://www.owasp.org/index.php/Main_Page

• Good	resource	for	information	security	resources
• “Top	10	vulnerability	threats”
• Good	overview	of	most	common	vulnerability	types	with	
examples

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 21

Injection	vulnerabilities

• Possibly	the	most	common	type	of	vulnerabilities
• Exploits	unsecure	or	not	robust	input	channels	to	
applications

• Input	to	the	application	can	be	forged	in	such	a	way	
that	the	application	(or	application	backend)	
executes	some	commands
• Example:
• SQL	injection	à inject	SQL	queries	through	an	interface	
(typically	web)	by	inputting	malicious	strings
• String	is	interpreted	by	MySQL	server	as	a	query

• Buffer	Overflow

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 22

SQL	Injection	example

• Imagine	a	website	with	an	input	field	“username”
• The	user	inputs	their	name	and	the	backend	returns	all	their	details

• The	query	on	the	backend	will	look	something	like	this:
• SELECT	*	from	USERS	where	name=‘$user’
• Where	$user	is	the	value	set	in	the	input	username	above,	
interpreted	as	a	string

• The	attacker	can	set	$user=superpippo’	OR	‘owned’=‘owned
• The	backend	will	then	interpret	the	following	query
à SELECT	*	from	USERS	where	name=‘superpippo’	OR	
‘owned’=‘owned’

• That’s	a	valid	query	that	returns	all	fields	in	USERS
• Mitigation	à input	validation	(e.g.	do	not	allow	special	
characters	in	input	fields).

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 23

SQL	Injection	vulnerabilities

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 24

Stats	from	NVD	(Feb	2016)

Buffer	overflows
• May	happen	when	input	is	not	properly	validated
• Input	overwrites	memory	in	such	a	way	that	execution	can	be	controlled	by	the	attacker
• Very	common	types	of	vulnerabilities

• Extremely	powerful	as	they	typically	allow	the	attacker	to	execute	arbitrary	code	on	the	attacked	system

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 25

Stats	from	NVD	(Feb	2016)

Memory	buffers	– background	
notions
• Buffer	à a	block	of	memory	that	contains	one	or	
more	instances	of	some	data
• Typically	associated	to	an	array	(e.g.	C,	Javascript)
• Buffers	have	pre-defined	dimensions

• Can	accommodate	up	to	x	bytes	of	data

• Buffer	overflow	à the	input	data dimension
exceeds	the	size	of	the	buffer
• Some	input	data	“overflows”	the	buffer

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 26

Buggy	code	- example
buffer.c

#	include	<stdlib.h>
#	include	<stdio.h>
#	include	<string.h>
int overflowme(char	*string){

char	buffer[8];
strcpy(buffer,	string);
printf("All	was	good.	Copied	

string:	%s\n",	buffer);
return	1;

}

int main(int argc,	char	*argv[]){
overflowme(argv[1]);
return	1;

}

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 27

Trap	6	=	SIGABRT	à signals	the	process	to	abort

Memory	layout	and	CPU	registers
Memory

• Data	+	Text
• The	Data	part	references	information	on	

variables	defined	at	compile-time
• Text	is	the	executable	code	of	program

• Stack
• Stores	temporary	information	in	memory

• e.g.	data	set	by	called	functions
• LIFO	à last-in-first-out

• New	“stack	frames”	are	appended	 at	the	end	of	
the	current	stack

• Stack	grows	toward	lower	memory	addresses
• Stores	RETurn address	to	go	to	when	

subroutine	is	over
• Heap

• Data	allocated	run-time	(malloc(),	etc..)
• Heap	grows	towards	higher	memory	

addresses

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 28

CPU	registers
• Other	information	 is	stored	in	
CPU	registers
• Depends	on	architecture

• x86	has	several	registers
• Here	we	are	interested	mainly	
in	pointer	registers
• They	point	to	areas	of	memory	

the	execution	will	jump	to

• EBPà stack	base	pointer
• Address	of	current	stack	frame

• SP	à stack	pointer	
• Address	to	end	of	stack

• EIP	à instruction	pointer
• (offset)	memory	address	of	

next	instruction	to	be	executes
• EIP	at	subroutine	call	à RET

Buffer	overflow	– background	
(x86	32	bits)
• When	called,	functions	are	“appended”	to	the	memory	stack	

• a	new	“stack	frame”	is	created
• Buffers	are	areas	of	memory	that	are	allocated	to	store	(input)	data

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016)
29

Stack		growth

High	memory	addresses

Low	memory	addresses

Start	of	stack

End	of	stack

RETURN ADDRESS=next

…
Start	of	Function	A

Memory	address	pointed	by	the	Stack	Pointer	(SP)
Increase	SP	to	allocate	more	space	to	new	function

SAVED BASE POINTER=a EBP	- Pointer	to	the	base	of	the	caller	frame
Current	EBP	is	stored	in	the	register
When	function	ends
1. SP	takes	value	of	current	EBP
2. EBP=a
3. Execution	returned	to	Function	A	addr(next)

Address	to	jump	at	when	execution	in	this	frame	is	
over	(EIP	before	 function	call)

a

SF
 o

f
ne
wf
un
c

c

Execution
variables
…

SF
 o

f
Fu
nA

Va
ri
ab
le
s

al
lo
ca
ti
on

Buffer	overflow	– attack	(x86	32	
bits)

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016)
30

Start	of	stack

End	of	stack

RETURN ADDRESS

…

SAVED BASE POINTER=a

a

Imagine	now	that	newfunc allocates	a	buffer	 of	64	
bytes	in	memory

c+1

char newBuffer[128];

c

c-32

newBuffer (128 bytes)

To	newBuffer will	be	allocated	128	bytes	of	memory.	
In	32	bits	architecture	that	corresponds	to	32	memory	
cells	(32	bits/cell=4	bytes/cell	à 128/4=32)

Buffer	overflow	– attack	(x86	32	
bits)	cntd

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016)
31

Start	of	stack

End	of	stack

RETURN ADDRESS

…

SAVED BASE POINTER=a

a

What	happens	if,	without	any	control,	newBuffer gets	
instead	128+8	bytes	=	136	bytes?

newBuffer (128 bytes)

newBuffer now	overwrites
• SAVED	BASE	 POINTER=a	[addr(c-1)]
• RETURN	ADDRESS	[addr(c)]
This	will	typically	throw	a	segmentation	fault	error	as	
neither	the	saved	 base	pointer	nor	the	return	address	
will	likely	contain	valid	values

c+1

c

c-32

Buffer	overflow	– attack	(x86	32	
bits)	cntd

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016)
32

Start	of	stack

End	of	stack

RETURN ADDRESS=k
…

SAVED BASE POINTER=a

k=c+n

Let’s	take	it	a	step	further.

What	happens	if	an	attacker	forges	newBuffer in	a	
more	clever	way?

newBuffer (128 bytes)

...

shellcode

Attacker’s code
Attacker	can	overwrite	the	return	address	in	such	a	
way	that	when	the	function	returns	the	execution	will	
jump	to	their	own	code.

All	the	attacker	has	to	do	is	to	figure	out	the	correct	
offset	from	the	buffer	to	the	location	of	the	return	
address	and	the	correct	address	for	their	own	code

The	attacker’s	code is	commonly	referred	to	as	
shellcode.

Once	the	address	of	the	buffer	is	known	it	is	trivial	to	
find	the	address	of	the	return	address	and	set	it	
correctly	to	point	to	the	shellcode.

But	memory	allocation	is	not	necessarily	an	entirely	
deterministic	process.

shellcode

c+1

c

c-32

Buffer	overflow	– attack	(x86	32	
bits)	cntd

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016)
33

Start	of	stack

End	of	stack

RETURN ADDRESS=k
RETURN ADDRESS=K

k=c+n

If	attacker	can	not	predict	the	return	address	exactly,	
then	he	does	not	know	with	precision
• where	NewBuffer is	relative	to	start	of	stack	frame
• where	the	RET	 address	is	stored
• where	the	RET	 address	should	point	at	(i.e.	where	is	

the	shellcode)

SOLUTION:
The	attacker	can	employ	a	NOP	(no-operation)	sled	on	
top	of	a	sled	of	repeated	RET	 addresses.

• Guesses	 that	if	he	writes	y	bytes	he	will	overwrite	
the	RET

• Guesses	 in	which	range	of	memory	addresses	he	
can	write,	say	c	± y

• He	picks	an	address	in	that	interval	(e.g.	k>c)	and	
sets	RET=k

• He	forges	the	input	in	such	a	way	that	in	the	area	
around	address	k there	are	only	NOPs

• Instruction	Pointer	(IP)	increases	and	
nothing	else	happens

• On	top	of	NOP	sled	he	places	his	shellcode
• As	IP	increases,	the	shellcode	will	

eventually	be	executed

newBuffer (128 bytes)

NOP

shellcode

shellcode
...

… (NOP sled)

Ex
ec

ut
io
n
di

re
ct
io
n

shellcode

RETURN ADDRESS=K
RETURN ADDRESS=K

RETURN ADDRESS=K

NOP

c+1

c

c-32

Reference	to	technical	details

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 34

Buffer	overflow	à variants

• Return-to-libc
• Instead	of	writing	your	code	to	execute,	call	a	function	that	will	do	it	for	
you
• Re-use	existing	code

• RET=addr(libc)
• execution	passes	argument	to	libc from	stack

• e.g.	“/bin/sh”	à returns	shell

• “Exec-before-return”
• Instead	of	writing	the	RET	(which	pops	the	stack	when	context	is	
switched)	overwrite	other	parameters
• E.g.	EBP,	other	registers
• Requires	more	in-depth	analysis	of	assembly	code

• Forge	frame
• You	can	forge	a	fake	stack	frame	in	the	buffer
• Modify	EBP	such	that	it	will	point	somewhere	 in	the	buffer	as	if	it	was	a	
stack	frame	(off-by-one	buffer	overflows)

• Put	your	code	in	there

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 35

BoF – Causes

• There	is	no	notion	of	“string	length”	in	C
• Strings	are	terminated	by	a	”null	character”	NUL	à \0
• No	info	on	string	length	in	memory

• Many	default	functions	in	C	do	not	implement	
additional	controls
• strcpy(char	*dest,	char	*src);	gets(char	*s)
• Programmer	needs	to	implement	these	on	their	own

• No	distinction	between	executable	and	read-only	
sections	of	memory	(x86)
• Now	mitigated	in	recent	architectures

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 36

