
SPDZ Tutorial: Getting Started

Chan Nam Ngo
channam.ngo@unitn.it

University of Trento, Trento, Italy

December 19, 2018

1 Intallation of the SPDZ library

All the tutorials assume the Linux platform (e.g. Ubuntu). Students using
other platforms should find equivalent alternatives. An easy solution would be
VirtualBox1 + Ubuntu2.

One should follow the instruction on https://github.com/bristolcrypto/

SPDZ-23 for installation.

2 Introduction to the SPDZ library

Details of the library can be found on the main repository page at https:

//github.com/bristolcrypto/SPDZ-2.
Basically SPDZ is a library that provides a programming framework for

Secure Multiparty Computation (MPC). Moreover, it includes a virtual machine
that executes programs in a specific bytecode. One can program the desired
computation using high-level Python code which will be compiled and optimized
with a particular focus on minimizing the number of communication rounds (for
protocol based on secret sharing) or on AES-NI pipelining (for garbled circuits).

As an example, the program below is used to compute the millionares prob-
lem, i.e. Alice and Bob each has a secret cash amount and they want to find
out who is richer without the other knowing their secret amount.

program . b i t l e n g t h = 32

def m i l l i o n n a i r e s () :
””” Secure comparison , r e c e i v i n g input from each par ty v i a s t d i n ”””
p r i n t l n (”Waiting f o r A l i c e ’ s input ”)
a l i c e = s i n t . g e t input f rom (0)
p r i n t l n (”Waiting f o r Bob ’ s input ”)

1https://www.virtualbox.org/wiki/Downloads
2https://www.ubuntu.com/
3SPDZ-2 is now inactive but is still useful for a demonstration of MPC Software.

1

bob = s i n t . g e t input f rom (1)

b = a l i c e < bob
p r i n t l n (’The r i c h e s t i s : %s ’ , b . r e v e a l ())

3 Notes on SPDZ

3.1 Data Type

All data types can be found at https://github.com/bristolcrypto/SPDZ-2/
blob/master/Compiler/types.py. As a note the prefix “c” refers to clear data
types, e.g. cint, meaning the value is public while the prefix “s” refers to secret,
e.g. sint, which means the value is secret.

A secret value can be revealed meaning the value is available to all parties.
As an example in the millionares program above, b = alice ¡ bob, which is the
output of the program, can be opened to Alice and Bob for them to find out
the final result by calling b.reveal().

Data types also include array type, e.g. Array(N, sint) is an sint array of
size N.

3.2 Getting secret inputs

Secret inputs can be obtained via stdin, e.g. alice = sint.get input from(0), or
from a file, e.g. alice = sint.get raw input from(0).

As an example the two millionares problem above can be extended to N
millionares.

from u t i l import i f e l s e

def m i l l i o n n a i r e s (N) :
V = Array (N, s i n t)
R = Array (N, s i n t)
for i in range (N) :

inps = [s i n t . ge t raw input f rom (i) for in range (2)]
V[i] = inps [0]
R[i] = s i n t (0)

m = V[0]
for i in range (N) :

m = i f e l s e (V[i] >= m, V[i] , m)
for i in range (N) :

R[i] = i f e l s e (V[i] >= m, s i n t (1) , s i n t (0))

for i in range (N) :
p r i n t l n (’ Output f o r %s i s : %s ’ , i , R[i] . r e v e a l ())

2

m i l l i o n n a i r e s (256)

3.3 Statements

In the example above, the for loop is executed in clear while if else is a secure
computation. The supported statements can be found at https://github.

com/bristolcrypto/SPDZ-2/blob/master/Compiler/library.py4.
As an example, the following is extracted for if-then-else statement.

def if_then(condition):

def else_then():

try:

if state.has_else:

run the else block

def end_if():

start next block

if state.has_else:

jump to else block if condition == 0

set if block to skip else

else:

set start block’s conditional jump to next block

nothing to compute without else

def if_statement(condition, if_fn, else_fn=None):

if condition is True or condition is False:

condition known at compile time

def if_(condition):

def if_e(condition):

def else_(body):

4 Getting Started

Implement the following problems using SPDZ.

• The Secure Difference Detection runs on common input f and interacts
with a set of players (P1, . . . , PN) and receive (fi, ri) from each Pi. Upon
receiving all inputs, let cf be the number of pairs (fi = f), if cf > 0
output y =

∑
ri mod cf to all players and ⊥ otherwise.

4The defined functions and actual code usage may look different due to Python syntax.

3

• The Secure Threshold Comparison runs on common input (t) and interacts
with a set of players (P1, . . . , PN) and receive (ηi, ri) from each Pi. Upon
receiving all inputs, let cf be the number of pairs (ηi < t), if cf > 0 output
y =

∑
ri mod cf to all players and ⊥ otherwise.

4

