
Undergraduate programme in Computer
sciences

1

Massacci, Ngo - Complexity, Crypto, and FinTech ► 124/09/2018

Complexity, Cryptography, and Financial
Technologies

Lecture 5 – Introduction to Computational Complexity

Fabio Massacci

What is Computational Complexity?

• Computability Theory: Can we potentially solve a class of
problems with a finite amount of computation?
– Elementary computation: is finite for any n

• Computational Complexity Theory: Can we actually solve
a class of problems i.e. with realistically limited
computational resources?
– TIME - Execution steps,
– SPACE - memory cells,
– RANDOMNESS - random numbers

• A supply of “good” random numbers is critical for cryptography

Massacci, Ngo - Complexity, Crypto, and FinTech ► 224/09/20
18

Undergraduate programme in Computer
sciences

2

Model of Computations

• To specify a computational model we need:
– the set of possible environments

– the set of machines (computational rules)

– the effect of applying such rules on an environment

• Several models exist
– Turing Machine  most famous one

– Random Access Memory  mostly equivalent to a TM

– Quantum Machine  can do some operations in parallel

• Mostly equivalent from computability perspective,
some difference from complexity perspective

Massacci, Ngo - Complexity, Crypto, and FinTech ► 324/09/20
18

Turing Machines vs RAM

• Main component in the environment of a TM
– an infinite sequence of cells (a tape),

• each cell hold a single symbol or blank, extending infinitely to the right
– a transition function based on current state of machine and content of current cell

determines new symbol state of the machine, movement instruction (L or R or S)
• The machine modifies content of current cell and its internal state, and moves as directed

– Description typically includes some special states called accepting states
– Some versions had more tapes for parallel operations

• Main Component in the environment of a RAM
– A infinite vector of registers
– Classical operation on registers

• loading a value into a register, adding the value of two registers, jumping to a location specified into
a register if another register is zero

– Possibility to refer to a register directly or indirectly (a register whose number is
identified by the value specified in another register)

• This property is important to be equivalent to a Turing Machine

• The two models are equivalent so we use a RAM for simplicity

Massacci, Ngo - Complexity, Crypto, and FinTech ► 424/09/20
18

Undergraduate programme in Computer
sciences

3

More “Powerful” Machines

• Oracle Machine
– additional data structure (to make queries and read its answers)

and two special state (oracle invocation and oracle spoke).
• For turing machine is a tape, for RAM some other registers

– Computation of oracle machine Mf on input x and access to the
oracle is essentially identical

• If a machine makes a query q then the answer it obtains is f(q).
• Mf(x) is the output of M on input x when given access to oracle f.

– Intuitively, with an oracle computing f costs 1 = nothing
• Either in time or in space

• Universal Machine
– Basically a machine that can read its own program to execute

from input data structure i.e. a normal computer

Massacci, Ngo - Complexity, Crypto, and FinTech ► 524/09/20
18

f :{0,1}*{0,1}*

Uncomputable Functions

• Not all functions are computable.
– Not every well-defined task can be solved by a “reasonable” automated procedure.
– Theorems hold for any reasonable model of computation (See Goldreich book)
– Only assumption: each machine/function M etc. in the model has a finite description

<M> (i.e., can be described by a string)
• Theorem 1.4: Most functions are uncomputable.

– The set of computable functions is countable (set of integers), whereas the set of all
functions (from string to string) has cardinality of reals

• Each string describing a program can be be described by the integer of its binary representation
• Each real in [0,1] can be described by a 0/1 function over strings as f(n)=n-th decimal digit of the

number

• Theorem 1.5: The halting function is not computable.
– Halting function h : {0, 1}* x {0, 1}* → {0, 1}:

• h(<M>, x) = 1 iff M halts on input x
– No algorithm given a arbitrary pair (<M>, x), can decide whether M halts on input x)

• Technique is diagonalization: construct a new machine M* that reads a machine description <M>,
calls h and if h(M,x)=1 then loops for ever (else stops). When M* reads <M*> it runs into troubles…

– This has to be true for arbitrary <M>. For some particular M this is well possible
• (e.g. <M> corresponding to context free grammars written in a particular form)

Massacci, Ngo - Complexity, Crypto, and FinTech ► 624/09/20
18

Undergraduate programme in Computer
sciences

4

Rice’s Theorem

• Theorem 1.6 (Rice’s Theorem):
– Let F be any non-trivial subset of the set of all computable partial

functions, and let SF be the set of strings that describe machines
that compute functions in F. Then deciding membership in SF
cannot be solved by an algorithm.

• Rice’s Theorem means:
– no algorithm can determine any non-trivial property of the

function computed by a given computer program (written in any
programming language)

• Practical example
– It is impossible to design an algorithm that automatically

distinguishes an arbitrary program from the set of functionally
identical programs with some vulnerability

Massacci, Ngo - Complexity, Crypto, and FinTech ► 724/09/20
18

Complexity concerns “efficient “computation

• If most functions (i.e. problems) are not computable, what about the
relation between “efficiently computable” functions and “just
computable”?

• We try to characterize the problems into classes
– Can we solve them efficiently in time?
– Do we need a lot of memory?
– Do we need a lot of “good” random numbers?

• “Anyone who attempts to generate random numbers by deterministic means is, of
course, living in a state of sin.” John von Neumann

• What can (or cannot) be solved by
– Making lucky guesses
– Making random moves
– Asking advice
– Leaving no trace behind

• Efficient Polynomial
– In practice: if input dataset is LARGE then efficient poly logarithmic

Massacci, Ngo - Complexity, Crypto, and FinTech ► 824/09/20
18

Undergraduate programme in Computer
sciences

5

Classical Formulation: P vs NP

• The students’ accommodation problem
– Suppose that you are organizing housing accommodations

for a group of 400 university students. Space is limited and
only 100 students will receive places in the dormitory. To
complicate matters, the Dean has provided you with a list of
pairs of incompatible students, and requested that no pair
from this list appear in your final choice.

• Wanna be a millionaire?
– we don’t know if problem above admits a solution that can

be found in polynomial time
• In any reasonable model of computation

– http://www.claymath.org/millennium/P_vs_NP/

Massacci, Ngo - Complexity, Crypto, and FinTech ► 924/09/20
18

P vs NP Questions

• The P vs NP questions has been at a core of CS
• However most people make a great mistake

– P stand for Polynomial Time
– N in NP stand for Non-Polynomial Time  ERROR!!!

• What acronyms really stand for
– P = “Solvable in Deterministic Poly Time”
– NP = “Solvable in NON-Deterministic Poly Time”

• NP complete = hardest problem in NP
– If we can solve any of them then you can use the solution to solve any

problem in NP
• Non-Deterministic “intuitive” meaning

– IF you make a lucky guess OR somebody gives you an hint then the
problem is solvable in polynomial time OTHERWISE though luck

– The whole existence of modern crypto is based on this intuition

Massacci, Ngo - Complexity, Crypto, and FinTech ► 1024/09/20
18

Undergraduate programme in Computer
sciences

6

An example

• The old Prussian city of Konigsberg (now
Kaliningrad in Russia) had seven bridges. Can
citizens stroll along every bridge and return to the
same point?
– Formulated by Euler, a famous mathematician

• Admit two formulations as a graph
– Crossroads are nodes and bridges are edges between them
 P

– Bridges are nodes and roads connecting them are edges
NP-complete

• As you see formulation is everything…

Massacci, Ngo - Complexity, Crypto, and FinTech ► 1124/09/20
18

Hamilton – Eulerian Path

Massacci, Ngo - Complexity, Crypto, and FinTech ► 1224/09/20
18

HAMILTONIAN
PATH

EULERIAN
PATH

Undergraduate programme in Computer
sciences

7

Massacci, Ngo - Complexity, Crypto, and FinTech ► 1324/09/20
18

Problem Complexity?
• Complexity Class = set of problems with “same”

computational complexity

Problem Instance Efficient Solution?

cannot be solved
efficiently

Solution exp. long wrt the
problem’s instances

could potentially be
solved efficiently

Solution comparable to problem’s
instances BUT we are not able to
find it quickly

can be solved
efficiently

Solution comparable to problem
instances AND we are able to find
it quickly

Solvable Search Problems?

• Informally:
– to be potentially solvable a problem must have a short

solution
– whether we are able to find it, that’s another story

• Formally:
– search problems must have a solution whose length is

bounded by a polynomial in the size of the instance

• Def. 2.1 (Polynomially bounded relations):
– R ⊆ {0,1}* × {0,1}* is polynomially bounded iff
– there exists a polynomial p s.t.
– for every (x, y) ∈ R |y| ≤ p(|x|)..

Massacci, Ngo - Complexity, Crypto, and FinTech ► 1424/09/20
18

Undergraduate programme in Computer
sciences

8

Graph Isomorphism

• Two graphs (V1,E1) and (V2,E2) are isomorphic
if we can find a mapping between the edges of
one and the other and viceversa

• Define the input/output

Massacci, Ngo - Complexity, Crypto, and FinTech ► 1524/09/20
18

Problem Representation of Graph Isomorphism

R={((<V1,E1> <V2,E2>), map) |

<V1,E1> is a graph,

<V2,E2> is a graph,

map: V1 → V2 must be injective & surjective etc. }

• n nodes V1 & |E1| < n2

• n nodes V2 & |E2| < n2

Massacci, Ngo - Complexity, Crypto, and FinTech ► 1624/09/20
18

THIS IS X THIS IS Y

|x| ≤ O(2n2+ 2n) ~ O(n2)
|y| ≤ O(n)

We have:

What we want: |y| ~ O (p(|x|))

Undergraduate programme in Computer
sciences

9

Polynomially bounded RISOMORPHISM

• |x| ~ O(n2)

• |y| ~ O(n)

• To conclude that RISOMORPHISM is polynomially
bounded
– |y| < p(|x|)

– n ~ √|x| → |y| ≤ O(√|x|) ~ O(|x|1/2)

• Graph isomorphism is polynomially bounded

• This reasoning is (partly) wrong!

Massacci, Ngo - Complexity, Crypto, and FinTech ► 1724/09/20
18

Polynomially bounded RISOMORPHISM

• |x| ~ O(n2)
• |y| ~ O(n)
• To conclude that RISOMORPHISM is poly bounded

• Graph isomorphism is polynomially bounded

Massacci, Ngo - Complexity, Crypto, and FinTech ► 1824/09/20
18

Worst case

Worst case

For all |x|, |y|
(Best case, Best case)
(Best case, Worst case)
(Worst case, Best case)
(Worst case, Worst case)

(etc, etc)

Smallest input Largest output

O(n) O(n)

|y| ≤ O(|x|)

Undergraduate programme in Computer
sciences

10

Discrete Logarithm modulo a prime

• Group Zp
– Integers from 0… p-1
– Multiplication and Addition are defined modulo p

• 6+6 mod 7 = 7 + 5 mod 7 = 5
• 7*5 mod 7 = 7 *1 mod 7 = 0

– If p is a prime  inverse of addition and (non-zero) multiplication
always exists

• 6 + 1 mod 7 = 0  6 and 1 are additive inverse
• 4 * 2 mod 7 = 1  4 and 2 are multiplicative inverse

• Generator of a Group
– Exists number g s.t. ForAll nZp Exists kZp s.t. n = gk mod p

• 22 mod 7 = 4 , 23 mod 7 = 1  no
• 31 mod 7 = 3, 32 mod 7 = 2, 3 mod 7 = 6, 34 mod 7 = 4, 35 mod 7 = 5yes

Massacci, Ngo - Complexity, Crypto, and FinTech ► 1924/09/20
18

Discrete Logaritm Modulo a prime (II)

• Discrete Log
– Given a prime p, a generator g and a number x < p

– Find y s.t gy mod p = x

• A solution always exists for all input problem x
– By definition of generator  RDLOG(x) ≠ ∅

• How is RDLOG-known-g defined? What is x? what is
y?

Massacci, Ngo - Complexity, Crypto, and FinTech ► 2024/09/20
18

Undergraduate programme in Computer
sciences

11

Discrete Logaritm Modulo a prime (III)

• Previous formulation deliberately misleading
• Discrete Log

– Given a prime p, a generator g and a number n < p
– Find k s.t gk mod p = n

• How is RDLOG-known-g defined
– RDLOG = {<(p,g,n),k>} | gk = n (mod p)

AND p is prime
AND g is a generator of Zp }

• A solution always exists for all input problem x
– RDLOG-knonw-g(x) ≠ ∅

Massacci, Ngo - Complexity, Crypto, and FinTech ► 2124/09/20
18

THIS IS X

THIS IS Y

Discrete Logaritm Modulo a prime (IV)

• Discrete Log-known-g
– Given a prime p, a generator g and a number n < p

– Find k s.t gk mod p = n

• How is RDLOG-known-g defined
– RDLOG-known-g = {<(p,g,n),k>} | gk = n (mod p)

AND p is prime

AND g is a generator of Zp }

• Which are the dimensions of RDLOG-known-g?
– |x| ~ O(…), |y| ~ O(...)

Massacci, Ngo - Complexity, Crypto, and FinTech ► 2224/09/20
18

THIS IS X
THIS IS Y

Undergraduate programme in Computer
sciences

12

Discrete Logaritm Modulo a prime (IV)

• Discrete Log
– Given a prime p, a generator g and a number n < p

– Find k s.t gk mod p = n

• How is RDLOG-known-g defined
– RDLOG = {<(p,g,n),k>} | gk = n (mod p)

AND p is prime

AND g is a generator of Zp }

• Which are the dimensions of RDLOG-known-g?
– |x| ~ O(log p), |y| ~ O(log p) = O(|x|)

Massacci, Ngo - Complexity, Crypto, and FinTech ► 2324/09/20
18

THIS IS X
THIS IS Y

Discrete Logaritm Modulo a prime (IV)

• Discrete Log (without knowing g)
– Given a prime p, a generator g and a number n < p

– Find g, k s.t gk mod p = n

• How is RDLOG defined
– RDLOG = {<(p,n),(g,k)>} | gk = n (mod p)

AND p is prime

AND g is a generator of Zp }

• Which are the dimensions of RDLOG?
– |x| ~ O(log p), |y| ~ O(log p) = O(|x|)

Massacci, Ngo - Complexity, Crypto, and FinTech ► 2424/09/20
18

THIS IS X
THIS IS Y

Undergraduate programme in Computer
sciences

13

Graph Reachability

• Examples of Graph reachability Problems
– Does a web site have dangling links?
– Can a distributed system enter a deadlock state?
– Can an embedded system controller reach an unwanted

state?
• Explicit Representation

– R={<v0,<V,E>, Vr> | <V,E> is a graph, v0Vr  V s.t Vr is
the set of nodes reachable from v0}

– |x| = |<v0,<V,E>>| = O(n2)
– |y| = |Vr| ≤ |V| = O(n)

• Is this polynomially bounded? Yes
• How to find it? How to check if solution is correct?

Massacci, Ngo - Complexity, Crypto, and FinTech ► 2524/09/20
18

PF (Polynomial-time Find)

• PF: class of efficiently solvable search problems
• R ∈ PF iff

– R is polynomially bounded (Def 2.1) and
– there is a algorithm that given x efficiently finds y s.t. (x, y) ∈

R (or asserts no such y exists).
• Def. 2.2 (efficiently solvable search problems):

Search problem R ⊆ {0,1}*×{0,1}* is efficiently
solvable iff
– R is a polynomially bounded relation and
– there exists a polynomial time algorithm A s.t.
– for every x, A(X)∈ R(x) if R(x) = {y | (x,y) ∈ R } is not empty
– A(x)= ⊥ If R(x)=∅ (x has no solution).

Massacci, Ngo - Complexity, Crypto, and FinTech ► 2624/09/20
18

Undergraduate programme in Computer
sciences

14

Instances vs Classes

Massacci, Ngo - Complexity, Crypto, and FinTech ► 2724/09/20
18

Graph Reachability - Algorithm

• The transitive closure is the graph where all nodes
reachable from another node also have a direct
edge among this latter node

– Repeat while new edge added
– For all <u,v>E
– For all <v,w>E
– If <u,w>E then E  E  {<u,w>}
– Vr { w | <v0,w>E}
– Easy upper bound is O(n5) – can be improved to O(n4)

Massacci, Ngo - Complexity, Crypto, and FinTech ► 2824/09/20
18

ADD THIS
EDGE

Undergraduate programme in Computer
sciences

15

Massacci, Ngo - Complexity, Crypto, and FinTech ► 2924/09/20
18

Transitive Closure of a Graph

• The set Vr is expensive to verify
– Essentially we need to re-run the algorithm

• The transitive closure itself could be a y
– Easy to verify (run loop from previous slide once, reject

if transitive edge not among edges)

– But larger size
n nodes
in a circle

|x|= n nodes +
n edges

|y|: all possible n2 connections
|y| < O(|x|2)

Massacci, Ngo - Complexity, Crypto, and FinTech ► 3024/09/20
18

Problems in PF

• Find Eulerian Path in a Graph
– Input: Graph <V,E,s,t> where E ⊆ V×V and

• s∈ V – source vertex, t ∈ V – target vertex
– Output: sequence <e1,…,en> ∈ E* s.t.

• n=|E|
• i=1

n {ei} = E
• ei=<u,v> and ei+1 =<v,w> for all i=1…n for some u,v,w
• e1=<s,v> and en =<u,t> for some v, u

• Find winning strategy in 2-player game (explicit moves)
– Input: Game <P1, P2, s,W0, M> where

• s ∈ P1 – the initial position of Player 1
• W0 ⊆ P1 P2 – the winning positions of Player 1
• M ⊆ P1×P2 P2×P1 – the possible moves

– Output: a winning strategy for Player 1
– (Question: How do we represent the output efficiently?)

Only n
All n

e1, …, en is a path

Undergraduate programme in Computer
sciences

16

Massacci, Ngo - Complexity, Crypto, and FinTech ► 3124/09/20
18

Representation of Problems in PF

P1

a

P2

i

ii

W0

P1 places
P1 wins

P2 places
P1 wins

P1 P2

a i

a ix

P1’s turn

P2 P1

i e

ii …

P2’s turn

Moves<P1,P2,s, W0,M>

When P1 moves
And it is in a
Then P2 ends in b
(one possible move)

O(P1)
O(P2) O(P1+P2)

d

e

O(P1*P2)

The states in which P2 will leave P1

Massacci, Ngo - Complexity, Crypto, and FinTech ► 3224/09/20
18

• Naïve representation of strategy so that P1 always wins

a

b c d

a e

|P1|+|P2|

|P2|

|P1|

P1

|x| ≥ O(|P1|*|P2|)|y|  O(max(|P1|,|P2|))
|P1|+|P2|

How to represent a strategy?

P1 wins

Should be +, not * (why?)

Undergraduate programme in Computer
sciences

17

Massacci, Ngo - Complexity, Crypto, and FinTech ► 3324/09/20
18

More efficient Strategy: only store the best move

Indexed by P1 states

Only store the best P1 move that
responds to the P2 move that
bring P1 in that state

+ P1 initial move O(1)

O(|P1|+|P2|)

size of x

Moves

vs O(P1)

size of y

O(P1)

How to represent a strategy?

Bottom-up construction

• Idea behind the proof
– If P2 brings me in this state, I should do this

– When this happens is immaterial in this representation

• The algorithm works bottom up:
– Start from P2 positions where P1 wins (0-wins)

– Find P1 moves that bring us to 0-steps wins

– Mark P1 departing states as winning states for P1 (1-wins)

– Find P2 states where every P2 moves goes to 1-wins

– mark those P2 states as winning states (2-wins)

– Etc.

Massacci, Ngo - Complexity, Crypto, and FinTech ► 3424/09/20
18

Undergraduate programme in Computer
sciences

18

Bottom-up construction

• Usually best idea to find polytime solution
– Start from “local” solution expanding to a global solution
– Another example is Dijkstra shortest path

• Algorithm in the general form
– Wins = W0 // sol = 
– while Wins changes
– for each <p1,p2>Moves // your moves
– if p2Wins then WinsWins  {p1}
– // sol  sol{<p1,p2>}
– for each p2 // positions of the adversary
– if (for each <p2,p1> Moves. p1Wins) then
– WinsWins  {p2}
– return sol iff sWins

Massacci, Ngo - Complexity, Crypto, and FinTech ► 3524/09/20
18

Massacci, Ngo - Complexity, Crypto, and FinTech ► 3624/09/20
18

Problem Representation is critical

• Problem Representation makes a difference between
efficiently solvable and NOT efficiently solvable

Problem Explicit Implicit

Winning

Strategy

in 2-player

Game

Positions are integers

Moves as a table of

pairs of positions

Winning Positions as

a list of integers

Positions are binary

Circuit tells if move

between two positions valid

Circuit tells if position is

winning

Finding an

Eulerian

path

Vertices are integers

Edges is a table of

pairs of vertices

Vertices are binary

Circuit tells if two vertices

are connected by an edge

Undergraduate programme in Computer
sciences

19

Checkable Search Problems?

• Informally:
– valid solutions can be efficiently recognized.

• Formally
– Given an instance x of the problem R and a candidate

solution y, efficiently determine whether or not y is a valid
solution for x (i.e. y ∈ R(x) i.e. (x,y)∈ R)

• Important Note
– we decide membership of given pairs of the form (x, y) in a

fixed relation R
– Different from deciding membership of x in the set
– SR = {x : R(x) ≠ ∅}

Massacci, Ngo - Complexity, Crypto, and FinTech ► 3724/09/20
18

PC (Polynomial-time Check)

• PC: class of efficiently checkable search problems
• R ∈ PC if the following two conditions hold:

– Every x that has a solution in R only has short solutions
– There exists an efficient algorithm that given an input x and

a solution y determines whether or not (x, y) ∈ R.
• Def. 2.3 (search prob. with efficiently checkable

sol.) – Goldreich Book
• Search problem R ⊆ {0,1}*×{0,1}* has efficiently

checkable solutions iff
– R is a polynomially bounded relation
– there exists a polynomial time algorithm A s. t.,
– for every x and y, A(x,y) = 1 iff (x,y)∈ R

Massacci, Ngo - Complexity, Crypto, and FinTech ► 3824/09/20
18

Undergraduate programme in Computer
sciences

20

Massacci, Ngo - Complexity, Crypto, and FinTech ► 3924/09/20
18

x yAR

R is in PF
IF for all x,
exists AR working in poly time
outputting some y
(or ⊥ if no solution exists)

x YES/NO
AV

R is in PC
IF for all x, all y
exists AV working in poly time
telling me if y is really a
solution

y

PC vs PF as “black-boxes”

Problems in PC

• Find an Hamiltonian Path in a Graph
– Input: Graph <V,E,s,t> where E ⊆ V×V and

• s∈ V – source vertex, t ∈ V – target vertex
– Output: sequence <v1,…,vn> ∈ V* s.t.

• n=|V| and i=1n {vi} = V and
• <vi,vi+1> ∈ E for all i=1…n-1
• v1=s and vn =t

• Find a Coloring of a Graph with at most k Colors
– Input: Graph <V,E,k> where E⊆ V×V and k – number of

colors
– Output: association [<v1, c1>,…, <vn, cn>] ⊆ V×{0…k-1} s.t.

• n=|V| and i=1n {vi} = V and
• If <vi,vj> ∈ E then ci≠ cj for all i,j

Massacci, Ngo - Complexity, Crypto, and FinTech ► 4024/09/20
18

Undergraduate programme in Computer
sciences

21

Discrete Logaritm Modulo a prime (IV)

• How is RDLOG defined
– {<(p,g,n),k>} | gk = n (mod p) AND p is prime

AND g is a generator of Zp }

• Is RDLOG in PC? Simple algorithm
– x=1

– For i=1 to k

x=x*g;

– If x=n return (0) else return (0);

• Does it work?

Massacci, Ngo - Complexity, Crypto, and FinTech ► 4124/09/20
18

Discrete Logaritm Modulo a prime (IV)

• How is RDLOG defined
– {<(p,g,n),k>} | gk = n (mod p) AND p is prime

AND g is a generator of Zp }

• Is RDLOG in PC? Simple algorithm
– x=1
– For i=1 to k

x=x*g;
– If x=n return (0) else return (0);

• Does it work? NOT really
– takes O(k)=O(p) but input is O(log p)  exponential!
– Actual algorithm uses square and multiply see lecture

Massacci, Ngo - Complexity, Crypto, and FinTech ► 4224/09/20
18

Undergraduate programme in Computer
sciences

22

Massacci, Ngo - Complexity, Crypto, and FinTech ► 4324/09/20
18

E

V |V|

K

log
X

|V|

Y

color

O(n + n2) if K fixed

O(n + n2 + log K) if K variable

O(n)

O(n*log K)

|V|

Graph Coloring – Polynomial Bound

Checking Algorithm for Graph Coloring

O(n2)

• for all <u,v> ∈ E

• if color(u) ≠ color(v)

• OK

• else return (0)

• endfor

• return(1)

Massacci, Ngo - Complexity, Crypto, and FinTech ► 4424/09/20
18

Undergraduate programme in Computer
sciences

23

Checking Algorithm for Graph Coloring

O(n2)

• for all <u,v> ∈ E

• if color(u) ≠ color(v)

• OK

• else return (0)

• endfor

• return (1)

O(n)

• for all u ∈ V

• if color(u) < k

• OK

• else return (0)

• endfor

• return (1)

Massacci, Ngo - Complexity, Crypto, and FinTech ► 4524/09/20
18

Massacci, Ngo - Complexity, Crypto, and FinTech ► 4624/09/20
18

Undergraduate programme in Computer
sciences

24

Discrete Log

Massacci, Ngo - Complexity, Crypto, and FinTech ► 4724/09/20
18

Search Problems - summary

• Poly-bounded relation (i.e. potentially solvable)
– R s.t. ∃poly p ∀x. (x,y) ∈ R → |y| < p(|x|)
– problems that could be potentially solved

• Poly-time FIND PF
– R s.t. Poly-bounded + ∃poly algorithm A s.t.
– A(x) ∈ R(x) OR A(x)=⊥ if R(x)= ∅

– possible to find at least one solution efficiently
• Poly-time CHECK PC

– R s.t. Poly-bounded + ∃poly algorithm A s.t.
– (x,y) in R IFF A(x,y) = 1
– Possible to verify all solutions efficiently

Massacci, Ngo - Complexity, Crypto, and FinTech ► 4824/09/20
18

The solutions for x

Undergraduate programme in Computer
sciences

25

PC vs PF

• Is every search problem in PC also in PF?
– If it is easy to check correctness of a given solution for a

given instance, is it also easy to find a solution to a
given instance?

• If the answer is yes
– whenever solutions to given instances can be efficiently

checked, such solutions can be efficiently found.

• Formally what if PC  PF ?
– If one can efficiently check the correctness of solutions

wrt some (polynomially-bounded) relation R, then the
search problem of R can also be solved efficiently

Massacci, Ngo - Complexity, Crypto, and FinTech ► 4924/09/20
18

Massacci, Ngo - Complexity, Crypto, and FinTech ► 5024/09/20
18

(x2,y2)

(x1,y1)

(x3,y3)

(x4,y4)(x2,y2
+)

(x4,y4
+)

(x4,y4
++)

(x6,y6
+)(x8,y8)

HARD
TO FIND

EASY
TO FIND

EASY TO
CHECK

(x3,y3
+)

HARD
TO
CHECK

Exercise in class: draw PF vs PC relations
(Colors problems belonging to same class)

(x6,y6)(x8,y8
+)

(x9,y9)

(x7,y7)

(x9,y9
+)

(x7,y7
+)

(x10,y10)

Undergraduate programme in Computer
sciences

26

Massacci, Ngo - Complexity, Crypto, and FinTech ► 5124/09/20
18

Example of problem in PC\PF

• Real Zero of a polynomial of degree 5
• R={ (ax5+bx4+cx3+dx2+ex+f, ρ) |

a,b,c,d,e,f ∈ ℝ AND ρ ∈ ℝ

s.t. aρ5+bρ4+cρ3+dρ2+eρ+f=0 }
• Frequency assignments
• Travelling salesman
• Fault detection in circuits
• Real Zero of a polynomial of degree 2
• R={ (ax2+bx+c, ρ) | a,b,c ∈ ℝ AND ρ ∈ ℝ

s.t. aρ2+bρ+c=0 }

LIKELY IN PC\PF

IN PC and PF

PC ⊆ PF ? continued

• If PC ⊆PF
– all reasonable search problems (all problems in PC) easy to

solve.
– Contradict the intuition that some reasonable search

problems hard to solve.
• If PC\PF≠∅:

– exist search problems (in PC) hard to solve.
– Conform to intuition that some reasonable problems easy to

solve whereas others hard to solve.
• Confirm intuitive gap between solving and

checking
– (sometimes “solving” a lot harder than “checking”).

Massacci, Ngo - Complexity, Crypto, and FinTech ► 5224/09/20
18

Undergraduate programme in Computer
sciences

27

Massacci, Ngo - Complexity, Crypto, and FinTech ► 5324/09/20
18

Assessment Exercise

• From discussion seems likely that PC⊈PF
•What about PF ⊆ PC?
• What if the inclusion is true?

– Can we say something on how to transform a problem easy to
find into a problem easy to check?

•What if the inclusion is false?
– Can we say something on the problems in PF\PC?

• Discuss the issue

Massacci, Ngo - Complexity, Crypto, and FinTech ► 5424/09/20
18

(x2,y2)

(x1,y1)

(x3,y3)

(x4,y4)(x2,y2
+)

(x4,y4
+)

(x4,y4
++)

(x6,y6
+)(x8,y8)

HARD
TO FIND

EASY
TO FIND

EASY TO
CHECK

(x3,y3
+)

HARD
TO
CHECK

If PF ⊆ PC which points are impossible?
If PC ⊆ PF which points are impossible?

(x6,y6)(x8,y8
+)

(x9,y9)

(x7,y7)

(x9,y9
+)

(x7,y7
+)

(x10,y10
+)

(x10,y10)

(x10,y10
++)

Undergraduate programme in Computer
sciences

28

Detour: Quantum Computing

• Quantum Computing will solve all problems well, sorry about that…
• More Classes

– PSPACE = Problem solvable using only polynomial space
– #P = Problem in which the output is the number of solutions
– PC = problems solvable in poly time with oracle access to a solver for problems in C
– BQP = Problem solvable in Bounded Error Quantum Poly Time

• Error at most 1/3

• What we know for sure
– BQP ⊆ P#P ⊆ PSPACE
– IF we don’t know the problem structure THEN Quantum only shorten time from

checking all N possible solutions to √N
• So this is too little to give any exponential speed-up in N=2n for input size n

– Quantum Algorithms so far only solved problem in NP not known to be NP-complete
• Most likely

– BQP does not include NP-complete
– The source of the problem is measurement

• Photons can interact in all crazy ways and therefore among all possible interactions there could be
an answer to our problems BUT we can’t observe most of those interactions

Massacci, Ngo - Complexity, Crypto, and FinTech ► 5524/09/20
18

Example: Quantum seems super powerful…

Send identical photons to n x n
beam splitter Computational Equivalent

• Probability that a photon exit in
output j given input in Is
proportional to the Permanent
of the interaction matrix A

• Perm(A) = Σσ∈SnΠi=1
n Aiσ(i)

– Exactly as the good old
determinant except with don’t have
the ±1 in front

• Perm ∈ #P but NP ⊆ #P
– So it is a super hard problem…

• IF nature solves automatically
such a hard problem THEN Just
build a quantum device…

Massacci, Ngo - Complexity, Crypto, and FinTech ► 5624/09/20
18

Undergraduate programme in Computer
sciences

29

Example – Harsh Reality

Send identical photons to n x n
beam splitter Computational Equivalent

• The problem
– Probability that a photon exit in output j

given input in Is proportional to the
Permanent of the interaction matrix A

– Perm ∈ #P  super hard problem
• IF nature solves automatically such a

hard problem …
• Except that it doesn’t…

– Nature does NOT give in output the
probability, it only gives us the photons,
distributed with this probability

• We cannot “measure” the
probability, we can only simulate it
with exponentially many trials

– Send photons and measure where they
end out of the box

– Estimate prob by running (exponentially)
many trials (to limit error)

Massacci, Ngo - Complexity, Crypto, and FinTech ► 5724/09/20
18

References

• Oded Goldreich.
– Computational Complexity:A Conceptual Perspective.
– Cambridge University Press, 2008.
– Electronic edition once available on the web.
– Chapter:1.2

• Sanjeev Arora and Boaz Barak.
– Computational Complexity: A Modern Approach.
– MIT Press, 2008.
– To appear. Available on the web.
– Chapter:1.2, 1.3, 1.4

Massacci, Ngo - Complexity, Crypto, and FinTech ► 5824/09/20
18

