
UNIVERSITÀ
DI TRENTO

Carlos E. Budde

carlosesteban.budde@unitn.it

Security group @ Dipartimento di Ingegneria e Scienza dell'Informazione

Smartitude — 23.10.2023

Formal and smart contracts—or maybe not

Not a presentation of results but of terrible problems opportunities

https://www.unitn.it/en
https://www.disi.unitn.it/
http://orcid.org/0000-0001-8807-1548
mailto:carlosesteban.budde@unitn.it

UNIVERSITY OF TRENTO

Blockchain… what? which? why?

Carlos E. Budde4/83

UNIVERSITY OF TRENTO

Blockchain… what? which? why?

Carlos E. Budde7/83

Ethereum Total Value Locked

UNIVERSITY OF TRENTO

Smart contracts… what? which? why?

Carlos E. Budde11/83

Ethereum’s Blockchain Smart Contracts (BSC) in Solidity

https://ethereum.org/en/developers/docs/programming-languages/

https://etherscan.io/contractsVerified/

https://ethereum.org/en/developers/docs/programming-languages/
https://etherscan.io/contractsVerified/
https://ethereum.org/en/developers/docs/programming-languages/
https://etherscan.io/contractsVerified/

UNIVERSITY OF TRENTO

execution of (Solidity) BSC

 in Ethereum

Common vulnerabilities

Security vulnerabilities in BSC written in Solidity

Carlos E. Budde14/83

UNIVERSITY OF TRENTO

Common vulnerabilities

Security vulnerabilities in BSC written in Solidity

Carlos E. Budde

https://dasp.co/ https://github.com/crytic/not-so-smart-contracts

● Bad randomness
● Denial of service
● Forced Ether reception
● HoneyPots
● Incorrect interface
● Integer overflow
● Race condition
● Reentrancy
● Unchecked external call
● Unprotected function
● Variable shadowing
● Wrong constructor name

● Reentrancy
● Access Control
● Arithmetic
● Unchecked external call
● Denial of Service
● Bad Randomness
● Front Running
● Time Manipulation
● Short Addresses

15/83

https://dasp.co/
https://github.com/crytic/not-so-smart-contracts#vulnerabilities
https://dasp.co/
https://github.com/crytic/not-so-smart-contracts#vulnerabilities

UNIVERSITY OF TRENTO

Example 1

Unchecked external call

Carlos E. Budde

Certain Solidity operations known as

“external calls”, require the developer

to check that the operation

succeeded—in contrast to operations

which throw an exception on failure.

If an external call fails, the contract

will continue execution “as if the call

succeeded.”

24/83

UNIVERSITY OF TRENTO

Example 1

Unchecked external call

Carlos E. Budde

Certain Solidity operations known as

“external calls”, require the developer

to check that the operation

succeeded—in contrast to operations

which throw an exception on failure.

If an external call fails, the contract

will continue execution “as if the call

succeeded.”

// The claim price payment goes to the current monarch as compensation

// (with a commission held back for the wizard). We let the wizard's

// payments accumulate to avoid wasting gas sending small fees.

uint wizardCommission = (valuePaid * wizardCommissionFractionNum)

/ wizardCommissionFractionDen;

uint compensation = valuePaid - wizardCommission;

if (currentMonarch.etherAddress != wizardAddress) {

currentMonarch.etherAddress.send(compensation);

} else {

// When the throne is vacant, the fee accumulates for the wizard.

}

 King of the Ether

if gas low…

26/83

https://github.com/kieranelby/KingOfTheEtherThrone/blob/v0.4.0/contracts/KingOfTheEtherThrone.sol
https://www.kingoftheether.com/postmortem.html
https://www.kingoftheether.com/postmortem.html
https://www.kingoftheether.com/postmortem.html
https://www.kingoftheether.com/postmortem.html
https://www.kingoftheether.com/postmortem.html

UNIVERSITY OF TRENTO

Example 1’

Unchecked external call

Carlos E. Budde

pragma solidity ^0.4.24; https://etherscan.io/address/0x06faa4d8157ba45baf2da5e7d02384225948d54f#code

/**

 * Easy Investment 25% Contract

 * - GAIN 25% PER 24 HOURS (every 5900 blocks)

 * - NO COMMISSION on your investment (every ether stays on contract's balance)

 * - NO FEES are collected by the owner, in fact, there is no owner at all (just look at the code)

 *

 * How to use:

 * 1. Send any amount of ether to make an investment

 * 2a. Claim your profit by sending 0 ether transaction (every day, every week, i don't care… OR:

 * 2b. Send more ether to reinvest AND get your profit at the same time

 *

 * RECOMMENDED GAS LIMIT: 70000

 * RECOMMENDED GAS PRICE: https://ethgasstation.info/

 *

 * Contract reviewed and approved by pros!

 */

contract EasyInvest25 {

address owner;

function EasyInvest25 () { owner = msg.sender; }

mapping (address => uint256) invested; // records amounts invested

mapping (address => uint256) atBlock; // records blocks at which investments were made

function() external payable { ... } // this function called every time anyone sends a transaction to this contract

}

28/83

https://etherscan.io/address/0x06faa4d8157ba45baf2da5e7d02384225948d54f#code
https://etherscan.io/address/0x06faa4d8157ba45baf2da5e7d02384225948d54f#code
https://etherscan.io/address/0x06faa4d8157ba45baf2da5e7d02384225948d54f#code

UNIVERSITY OF TRENTO

Example 1’

Unchecked external call

Carlos E. Budde

pragma solidity ^0.4.24; https://etherscan.io/address/0x06faa4d8157ba45baf2da5e7d02384225948d54f#code

/**

 * Easy Investment 25% Contract

 * - GAIN 25% PER 24 HOURS (every 5900 blocks)

 * - NO COMMISSION on your investment (every ether stays on contract's balance)

 * - NO FEES are collected by the owner, in fact, there is no owner at all (just look at the code)

 *

 * How to use:

 * 1. Send any amount of ether to make an investment

 * 2a. Claim your profit by sending 0 ether transaction (every day, every week, i don't care… OR:

 * 2b. Send more ether to reinvest AND get your profit at the same time

 *

 * RECOMMENDED GAS LIMIT: 70000

 * RECOMMENDED GAS PRICE: https://ethgasstation.info/

 *

 * Contract reviewed and approved by pros!

 */

contract EasyInvest25 {

address owner;

function EasyInvest25 () { owner = msg.sender; }

mapping (address => uint256) invested; // records amounts invested

mapping (address => uint256) atBlock; // records blocks at which investments were made

function() external payable { ... } // this function called every time anyone sends a transaction to this contract

}

// this function called every time anyone sends a transaction to this contract

function() external payable {

// if sender (aka YOU) is invested more than 0 ether

if (invested[msg.sender] != 0) {

// calculate profit amount as such:

address kashout = msg.sender;

// amount = (amount invested) * 25% * (blocks since last transaction) / 5900

// 5900 is an average block count per day produced by Ethereum blockchain

uint256 getout = invested[msg.sender]*25/100*(block.number-atBlock[msg.sender])/5900;

// send calculated amount of ether directly to sender (aka YOU)

kashout.send(getout);

}

// record block number and invested amount (msg.value) of this transaction

atBlock[msg.sender] = block.number;

invested[msg.sender] += msg.value;

}

https://etherscan.io/address/0x06faa4d8157ba45baf2da5e7d02384225948d54f#code

31/83

https://etherscan.io/address/0x06faa4d8157ba45baf2da5e7d02384225948d54f#code
https://etherscan.io/address/0x06faa4d8157ba45baf2da5e7d02384225948d54f#code
https://github.com/kieranelby/KingOfTheEtherThrone/blob/v0.4.0/contracts/KingOfTheEtherThrone.sol
https://etherscan.io/address/0x06faa4d8157ba45baf2da5e7d02384225948d54f#code
https://etherscan.io/address/0x06faa4d8157ba45baf2da5e7d02384225948d54f#code

UNIVERSITY OF TRENTO

Example 2

Denial of Service

Carlos E. Budde

Denial of service is deadly in the

world of Ethereum:

while other types of applications

can eventually recover,

smart contracts can be taken offline

forever by just one of these attacks.

// Caller decides who will be rewarded by next call to function.

// Passing a very large _largestWinner value can make the

// *** next call infeasible *** due to gas limitations in Ethereum.

function selectNextWinners(uint256 _largestWinner) {

for (uint256 i = 0; i < largestWinner, i++) {

// heavy code, such gas, wow

}

largestWinner = _largestWinner;

}

 DASP Top 10

if largestWinner 0…≫

36/83

https://dasp.co/#item-5
https://dasp.co/#item-5
https://dasp.co/#item-5

UNIVERSITY OF TRENTO

Example 2’

Denial of Service

Carlos E. Budde44/83

https://medium.com/chain-cloud-company-blog/parity-multisig-hack-again-b46771eaa838

 All legit execution (perhaps should be “access control”)

 Poor guy even did it accidentally!

https://medium.com/chain-cloud-company-blog/parity-multisig-hack-again-b46771eaa838
https://medium.com/chain-cloud-company-blog/parity-multisig-hack-again-b46771eaa838

UNIVERSITY OF TRENTO

Example 2’

Denial of Service

Carlos E. Budde45/83

https://medium.com/chain-cloud-company-blog/parity-multisig-hack-again-b46771eaa838

 All legit execution (perhaps should be “access control”)

 Poor guy even did it accidentally!

https://medium.com/chain-cloud-company-blog/parity-multisig-hack-again-b46771eaa838
https://medium.com/chain-cloud-company-blog/parity-multisig-hack-again-b46771eaa838

Is all lost?

UNIVERSITY OF TRENTO

inSecurity in Solidity

State-of-the-art in security for BSC

Carlos E. Budde52/83

● Symbolic execution

● Formal methods

● Fuzz testing

● Deep learning (ML)

Static / dynamic code analysis:

● Build Control Flow Graph (CFG)

● Variables inputs as symbolic expressions in CFG

● Symbolic path has condition over those expressions

● Feed full thing to SMT solver, e.g. Z3

● Profit $$ function selectNextWinners(uint256 _largestWinner) {

for (uint256 i = 0; i < largestWinner, i++) {

// heavy code, such gas, wow

}

largestWinner = _largestWinner;

}
// if sender (YOU!) is invested more than 0 ether

if (invested[msg.sender] != 0) {

address kashout = msg.sender; // calculate profit amount as such:

uint256 getout = invested[msg.sender]*25/100*(block.number-atBlock[msg.sender])/5900;

kashout.send(getout); // send calculated amount of ether directly to sender (YOU!)

}

https://github.com/kieranelby/KingOfTheEtherThrone/blob/v0.4.0/contracts/KingOfTheEtherThrone.sol
https://github.com/kieranelby/KingOfTheEtherThrone/blob/v0.4.0/contracts/KingOfTheEtherThrone.sol

UNIVERSITY OF TRENTO

inSecurity in Solidity’

State-of-the-art in security for BSC

Carlos E. Budde57/83

● Symbolic execution

● Formal methods

● Fuzz testing

● Deep learning (ML)

Theorem proving & model checking (mainly)

● Create specification/model of desired behaviour

● Create model available implementation

● Prove/check whether current implementation

“refines”/“simulates” the specification

● Some flavours:

○ Formal code semantics (denotational, small step, …)

○ Abstract interpretation e.g. via function decorations

○ EVM bytecode to Prolog (!)

○ Etc.

Correctness

mathematically

guaranteed!

Pretty hard
(if not impossible)
to automate

https://en.wikipedia.org/wiki/Tony_Hoare

UNIVERSITY OF TRENTO

inSecurity in Solidity’’

State-of-the-art in security for BSC

Carlos E. Budde58/83

● Symbolic execution

● Formal methods

● Fuzz testing

● Deep learning (ML)

Generate invalid input and monitor execution

UNIVERSITY OF TRENTO

inSecurity in Solidity’’’

State-of-the-art in security for BSC

Carlos E. Budde61/83

● Symbolic execution

● Formal methods

● Fuzz testing

● Deep learning (ML)

Usual arsenal of black-box methods, now with BSC

● Supervised-learn bytecode of buggy contracts

● Detect fishy patterns in source code

● …

Write an exploit for this

contract, that transfers

ETH to address 0x863DF6BFa4…

UNIVERSITY OF TRENTO

Security-enhancing tools

What about implementing those approaches?

Carlos E. Budde63/83

* Durieux et al.: "Empirical Review of Automated Analysis Tools on 47,587 Ethereum Smart Contracts" (ICSE 2020)

https://ieeexplore.ieee.org/document/9284023
https://ieeexplore.ieee.org/document/9284023

Has all been done?

UNIVERSITY OF TRENTO

Vulnerabilities in Solidity BSC

Collect (and classify) “true-positive” vulnerabilities

Carlos E. Budde67/83

* Durieux et al.: "Empirical Review of Automated Analysis Tools on 47,587 Ethereum Smart Contracts" (ICSE 2020)

https://ieeexplore.ieee.org/document/9284023
https://ieeexplore.ieee.org/document/9284023

UNIVERSITY OF TRENTO

Vulnerabilities in Solidity BSC

Collect (and classify) “true-positive” vulnerabilities

Carlos E. Budde69/83

* Durieux et al.: "Empirical Review of Automated Analysis Tools on 47,587 Ethereum Smart Contracts" (ICSE 2020)

// if sender (YOU!) is invested more than 0 ether

if (invested[msg.sender] != 0) {

address kashout = msg.sender; // calculate profit amount as such:

uint256 getout = invested[msg.sender]*25/100*(block.number-atBlock[msg.sender])/5900;

kashout.send(getout); // send calculated amount of ether directly to sender (YOU!)

}

False positive

https://ieeexplore.ieee.org/document/9284023
https://github.com/kieranelby/KingOfTheEtherThrone/blob/v0.4.0/contracts/KingOfTheEtherThrone.sol
https://ieeexplore.ieee.org/document/9284023

UNIVERSITY OF TRENTO

Vulnerabilities in Solidity BSC’

Collect (and classify) “true-positive” vulnerabilities

Carlos E. Budde74/83

* Durieux et al.: "Empirical Review of Automated Analysis Tools on 47,587 Ethereum Smart Contracts" (ICSE 2020)

 “Denial of service is deadly in the world of Ethereum”

 Go ahead, shoot yourself in the foot

https://ieeexplore.ieee.org/document/9284023
https://ieeexplore.ieee.org/document/9284023

Carlos E. BuddeUNIVERSITY OF TRENTO

Vulnerabilities in Solidity BSC’’

Vulnerability introduction-discovery correlations

Time since lib. release

Pr
ob
ab
ili
ty
 o
f C
VE
 p
ub
lic
.

1M 2M 3M 4M ...

77/83

Relies on quantitative data like CVSS of CVEs

Carlos E. BuddeUNIVERSITY OF TRENTO

Security in BSC

Do smart contracts really need Turing completeness?

82/83

function selectNextWinners(uint256 _largestWinner) {

for (uint256 i = 0; i < largestWinner, i++) {

// heavy code, such gas, wow

}

largestWinner = _largestWinner;

}

do {

break(havoc);

} while (still_works);

//! @requires { @GAS_LIMIT > 2100*_largestWinner; }

function selectNextWinners(uint256 _largestWinner) {

//! @if (@GAS_LEFT < 2100) { throw(); }

for (uint256 i = 0; i < largestWinner, i++) {

// heavy code, such gas, wow

}

largestWinner = _largestWinner;

}

But now they have already tasted blood…

Code annotations,

some could be

automated from

meta-parameters

https://github.com/kieranelby/KingOfTheEtherThrone/blob/v0.4.0/contracts/KingOfTheEtherThrone.sol
https://github.com/kieranelby/KingOfTheEtherThrone/blob/v0.4.0/contracts/KingOfTheEtherThrone.sol

UNIVERSITÀ
DI TRENTO

carlosesteban.budde@unitn.it

Carlos E. Budde

Security group @ DISI

Formal and smart contracts—or maybe not

Not a presentation of results but of terrible problems opportunities

Smartitude

https://www.unitn.it/en
https://www.disi.unitn.it/
mailto:carlosesteban.budde@unitn.it
http://orcid.org/0000-0001-8807-1548

