
FuturesMEX: Secure, Distributed
Futures Market Exchange

Fabio Massacci∗, Chan Nam Ngo∗, Jing Nie†, Daniele Venturi‡ and Julian Williams§
∗University of Trento, IT †University of International Business and Economics Beijing, CN

‡University of Rome “La Sapienza”, IT,§University of Durham, UK

Abstract—In a Futures-Exchange, such as the Chicago Mer-
cantile Exchange, traders buy and sell contractual promises
(futures) to acquire or deliver, at some future pre-specified date,
assets ranging from wheat to crude oil and from bacon to cash
in a desired currency. The interactions between economic and
security properties and the exchange’s essentially non-monotonic
security behavior; a valid trader’s valid action can invalidate
other traders’ previously valid positions, are a challenge for
security research.

We show the security properties that guarantee an Exchange’s
economic viability (availability of trading information, liquidity,
confidentiality of positions, absence of price discrimination, risk-
management) and an attack when traders’ anonymity is broken.

We describe all key operations for a secure, fully distributed
Futures-Exchange, hereafter referred to as simply the ‘Exchange’.
Our distributed, asynchronous protocol simulates the centralized
functionality under the assumptions of anonymity of the physical
layer and availability of a distributed ledger. We consider se-
curity with abort (in absence of honest majority) and extend
it to penalties. Our proof of concept implementation and its
optimization (based on zk-SNARKs and SPDZ) demonstrate that
the computation of actual trading days (along Thomson-Reuters
Tick History DB) is feasible for low-frequency markets; however,
more research is needed for high-frequency ones.

I. INTRODUCTION

A futures contract is a standardized agreements between
two parties to buy or sell an underlying asset, at a price
agreed upon today with the settlement occurring at some
future date [56]. They are “promises” to buy or sell, and
these “promises” can themselves be traded. Such trading is
conducted in a double auction market operated by a central-
ized clearing house called Futures Exchange [1], such as the
Chicago Mercantile Exchange (CME). 1 Traders can ‘quote’ a
future by specifying a price and notional volume of assets at
which they will buy or sell (a limit order), or initiate a trade by
placing a market order for a “promise” of a quantity (purchase
or sale) at the best price from the standing quotes.

General financial intermediation as embodied by a Fu-
tures Exchange is still centralized and more expensive than
traditional payment networks which have been successfully
challenged by Bitcoin [48]. ZeroCash [7] amongst others.

As opposed to simple decentralized price discovery [20],
making a full trading exchange distributed requires the de-

FuturesMEX technologies are the object of the following patent applica-
tions: US62/625,428 and PG448130GB.

1On the CME, futures contracts range from bushels of corn to Euro/US$
exchange rates. Recently, CBOE and CME launched Bitcoin futures markets.
These are ‘cash-futures’, that is as they are settled in cash. Eurodollars futures
are the largest world market by notional volume: in quadrillions of dollars/year.
See https://en.wikipedia.org/wiki/List of futures exchanges.

signed to solve several security challenges, besides the typical
security issues of distributed payments which can be solved
by leveraging (and indeed we do so) on ZeroCash [7]: zero-
knowledge succinct non-interactive arguments of knowledge,
i.e. zk-SNARKs [10].

The first challenge is the interplay between security and
economic viability [43]. Whereas integrity is obviously needed
for payments (see the Ethereum DAO mishaps [21]), confiden-
tiality seemed less critical for exchanges [20]; one can trace all
transactions to a Bitcoin’s ID by using public information in
the blockchain, yet this hardly stopped Bitcoin from thriving
[7, p. 459]. Here, disclosing a trader’s account allows attacks
based on price discrimination and would inevitably lead to a
market collapse (we illustrate this effect in §III).

Another challenge w.r.t. other crypto applications such
as auctions (e.g., [54]) is the simultaneous need to i) make
publicly available all offers by all parties, ii) withhold the
information on who actually made the quote and iii) trace
the honest consequences of an anonymous public action to the
responsible actor. The prototypical example is posting a public,
anonymous buy order while personally accruing the revenues
from the sale (without even the seller knowing the actual buyer
and vice-versa). The Exchange must also guarantee that iv)
actors do not offer beyond their means, which is an issue
related to double spending [4], double voting [12], or ground-
less reputation rating [62]. E-voting provides traceability for
one’s own vote, not to the ensemble of agents. Applications
of e-cash and privacy-preserving reputation systems guarantee
anonymity for honest actions and traceability only in case of
malfeasance, not for honest behavior.

Further, e-cash or voting protocols are essentially mono-
tonic in terms of legitimacy of digital assets of honest parties
when other honest parties join: valid security evidence (e.g.
commitments, etc.) accrue over protocol steps performed by
honest parties. Once’s Alice proved she has money (or she
casted a correct vote), the protocol can move on and check
Bob’s assets. Alice’s claims are never invalidated by Bob (if
she stays honest and is not compromised). Monotonicity is
clearly visible in the security proofs for cash fungibility in
ZeroCash [7], or vote’s eligibility in E2E [33]. This allows for
efficient optimization (e.g. [62]) as a multi-party computation
(MPC) with n interacting parties may be replaced by n
independent non-interactive proofs (i.e. zk-SNARK).

In contrast, financial intermediation is not monotonic:
Alice’s asset (e.g. a trader’s inventory) might be proven (cryp-
tographically) valid by Alice and later made (economically)
invalid by the honest Bob who, by just offering to sell assets
and thus changing the market price, can make Alice bankrupt
without any action on her side. Hence, v) security evidence

335

2018 IEEE Symposium on Security and Privacy

© 2018, Fabio Massacci. Under license to IEEE.
DOI 10.1109/SP.2018.00028



by honest parties must be potentially discarded, and vi) the
protocol must account for Alice’s “honest losses” and fix them
because there is no centralized exchange covering them.

Our contribution. We provide the first, secure, distributed
Futures Market Exchange which replicates the functionalities
from the CME Globex specifications manual, including each
of the main quote types (limit and market orders), needed to
build more complex quotes and all standard margin accounting
and marking to market features. Our goals are the following:

1) To put forward a cryptographic ideal functionality for a
distributed futures market, that captures all of the key security
requirements. This is an ideal realization of a distributed
futures market, where the market is run by a trusted third party
which knows the secret inputs of all participating traders, and
lets the market evolve on their behalf. Such a functionality, by
construction, embodies features (i)-(vi) described above.

2) To design a cryptographic protocol securely realizing our
ideal functionality. Our protocol combines multiparty compu-
tation (MPC) and non-interactive zero-knowledge proofs on
committed inputs, only relying on the basic assumptions of
secure broadcast channels between traders and an anonymous
network. These assumptions already appeared in several prior
works, most notably [7]. We replace the local constraints ver-
ification of the MPC with non-interactive proofs for efficient
generation of publicly verifiable transactions and scalability
w.r.t. the number of traders. Full MPC is only performed
for sub-tasks capturing the non-monotonicity and anonymity
requirements of the market. We prove the security of our pro-
tocol with security-with-abort—where we allow an adversary
to abort the computation after receiving its own intermediate
outputs [32]—and extend it so that an aborting adversary is
penalized by forfeiting its hard won stake in the market, the
ultimate discouragement in our setting.

3) To show that our approach is feasible. We do so, by pro-
viding a proof of concept implementation using zk-SNARKs
for the zero-knowledge proofs, and the SPDZ protocol [24]
for securely realizing the required MPC sub-tasks. We further
optimize our protocol in order to yield a 70% efficiency gain.
Our results show that our solution is feasible for low frequency
markets at CME (e.g. trading in Lean Hog commodities): a
trading day can be executed in a day by an Amazon’s EC2
large VM. Further optimizations are needed for high frequency
trading in the largest markets (Eurodollar, Foreign Exchange
and Crude Oil futures), for instance by parallelizing proof gen-
eration as most of them are independent, improvements in the
zk-SNARK implementation; different commitment functions
or batch proofs for good standing (e.g. proving the validity of a
trader’s inventory for a range of prices); or buying a 30M$/year
hardware such as the CME data centre.2

Non-Goals. The focus of our paper is to protect against
operational attacks on integrity, anonymity and confidentiality,
economics and social attacks are, and always will be, possible
similarly to centralized systems (e.g. insider trading or cartels
manipulating the underlying assets) and they are typically dealt
with, ex-post law enforcement [42].

Technical challenges. The main difficulty that we need to
face is the fact that futures markets are fully stateful systems

2See “Lease back datacenter” in the last CME SEC 10-K report (page 58).

where at each round the functionality changes its internal
state, due to a valid move performed by an agent which up-
dates the public information and her own private information.
As mentioned, the global constraint is such that an agent’s
legitimate move can unpredictably make another agent’s state
invalid due to the change in the public information. The
market as a whole must transit to a new state where the
legitimate move is accepted and the invalid state is fixed.
This intrinsic feature (which we feel is best described by
non-monotonicity) limits the ability of protocol designers to
improve on communication complexity by replacing interactive
MPC steps with independent non-interactive proofs.

While the satisfaction of individual constraints could be
solved by a standard “commit-and-prove” approach among
the concerned individuals, this would not work for the global
constraints. The alternative would be to implement the whole
functionality via general-purpose MPC. However, this solution
is unacceptable given the large variance in trading activity:
some traders only make few large orders, others make several
trades every milliseconds [41]. This leads to an efficiency
requirement (which we dub proportional burden), informally
stating that each computation should be mainly a burden
for the trader benefiting from it, which cannot be met by a
naı̈ve MPC implementation. This intuition is confirmed by our
experiments, which show that our approach is superior under
some general conditions that are realized in practice.

Paper organization. In the rest of the paper we introduce
the key aspects of futures markets (§II) and illustrate a price
discrimination attack due to loss of confidentiality (§III).
A formal model of the centralized futures market (§IV) is
followed by the description of the ideal functionality its secure
distributed version (§V). Then we describe the (nonmonotonic)
security state of the functionality (§VII), our crypto building
blocks (§VI), and our protocol (§VIII). We provide a proof
sketch on its security (§IX) and discuss how to go beyond
security-with-abort (§X). Our proof of concept and its perfor-
mance results are presented in §XI and §XII. Finally, we survey
related work (§XIII), and conclude the paper (§XIV).

II. AN INTRODUCTION TO FUTURES MARKETS

To illustrate how markets work, we explain the key trad-
ing mechanisms and discuss some aspects of the market
microstructure of futures contracts [30], [31]. Fundamental
participants in a futures market include traders, exchanges and
regulatory bodies as summarized in Table I.

Traders post buy (bid) or sell (ask) orders for a specific
futures contract in the market. The trading position char-
acterizes a trader as a buyer or a seller: sellers take short
positions by selling an amount of futures contracts; buyers
take long positions by buying futures. Obviously buyers prefer
to purchase contracts at lower prices and sellers prefer to
sell contracts at higher prices. Traders can also cancel orders
immediately after having posted them to adapt to fast changing
markets (a heavily used feature).

The Exchange acts as centralized intermediary between
buyers and sellers and guarantees price discovery, matching
and clearing. It manages risks and guarantees the fairness
of the market (See Table I for a short summary of key
requirements from an economic perspective).

336



TABLE I: Key Compositions and Characteristics of Futures Market

Traders Characteristics:
Possible Positions Buy-side traders holding long positions. Sell-side traders holding short positions.
Possible Actions Submit (Market/Limit Orders) and Cancel (Limit) Orders.
Exchanges Main Functions:
Price discovery and order
matching

Disseminating the real-time market data to market participants; Providing a central limited order book (cf. Fig 1):
an electronic list of all waiting buy and sell quotes organized by price levels and entry time. Matching engines use
algorithms to match buy and sell quotes with a price and time priority principle.

Risk management and clear-
ing of orders

Clearing house is responsible for having a daily/final settlement by the process of “mark-to-market”, so that no pending
promise (to buy or sell) and no debt remains unfulfilled. Traders need to deposit an initial margin and maintain a
minimum funding in the margin account above the maintenance margin; otherwise, they will receive a margin call
for additional funding. Traders failing below the minimum are forced to liquidate their open positions and netted out.

Market fairness and absence
of price discriminations

For fairness, traders are anonymous as exchanges hold all info about them and never reveal it to others. A trader
only see the details of her own orders, and not even the ID of the counter party of an order matching her own order
executed through the exchange, as this would allow for price discrimination.

Major Players
Chicago Mercantile Exch. The largest derivatives market with 3.53 billion of contracts traded in 2015 [26].
Eurex Exchange (Eurex) The largest European derivatives market with 2.27 billion of contracts traded in 2015 [26].
Regulatory Bodies Futures markets are regulated by independent government agencies to protect market participants and prevent fraud

and manipulation activities, such as the CFTC [57] and the SEC [58].

Sell
Limit
Orders

Price = 6.2, Volume = 100
Sell level 3

Price = 5.5, Volume = 120
Sell level 2

Price = 5, Volume = 260
Sell level 1

Mid price = 3.5

Buy
Limit
Orders

Price = 2, Volume = 320
Buy level 1

Price = 1.5, Volume = 170
Buy level 2

Price = 0.5, Volume = 90
Buy level 3

An order book with limit orders. The dashed line is the average mid-
price which is calculated by the CME as the (unweighted) average of
all price levels. Traders’ holdings are evaluated against the mid-price.

Fig. 1: Order Book

TABLE II: Samples of Market Activity

The table shows the maximum number of active traders (#T), number
of posted orders (#PO), and matching orders (#MO) for some futures
contracts (Eurodollar being world’s largest). Cancelled orders’ number
is close to that of posted orders. Data is obtained from the CME tapes
via the Thomson Reuters Tick History database.

Contract Lean Hog LHZ7 Eurodollar GEH0
Trading Day #T #PO #MO #T #PO #MO
Low 15 1067 46 14 23469 85
Normal 17 3580 146 199 267089 7907
High 33 6709 536 520 376075 8402

The first important functionality is to made available to
all traders an aggregated list of all waiting buy and sell
(anonymized) orders: the central limited order book. It includes
the volume of contracts being bid or offered at each price point.
It is illustrated in Figure 1.

Buy and sell orders at the same prices are matched by the
Exchange until the required volume of contracts is reached.
Matched orders will go through a clearing and settlement
process to complete a transaction [52]. The exchange usually
operates its own clearing house which is responsible for having
a daily settlement for each futures contract by the process of
“mark-to-market”, which is valuing the assets covered in future
contracts at the end of each trading day. Then profit and loss
are settled between long positions and short positions.

Table II illustrates the variability of the markets by com-
paring some days for the Eurodollar, the largest market in the
world, together with Lean Hog, a less frequently traded futures.

Informal Properties. From a security perspective an ex-
change is clearly an instance of a multi-party reactive security
functionality [17]: every agent must satisfy individual con-
straints (monotonic) and the system as a whole must satisfy
global constraint (possibly non-monotonic). The economic
requirements in Table I can be directly transformed into the
security requirements below.

Availability of Order Book with Confidentiality of Trader
Inventory. Acting as counter party for each trader, the exchange
must hold all trading information including prices, volumes,
margins, and traders ownership of orders, etc. It has to protect
a trader’s own inventory without leaking it to other traders.

Market Integrity and Loss Avoidance. The exchange im-
plements trading (execute matching orders), and guarantee
final settlements (traders’ margin meet posted orders) after
each event to ensure the integrity of the marketplace. More
constraints such as limiting a trader’s largest position are added
in practice (we omit them due to lack of space).

Trader’s Anonymity. The exchange must prevent the linkage
of orders by the same trader. This is done by managing an
anonymous central limit order book where only bid and ask
prices are publicly available. In this way, traders will not be
able to identify and forecast others’ trading strategies.

Trader’s Precedence Traceability. The exchange must al-
low the linking of limit orders to the individual traders so that
matching orders can be accrued to the traders who made them
in the exact order in which they where posted.

In traditional applications of MPC, such as auctions and
e-voting, there is no difference between the parties: everybody
submits one bid or casts one vote. This is not true for general
financial intermediation: retail and institutional investors are
71% of traders in the TSX market, but only make 18% of the
orders [41]. Traders responsible for the bulk of the over 300K
orders per day were “algorithmic traders” who, in 99% of the
cases, only submitted limit orders (i.e., never to be matched in
an actual trade). Such a difference must be accounted for by
any protocol, an efficiency constraint that we state below.

Proportional Burden: Each computation should be mainly a
burden for the trader benefiting from it (e.g. posting an order or

337



TABLE III: Forcing Alice out of the market

Alice accumulates 90 selling contracts currently at the price of 10
and have a cash margin of 1400. As the price fluctuates by δP her
inventory liquidation price is XAlice = −90× (10+ δP ), and her net
position is NAlice = 1400+XAlice = 500−90× δP . When δP = 0,
she holds a small margin (at $500). When δP = 6, her net position
drops to -$40 and she has to be netted out from the market.

Price = $10
Trader Cash Contracts Position
Alice 1400 -90 500
Bob 1200 30 1500
Carol 1200 30 1500
Eve 1200 30 1500

Price = $16
Position

-40
1680
1680
1680

proving one’s solvency). Other traders should join the protocol
only to avoid risks (of failed solvency).

III. LOSS OF ANONYMITY AND PRICE DISCRIMINATION

If confidentiality and anonymity fail, some traders can act
strategically by posting orders that they do not intend to honor
so that other traders will be maliciously forced out of the
market(see the Risk Management entry from Table I in §II).
This attack has been first reported by [43].

Assume Alice, Bob, Carol, and Eve are in a market. Alice
accumulates a large short position of 90 contracts selling at
$10 each, each other trader buys 30 contracts from Alice at
this price. In English, her inventory holds 90 promises to sell.
To estimate a trader’s exposure, the Exchange assumes that all
contracts are bought and sold instantaneously at the current
mid price of $10 (See Figure 1). So, to fulfill her promise to
sell 90 contracts Alice would have to buy them first from the
current mid price and reduce her cash availability to 1400 −
90 · 10 = 500. We have the situation shown in Table III (left).

If Alice could wait, she could post a buy order of $9.50.
If somebody eventually matched her order later in the day she
would obtain a modest profit (50c per contract). If Carol and
Eve know that Alice is a small investor and needs cash, they
can generate an instant profit by changing the liquidity profile
of the market. They can post buy orders at slightly higher
prices, this changes the mid prices and pushes the liquidation
price of Alice’s position higher. Alice could try to sell to those
buy orders, but this pushes the contracts more deeply negative
in a rising market exacerbating her problem of being close
to the margin call. Eventually, the liquidation price is high
enough, e.g. $16, that Alice’s net position is below the margin
call threshold and Alice is cashed out, with a realized payout
to the other traders, i.e. her $500 is given to the other traders.

The other traders can then cancel their orders and the price
could then decrease back to $10 or even lower (when Alice’s
trades would have been profitable), but Alice cannot benefit
from this price as she has already been cashed out. The other
traders have not actually traded anything and still forced out
Alice by adjusting their buy quotes strategically. Eve and Carol
have price discriminated Alice: their pricing strategy could
only work because they knew exactly how much was in Alice’s
pocket and therefore how much was needed to nudge her out.
The opposite problem can be generated from a long position
and the market then being artificially deflated.

IV. FORMAL FUTURES MARKET DEFINITION

Formally a futures market consists of N traders, each trader
identified via an index i ∈ [N ], and a sequence of L available
prices3 (for the limit orders) in ascending order (i.e., p1 <
p� < pL for � ∈ [L]). The market evolves in rounds, where T
is the maximum (constant) number of rounds4. The data stored
(and updated) for the current round t ∈ [T ] is a tuple (O, I).

• The set O is the limit order book, and consists of a
sequence of tuples o′ = (t′, �′, i′, v′), where o′ represents
a limit order posted at round t′ ≤ t by a trader Pi′ for
a desired volume v′ �= 0 of price p�′ . A limit order is a
“sell” order if v′ < 0, and a “buy” order otherwise.

• Ii = (mi, vi) is the inventory of a trader i ∈ [N ] where:

◦ The value vi is the number of contracts held by the
trader (for long positions vi > 0, for short ones vi < 0);

◦ The value mi is the cash available to the trader.

Initially, every trader starts with no contract in the inventory
as well as a non-negative deposit (i.e., ∀i ∈ [N ] : vi = 0,mi ≥
0), and the market is an empty order book (i.e., O = ∅).

To express the constraints that a trader can meet her
obligations and make orders within her means we introduce
some auxiliary functions. The instant net position ηi is the cash
she can get (or must pay) upon liquidating all her contracts:

ηi = mi + cash(vi) (1)

where cash(vi) represents the liquid value of the inventory,
i.e., the amount of cash a trader Pi can get (or must pay)
upon selling (or buying) all volume holding vi at the current
buy (or sell) quotes in the order book.

The function ·̂ represents the estimated value of a trader’s
inventory variables if the market accepted her new order. Aux-
iliary definitions used in the calculation of market conditions
are listed in Table IV (mid price, best sell price, etc.) while
cash(vi) is defined in Table V. For the estimated value of the
inventory when a trader Pi posts an order (t, �, i, v) at price
p� for a volume v in round t, we have:

m̂i = mi − p� · v, v̂i = vi + v, η̂i = m̂i + cash(v̂i) (2)

We can now formalize the properties, which must hold at
every round, corresponding to the security/economic require-
ments informally introduced in §II.
Definition 1 (Market Integrity). The amount of cash available

by all traders is constant (
∑N

i=1 m
′
i =

∑N
i=1 mi) where m′i is

the margin at time t′ ≤ t), the total volume holding is zero

(
∑N

i=1 vi = 0), and the best buy price is less than the best sell
price (1 ≤ lbuy < lsell ≤ L).

Definition 2 (Traders Solvency). All traders have a positive
instant net position (ηi ≥ 0) and can afford the new limit order
at posting time (η̂i ≥ 0).

3 In the CME Globex, trading operations starts with an indicative opening
price (IOP). Other prices are an integer number of upward or downward ticks
from the IOP. A price is always non-zero and each underlying asset of a
futures contract usually has a reasonable upper bound for the price. Hence we
can map possible prices into a finite list of L available prices and refer to a
price only with its index �.

4At CME an open cry starts at 7:20 and ends at 13:59:00, the evolution of
time is accounted for by with the number of rounds.

338



TABLE IV: Market Indicators for the current round t of the Futures Market

Indicator Notation Definition Description
Best sell price index lsell min{�′ | (t′, �′, i′, v′ < 0) ∈ O} Index of the lowest price of all sell orders in the order book
Best buy price index lbuy max{�′ | (t′, �′, i′, v′ > 0) ∈ O Index of the highest price of all buy orders in the order book
Mid price p̄ (plsell + plbuy )/2 The average value of the best buy price plbuy and best sell price plsell
Available volume at price ph Vh

∑
(t′≤t,h,i′,v′)∈O|v′| The sum of volumes over all orders at price ph

Available sell volume up to
ph

V sell
h

∑h
�=lsell

V� Aggregation of all volumes available from the best sell price lsell to the
final maximum acceptable price p� (� ≥ lsell)

Available buy volume down
to ph

V buy
h

∑h
�=lbuy

V� Aggregation of all volumes available from the best buy price lbuy to the
final least acceptable price h (� ≤ lbuy)

TABLE V: Value cash(v) to liquidate an inventory of volume v

Cases Definition Description

v > 0 (long) and V buy
1 ≥ v

∑l+1
h=lbuy

ph · Vh + p� · (v − V buy
l+1) Cash a trader can get upon selling all volume v at the current buy quotes in

the order book, where l is the least index s.t. V buy
l ≥ v.

v > 0 (long) and V buy
1 < v

∑1
h=lbuy

ph · Vh + p1 · (v − V buy
1 ) The order book does not have enough supply on the buy side.

v < 0 (short) and V sell
L ≥ |v| −∑l−1

h=lsell
ph · Vh + pl · (|v| − V sell

l−1) Cost a trader must pay to buy all volume v from the current sell quotes in
the order book, where l is the least index s.t. V sell

l ≥ |v|
v < 0 (short) and V sell

L < |v| −∑L
h=lsell

ph · Vh + pL · (|v| − V sell
L ) The order book does not have enough supply on the sell side.

Definition 3 (Availability of Orders with Anonymity of
Trader). For any order (t, �, i, v) posted at time t, the order
information (t, �, v) must be made public before time t + 1,
whilst information about i is only known to Pi.

Definition 4 (Confidentiality of Trader Inventory). Only Pi

knows the values of Ii = (mi, vi) as well as ηi with the
exception of time T after mark-to-market when vi = 0.

The two previous requirements imply that m̂i and v̂i, as
well as η̂i must also be confidential (otherwise one could re-
cover the inventory by reversing the computation from orders).

Definition 5 (Trader’s Precedence Traceability). Let O be the
current order book, (t, �, i, v) be an order, and t′ be the smallest
round t′ < t such that (t′, �, i′,−v′) ∈ O then the order
book O∗ at time t+1 respects traders precedence given order
(t, �, i, v) and order book O iff

1) if no such t′ exists for O, then O∗=O ∪ {(t, �, i, v)},
2) if |v|<|v′|, then O∗=O∪{(t′, �, i′, v−v′)}\{(t′, �, i′,−v′)}
3) else O∗ respects traders precedence given order

(t, �, i, v − v′) and order book O \ {(t′, �, i′,−v′)}

V. THE IDEAL REACTIVE FUNCTIONALITY

For expository purposes, both in the functionality’s and in
the protocol’s description we allow an adversary to abort the
computation after receiving its own intermediate outputs. This
flavor of security is known as security with aborts [32]. In
Section X we change the protocol to avoid scot-free aborts.

The futures market evolution is captured by an ideal
reactive functionality FCFM where all the traders send their
private initial inventory to a trusted third party (during the so-
called Initialize phase), which lets the market evolve on their
behalf. A typical evolution of the market includes processing
orders (Post/Cancel Order phases), netting out traders with
insufficient funds to maintain their position, we refer to these
traders hereon as “broke” traders (Margin Settlement phase),
and finally offset all positions (Mark to Market phase). A
formal description is in Fig. 2.

Intuitively, the matching process performed during the Post
Order phase (c.f. Fig. 2). takes the new order (t, �, i, v) and
tries to match it with all previous limit orders of opposite side
in the order book that have the same price. In other words,
if the limit order is a buy order it will be matched with a
sell order, and vice versa. The priority to match is given to
the limit order with a smaller round index. When a match is
found, the trade is reconciled, and the available cash, as well
as the volume holding of the traders, is updated accordingly
(i.e., on buy side: increase volume, decrease cash; on sell side:
decrease volume, increase cash). The matching process stops
either when the new order is fulfilled, or there is no past order
that can fill the new one. In the latter case, the remaining
volume is left in the order book as a new limit order.

An important feature of FCFM, is to guarantee payable
losses by each trader (i.e., ηi ≥ 0). Hence, when the last
round is reached, all traders must then offset their position,
so that the data at round T will consist of all zero volumes,
non-negative balances, and an empty order book.

Since the net position might change (due to the updates of
the order book) it is necessary to check the new instant net
position η∗i of each trader Pi after the update. In case of any
negative net position, the last update cannot be committed until
all broke traders Pi (i.e., ηi < 0) are netted out, which is done
in the so-called Margin Settlement phase. (c.f. Fig. 3). This
requires each new broke trader to cancel all pending orders
(becomes canceled), and buy/sell all contracts in the inventory
that the trader is short/long, at whatever price available at
the moment (becomes netted). At the end of the Margin
Settlement phase the order fulfillment is resumed, and the
update will be committed.

For simplicity, after a trader Pi is netted out, the trader
cannot participate in the market in the subsequent rounds. In
the worst-case scenario where: (i) the market cannot supply
the margin settlement of broke traders (because, e.g., they hold
too many contracts comparing to the current available volume
in the order book), or (ii) even the margin settlement cannot
bring a broke trader’s position back to non-negative, the ideal
functionality proceeds directly to Mark to Market.

339



Futures Exchange Ideal Functionality FCFM runs in phases with a set of traders (P1, . . . , PN ) and a list of prices (p1, . . . , pL).

Initialization: Upon (init, Pi,mi) from all traders, accept the input iff mi ≥ 0. Hence, store (mi, vi := 0) as the inventory of Pi.
Finally, initialize t := 0 and O := ∅.

Post/Cancel Order: If t < T , upon receiving (post order, Pi, �, v) (resp. (cancel order, Pi, t
′)) from Pi, let t := t+ 1.

1) Check � ≥ lbuy for v < 0 (� ≤ lsell for v > 0). In case of Cancel Order, retrieve (t′, �′, j, v′) from O and check j = i..
2) Let I∗i be an identical copy of Ii, check η̂i ≥ 0 w.r.t. to I∗i and the order bookO∗ := O∪(t, �, i, v) (resp.O∗ := O\(t′, �′, j, v′)):
3) If any check fails, send (invalid post, t, �, v) (resp. (invalid cancel, t′)) to every trader; else send (post order, t, �, v) (resp.

(cancel order, t′)) to every trader and proceed to Margin Settlement with input I∗i and O∗ (c.f. Fig. 3). ; if “succeed”, let
Ii = I∗i , O := O∗, otherwise proceed to Mark to Market.

4) In case of Post Order, fulfill the order starting from the earliest opposite order of the same price already in the order book,
until the new order is filled or there is no past order to match it with. (c.f. Fig. 3).

Mark To Market: at t = T , offset all positions, i.e. ∀Pi : mi := mi + vi · p̄, and vi := 0.

Fig. 2: The operations of the ideal functionality FCFM for posting, cancelling and marking to market

Margin Settlement is run with a candidate order book O∗ and a candidate inventory I∗ starting with a set of new broke traders B := ∅.

1) Repeat the following steps until η∗i ≥ 0 for all good traders Pi:

a) Compute the new instant net position η∗i of all good traders Pi; if η∗i < 0 let B := B ∪ {Pi}.
b) For each Pi ∈ B, remove all limit orders oi := (t′, l′, i, v′) from both O∗ and O, send (remove, (t′, l′, v′)) to each trader.

2) if B = ∅, return “succeed’; else let O∗ := O and I∗ := I and repeat the following steps for each Pi ∈ B, until B := ∅:

a) Net out Pi by repeatedly running Order Fullfilment with fixed input (t, lsell, i, vi) for short position (or (t, lbuy, i, vi) for long
position), until vi = 0. If the market cannot supply the margin settlement of Pi, i.e, there is no order to match, return “fail”.

b) Let B := B \ {Pi}.

3) Return “succeed”.

Order Fulfillment for oi = (t, l, i, v) starts with t′ = 1, repeat the following for each entry oj = (t′, l, j, v′) ∈ O such that v · v′ < 0:

• Send (match, t′, l, v′) to each trader;
• Compute the matched volume δ := min(|v|, |v′|), then remove δ from oi and oj , i.e. in case v > 0, o∗i := (t, l, i, v− δ) and o∗j :=

(t′, l, j, v′ + δ) (otherwise swap i and j).
• Let O∗ be an identical copy of O, where the orders oi and oj are replaced, respectively, with o∗i and o∗j .
• In case v > 0, update the inventories as follows (in case v < 0, swap i and j in the equations below):

m∗i := mi − plδ v∗i := vi + δ m∗j := mj + plδ v∗j := vj − δ;

• Let I∗ be an identical copy of I where the inventories of Pi and Pj are replaced, respectively, with (m∗i , v
∗
i ) and (m∗j , v

∗
j ).

• Run Margin Settlement with input O∗ and I∗.
• If Margin Settlement returns “fail”, proceed to Mark to Market (Fig.2) otherwise, let O := O∗, I := I∗, and:

if v′ = 0, let O := O \ oj ; if v = 0 , let O = O \ oi
• Define t′ := t′ + 1, and repeat the above until t′ = t or v = 0.

Fig. 3: The operations of the ideal functionality FCFM for margin settlement and order fulfillment

Non-monotonicity. A challenging feature of the futures
market’s ideal functionality is its intrinsic non-monotonic
behaviour, in a sense made precise below.

Remark 1. The properties of private values belonging to a
honest trader Pi executing the ideal functionality of Fig. 2–
3 are non-monotonic in the actions of other honest traders:
Let Pi be a good trader (private value ηi > 0) at round t
with order book O, and further assume that at round t + 1
the order book gets updated to O∗ due to an offer posted by
another good trader Pj �= Pi. The new order book O∗ affects
the value cash(vi) (Table V), which might result in a negative
instant net position ηi (Eq. (1)), thus making Pi a bad trader
at round t+ 1, even if it was inactive during that round.

Security properties. We briefly illustrate why FCFM fulfils
the security requirements of the futures market in §II. The
Availability of Orders with Anonymity of Trader property
is guaranteed by broadcasting only (post order, �, v) upon
receiving a (post order, Pi, �, v) from Pi. The same reason-

ing applies for canceling orders. Confidentiality of Trader
Inventory is guaranteed as FCFM keeps the trader’s inventory
secret, all broadcasts post order, cancel order, invalid post,
invalid cancel, match and remove contains no inventory infor-
mation (mi, vi, ηi m̂i or v̂i). As all the computations of FCFM

respect the conditions in Def. 1 and Def. 2, Market Integrity
and Traders Solvency properties are preserved. The Trader’s
Precedence Traceability property is also maintained due to: (i)
only the owner of an order can match/cancel that order and
(ii) only a good trader can post/cancel in normal phase while
only broke traders can cancel and canceled traders can post
during margin settlement phase. The Proportional Burden is
obviously satisfied because we have a centralized functionality.
We return to its satisfaction on the actual distributed protocol.

VI. ASSUMPTIONS AND CRYPTO BUILDING BLOCKS

We elected as much standard crypto blocks as possible for
both protocol construction and reliability of security proofs.

340



a) Anonymous Communication Network and Secure
Broadcast Channel: Recall that the futures market ideal func-
tionality guarantees full anonymity of the traders. To this
end, we assume an underlying anonymous network that hides
the traders’ identifying information (e.g., their IP address).
This assumption was already used in several prior works,
most notably [7]. We also assume secure broadcast channels
between the traders. Such channels could be implemented by
utilizing a consensus protocol, e.g. PBFT [18].

Initial Bootstrap: As we employ several zero knowledge
functionalities in our protocol, instantiated with zk-SNARK
[10], an initial setup is required for global information such
as proving keys and verifying keys, which can be achieved
securely in practice with MPC as in [9].

b) Commitment Schemes.: We rely on a non-interactive
commitment scheme Com, with domain {0, 1}∗. We typically
write �v� := Com(v; rv) for a commitment to value v using
randomness rv ∈ {0, 1}∗. To open a given commitment �v�,
it suffices to reveal (v, rv), so that a verifier can check that
�v� = Com(v; rv). For the proof of security we need that �v�
statistically hides the committed value v, and after publishing
�v� it is computationally infeasible to open the commitment in
two different ways. We follow [28] for the formal definitions.

We use the following standard NP relations: (i) Rvc,
for validity of commitments; (ii) Roc, for ownership of an

opening; (iii) Rzero− (resp. Rzero+ , R−) for commitments to
non-positive (resp. non-negative, negative) values; (iv) Rec, for
equality of two openings; (v) Rnec, for commitments to values
different from a pre-defined constant.

c) Hybrid Ideal Functionalities.: To implement FCFM

we use hybrid ideal functionalities, with the usual simulation-
based proofs relying on the composition theorem [16].

All our functionalities receive some values/randomnesses
and the corresponding commitments, and must first check
whether the commitment actually corresponds to the claimed
value, returning ⊥ otherwise (as in Rvc). The remaining
features outlined below are specific to our application. They
are similar to range proofs [14], [15].

• The Secure All Positive Check functionality Fpcheck re-
ceives from every trader the net position ηi and guarantees
solvency (i.e.,

∧
i ηi ≥ 0).

• The Secure Sum Comparison functionality Fcompare re-
ceives from every party a pair of old and new binary flags
{fi, f∗i }. It checks whether the total number of flags has
not changed (i.e.,

∑
i fi =

∑
i f
∗
i ).

• Finally, the zero-knowledge functionality FR
zk is parame-

terized by an NP relation R and receive inputs from a
trader Pi in the role of a prover, while all other traders
{Pj}j �=i play the role of verifiers. As usual the prover
sends the statement xi and the corresponding witness
wi to the functionality, while each verifier sends its
own statement xj to be checked. Each verifier gets the
outcome of R(xj , wi) if xi = xj , otherwise it gets ⊥.
For simplicity we omit the zk subscript. MPC will be
identified by subscripts and zk by superscripts.

The NP relations we use are summarized in Table VII.
To describe them, we use some auxiliary values that are not
needed in the ideal functionality FCFM (albeit they might well

TABLE VI: Futures Market Notation

Nota. Description
ρ Root of a Merkle tree
path Authentication path of a token τi in a Merkle tree with root ρ
Obuy Current range choices for long position trader to use in net

position calculation, defined as {((p1, Vmax), (p1, V
buy
1 )), ((p1,

V buy
1 ), (p2, V

buy
2 )) . . . , ((plbuy , V

buy
lbuy

), (0, 0))}
Osell Current range choices for short position trader to use in net posi-

tion calculation, defined as {((0, 0), (plsell , V sell
lsell

)), . . . , ((pL−1,

V sell
L−1), (pL, V

sell
L )), ((pL, V

sell
L ), (pL, Vmax))}

plb Lower bound price used for net position calculation
Vlb Lower bound cumulative volume used for net position calculation
pub Upper bound price used for net position calculation
Vub Lower bound cumulative volume used for net position calculation
δc Incremental value for the pending order counter

TABLE VII: Futures Market Relations

Relation Additional Conditions

Rtoken Token τi is correctly constructed from the inventory values, i.e.
τi = Com(mi||vi||m̂i||v̂i||ci||fbad,i||fdel,i||fout,i; ri)

Rinv The new inventory values mi, vi, m̂i, v̂i, ci, fbad,i, fdel,i, fout,i
are correctly constructed from an old inventory (with token τ ′i ),
i.e. Auth(ρ, pathi, �τ

′
i�) = 1;

τ ′i = Com(mi||vi||m̂i||v̂i||ci||fbad,i||fdel,i||fout,i; r′i)
Ruinv The new inventory values m̂i

∗, v̂i∗, c∗i are correctly updated
from an old inventory (w.r.t. δc, l, v), i.e.
m̂i
∗ = m̂i − δc · pl · v; v̂i

∗ = v̂i + δc · v; c∗i = ci + δc
Rrng The upper and lower bounds of cumulative volumes and prices

plb, Vlb, pub, Vub are correctly selected from the Obuy or Osell,
i.e. Vlb ≤ |v| ≤ Vub and one of the following holds:
v > 0 ∧ ((plb, Vlb), (pub, Vub)) ∈ Obuy

or v < 0 ∧ ((plb, Vlb), (pub, Vub)) ∈ Osell

or v = 0 ∧ (plbVlb) = (pub, Vub) = (0, 0)
Rnet (Estimation) of an instant net position ηi (resp. η̂i) are correctly

computed, i.e. ηi = mi + plb · Vlb + pub · (|vi| − Vlb)
Rmatch The order fulfillment is correctly done, i.e. m∗i = mi − pl · v;

v∗i = vi + v; c∗i = ci + δc
Rflags The transition from the flags (fbad,i, fdel,i, fout,i) to the flags

(f∗bad,i, f
∗
del,i, f

∗
out,i) is consistent with the values (η∗i , v

∗
i , c

∗
i ),

as shown in the diagram in Fig. 4
Rmtm A trader Pi is correctly marked to market, i.e. m∗i = mi+ p̄ ·vi

be present in an actual centralized exchange implementation).
These additional values are defined in §VII and Table VI. Some
of our relations directly test the requirements of Def. 1,2 and
5, whereas other relations are used to validate intermediate
results in our protocol construction, and share similarities with
the NP statement POUR in [7].

VII. SOLUTION OVERVIEW

The first challenging part of the protocol construction is to
identify a suitable form for the state of the reactive security
functionality implementing FCFM that would account for its
non-monotonic behavior in the legitimacy of traders and assets.
A simple (but wrong) solution would be to use just the private
inventory values of the individual traders. Each trader could
prove in ZK that it respect the constraints stated in Def. 1, 2
and 5. Unfortunately, the arrival of new valid orders could
make the constraints of some other trader invalid, i.e. the
protocol should no longer consider her ZK proof valid.

We must also store such a state in a way that after an order

341



is accepted by the market (i.e. the ensemble of agents) it is not
possible to link it to the next order by the same trader. This
cannot just be the union of the individual (unopened) invento-
ries. By looking at the unchanged inventories the traders could
identify the trader who did the order. A global MPC step to
update the entire state would be a solution but it would put an
unnecessary burden on the other traders. A further challenge is
that we must keep a fully ordered list (Matching orders must
be executed according to arrival time).

First, we augment the private state of each trader with
additional information besides the inventory mi and vi. We
memoize the value of the estimation m̂i and v̂i, and a counter
ci to track the number of pending orders. Each time a trader
Pi posts an order (�, v), the memoized values are updated as
m̂i = mi−p�·v, v̂i = vi+v, and ci = ci+δc where δc = 1. For
order cancellations, or complete matches of pending orders,
the reverse computation is performed (δc = −1). The use of
memoized values is a quick calculation to do and to verify
cryptographically. Yet, the foremost reason for such device is
that the values m̂i, v̂i of a trader are needed to prevent the
linking of limit orders during the verification procedure, while
allowing the instantaneous computation of η̂i.

Memoization avoids the use of MPC when addressing the
conflicting requirements of i) providing a public trail of events,
ii) publicly verifying a constraint on a private subset of such
events as well as iii) showing that such private events are all
and only applicable events. To meet (iii) Alice would have
had to show which orders belonged to her to add them to her
estimated net position. Since the full order book is visible (i),
her full trading strategy would then be visible to the other
players. In contrast, if we make sure that an order is private
to trader Bob (ii), this very property does not allow Alice to
prove that the order in question does not belong to her (and
does not make her over budget), so failing (iii). A full MPC
protocol would be a solution but this would force other traders
to participate to the posting of any order from a third party. As
mentioned, such burden would be considered unacceptable.

Next we introduce three flags to represent the status as a
potentially broke trader. A trader’s inventory is marked with
a state represented by the three flags fbad,i, fdel,i, fout,i. We
call an inventory with a non-negative instant net position a
good inventory (fbad,i = 0, fdel,i = 0, fout,i = 0), otherwise it
is a broke inventory (fbad,i=1, fdel,i=0, fout,i=0). A good
trader can do a normal post/cancel action, while a broke trader
has to cancel a previous order in the Margin Settlement
phase. Finally, we call an inventory canceled if it is a broke
inventory with no pending order (after canceling all orders
in the Margin Settlement phase) at the time of commitment
(fbad,i = 1, fdel,i = 1, fout,i = 0); an inventory is, instead,
netted if it has a zero volume holding (after matching to
an offset position during Margin Settlement) at the time of
commitment (fbad,i=1, fdel,i=1, fout,i=1). The state transition
diagram in Fig. 4 shows how the inventory switches from one
state to another, as well as the condition causing the transition.
This status will be key to capture the non-monotonic evolution
of the validity of commitments and zk proofs once a valid order
(of another trader) is accepted.

The overall state is then captured by a token τi that
is a commitment of all values in the inventory (with fresh
randomness ri); initially, such value is only known to the

0,0,0
(good)

start
1,0,0

(broke)
1,1,0

(canceled)
1,1,1

(netted)

η∗i ≥ 0

η∗i < 0

η∗i < 0 ∧ c∗i = 0

c∗i > 0

c∗i = 0

v∗i 	= 0

v∗i = 0

Fig. 4: Inventory flags state transition diagram

TABLE VIII: Merkle Tree’s supported operations

Definition Description
ρ = Add(T , �v′�) Adds a new leaf (the hash of �v′�) to

the tree and generates a new root ρ.
path = Path(T , �v′�) Returns the authentication path from

�v′� to ρ.
{0, 1} ← Auth(ρ, path, �v�) Authenticates �v� in T w.r.t. the au-

thentication path path (where output 1
means the authentication succeeded).

trader itself. Each trader keeps the token secret and broadcasts
a commitment to it in order to commit to a new inventory;
such an inventory is considered as unspent. At a later point, a
trader can reveal the token and retrieve a previously committed
inventory, in which case we say the inventory is spent, as the
corresponding token cannot be used anymore.

The anonymity of the inventory is guaranteed by relying
on Merkle trees [44] in conjunction with the zero-knowledge
proofs (as in [55]). Throughout the execution of the protocol,
a Merkle tree T based on a collision-resistant hash function
H : {0, 1}∗ → {0, 1}∗, where the leafs are commitments, is
maintained and updated. ρ denotes the root of the tree, and
path denotes the authentication path from a leaf �v� to the
root ρ. As in [55], [7], the number of leafs is not fixed a-priori,
one can efficiently update a Merkle tree T by appending a new
leaf, resulting in a new tree T ′ with root ρ; this can be done in
time/space proportional to tree depth. Table VIII summarizes
the supported ops Add, Path and Auth of a Merkle tree T .

Preserving Traders’ Anonymity. The commitment (the re-
trieval) of trader inventories to the Merkle Tree T is obtained
by running a sub-protocols Πput (resp. Πget) as follows:

• Executing protocol Πput, the trader broadcasts a commit-
ment to the token corresponding to the current inventory:
τi = Com(mi||vi||m̂i||v̂i||ci||fbad,i||fdel,i||fout,i; ri)
Thus, the trader proves that the token is correctly con-
structed (using F token) and appended into the Merkle tree
T (with operation Add), before broadcasting the new root
of the tree. The other traders will check that the new root
is correctly computed before accepting it.

• In an execution of protocol Πget, a trader can retrieve a
previously committed inventory (say, at round t′ < t),
and spend it for posting or canceling an order (l, v), by
revealing the secret unspent token τ ′i and proving that
the newly committed values are consistent updates of the
values committed at round t′; this is done using F inv (to
retrieve the inventory) and then Fuinv (to update the in-
ventory); in particular, �τ ′i� is a leaf of the current tree and
mi = m′i, vi = v′i, m̂i = m̂i

′− δc ·pl ·v, v̂i = v̂i
′+ δc ·v,

and ci = c′i + δc, while all the flags fbad,i, fdel,i, fout,i

342



Post/ Cancel:
ZK: 7 (rng, net,
zero+, oc)
MPC: -

Initialize: Πput

Margin Settl.:
ZK: 6 (rng,
net, flags)
MPC: 2
(Fcompare,
Fpcheck)

Order Fulfillment:
ZK: 4 (match)
MPC: -

Mark To Market:
ZK: 4 (mtm)
MPC: -

Margin Settl. Cancel:
ZK: 5 (rng, net)
MPC: 1 (Fcompare)

Margin Settl. Offset:
ZK: 6 (rng, net, match)
MPC: 2 (Fcompare)

Order is valid:
Πvalid

No broke traders and there are matches
Πnet

No broke
traders: Πnet

Order Fulfilled
Πmatch

Found broke traders: Πnet

Cancel Order:

No broke traders’
pending order:
Fcompare

Liquidate Inventory:
Πmatch

Broke traders
netted out:
Fcompare

End of
day

Unfixable
Crashes
Πnet

Our stateful functionality traverses several states. For every state of
we show which NI-ZK proof steps are required, as well as the MPC
steps. The subprotocols Πget, Πput and their functionalities inv, uinv,
token are always needed to interact with the trader’s inventory.

Fig. 5: Hybrid Implementation of the Ideal Functionality

stay the same. Every time an inventory is retrieved, two
sets of commitments are generated corresponding to the
inventory values before and after the update. The token
τ ′i is now marked as spent and will not be usable for
retrieving any inventory.

The main Merkle tree T can also be forked (via sub-
protocol Πbackup, see below) into a backup tree TU to use
during the Mark to Market phase in case there are still traders
with a negative net position even after the Margin Settlement
phase. We use this feature to challenge the non-monotonicity
of security and go beyond security-with-abort.

VIII. PROTOCOL CONSTRUCTION

At this point an easy solution would be to just run the entire
reactive functionality as a global MPC. As we mentioned, this
would be unacceptable from the perspective of most traders:
the burden of computation should be shifted to parties wishing
to prove something (e.g. their good and bad standing). As such,
only when global consistency of the market is at stake should
all traders be involved. We illustrate this empirically in §XII.

Fig. 5 summarizes how the various security functionalities
and sub-protocols have been used to implement each step of
the global ideal functionality.

First we present a few useful sub-protocols that are exten-
sively used during different phases of our main protocol.

a) Common Sub-Protocols: The protocols in Fig. 6 be-
low are used extensively as sub-routines in our main protocol.

We denote by the superscript ·∗ the updated values, com-
puted locally by Pi after an update of the order book, e.g. m∗i ,
which are used as common inputs for the sub-protocols. We
use it in particular on the commitments of the inventory values,
e.g. �mi�, the related order information (δc, l, v) and the the
Merkle Tree T , where Pi additionally holds the committed
values and the corresponding randomnesses.

Πvalid: Every time a trader Pi posts or cancels an order,
say (δc, l, v), the protocol has to check for its validity.

Πnet: Every time the order book is updated via (i) a
post/cancel action of a trader Pi, or (ii) a match of two traders
Pi and Pi′ , all the traders (including Pi and Pi′ ), need to be
checked for negative instant net position.

Πmatch: for matching an order between Pi and Pi′ .

Πbackup: fork a backup tree TU∗ from the main tree T ∗ to
serve as a starting point during the Mark to Market phase
in the case there are still traders with a negative net position
even after Margin Settlement. The protocol runs with the
commitments of the inventory values, as well as the new net
position of all traders, as the common inputs.

b) Protocol Description: The overall protocol runs in
4 phases, which we describe on a high-level below. Formal
description can be found in §A of the appendix.

Initialization Every trader participating in the futures market
has to commit to a valid initial inventory. This is done during
the first round, by each trader individually, as follows.

• Pi holds an initial non-negative secret amount of cash
(i.e., mi ≥ 0), zero volume holding (i.e., vi = 0), an
initial estimation of the cost to pay for pending orders
(i.e., m̂i = mi), and an zero estimation of the volume
holding for pending orders (i.e., v̂i = 0) as well as all
initial zero inventory flags.

• Pi commits to its initial inventory and proves in zero
knowledge that such an inventory is valid (as defined

above), using the functionalities F zero+ for mi and Fec

m̂i; while simply decommitting vi and v̂i and the flags
is sufficient to prove that they are all zeros.

• The traders run protocol Πput to commit the inventory of
Pi; the backup tree TU is initially identical to T .

Post/Cancel Order A good trader can post a new order (δc =
1, l, v) or cancel a previous order (δc = −1, l′, v′).
• The traders run Πvalid.
• The traders run Πnet; this can lead to Mark to Market.
• The traders run Πmatch for each match in the order book

(only for Post Order).
• After the match, all traders run Πnet again.

Margin Settlement This phase is (re) started every time there
is at least one new trader with a bad standing (i.e., fbad,i = 0
and η∗i < 0). It proceeds as described below; afterwards the
protocol goes back to the previous phase (whatever it was).

• For each pending order (t′, l′, i, v′) of a broke trader Pi:

◦ The traders run Πget with parameters (−1, l, v), to re-
trieve Pi’s two inventories: one before the cancellation
of the pending order and one after that.

◦ The traders run Πvalid.
◦ All traders forward the necessary flags f∗del,i and fbad,i

to Fcompare to check whether
∑

f∗del,i =
∑

fbad,i. If
the check is successful, move to next step.

• The traders run Πnet to check and restart this phase if
there are new broke traders.

• The broke traders offset their positions until all broke
traders are netted out.

◦ The traders run Πget to retrieve their inventory.
◦ The traders find matches on the order book at the

current best price, say between Pi and Pi′ ; both traders

343



Sub-protocol Πvalid is run by (P1, . . . , PN ) in order to let Pi prove a valid Post Order or Cancel Order action w.r.t. (δc, l, v).

1) In case of Cancel Order, Pi sends (Pi, �i�, (i, r)) to Foc, while Pj �=i sends (Pj , �i�) for the ownership of the order.
2) All traders run Πget then Pi proves that s/he can perform the action by decommitting the inventory flags to show:

a) fbad,i = 0 in a normal post/cancel action;
b) (fbad,i = 1) ∧ (fdel,i = 0) for a cancel action during Margin Settlement;
c) (fbad,i = 1) ∧ (fdel,i = 1) ∧ (fout,i = 0) for a post action during Margin Settlement.

3) Pi proves it has a non-negative estimation for instant net position η̂i (only in a normal post/cancel action):

a) Broadcast (�plb�, �Vlb�, �pub�, �Vub�) and send (Pi, x
rng
i , wrng

i ) to F rng, while Pj �=i sends (Pj , x
rng
j ).

b) Broadcast �η̂i
∗� and send (Pi, x

net
i , wnet

i ) to Fnet, while Pj �=i sends (Pj , x
net
j ).

c) Send (Pi, �η̂i
∗�, η̂i∗) to F zero+ , while Pj �=i sends (Pj , �η̂i

∗�).
4) All traders run Πput.

Sub-protocol Πnet is run for checking new broke traders.

1) Repeat the following for each trader Pi to retrieve the inventory then update and check their new inventory flags.

a) All traders run Πget.
b) Broadcast (�plb�, �Vlb�, �pub�, �Vub�) and send (Pi, x

rng
i , wrng

i ) to F rng, while Pj �=i sends (Pj , x
rng
j ).

c) Broadcast �η∗i � and send (Pi, x
net
i , wnet

i ) to Fnet, while Pj �=i sends (Pj , x
net
j ).

d) Broadcast �f∗bad,i�, �f
∗
del,i�, �f

∗
out,i� and send (Pi, x

flags
i , wflags

i ) to Fflags, while Pj �=i sends (Pj , x
flags
j ).

e) Forward fbad,i and f∗bad,i to Fcompare.

2) If Fcompare returns 1, all traders run Πput (with T ∗) then run Πbackup.
3) Otherwise, the traders discard T ∗ and, for each trader Pi, all traders run Πput (with T ).

Sub-protocol Πmatch for updating the inventories upon a match of orders (t, l, �i�, v) of Pi and (t′, l, �i′�, v′) of Pi′ (v · v′ < 0).

1) Pi sends (Pi, �i�, (i, r)) to Foc, while Pj �=i sends (Pj , �i�), then all traders run Πget.
2) In case v > 0, and for δ = min(|v|, |v′|), Pi computes m∗i = mi − pl · δ and v∗i = vi + δ.
3) (If v < 0, replace δ with −δ. If δ = |v|, let ci = ci + δc where δc = −1.)
4) Pi broadcasts �m∗i �, �v∗i �, �m̂i

∗�, �v̂i
∗�, and �c∗i �. and sends (Pi, x

match
i , wmatch

i ) to Fmatch, while Pj �=i sends (Pj , x
match
j ).

5) All traders run Πput.
6) Pi′ performs steps 1-5 (where δ := −δ, i := i′, and δc = −1 if δ = |v′|).

Sub-protocol Πbackup is run to fork a backup tree. Additionally, the common inputs include �η∗i �, and Pi also holds η∗i .

1) Pi forwards η∗i to Fpcheck.
2) If Fpcheck returns 1, all traders run Πput to obtain TU∗.

Fig. 6: Sub-protocols Πvalid, Πnet, Πmatch and Πbackup

locally update their inventory, commit to the new in-
ventory, and prove in zero knowledge that the matching
was done correctly (using Fmatch).

◦ All traders forward the necessary flags f∗out,i and fbad,i
to Fcompare to check whether

∑
f∗out,i =

∑
fbad,i, if

the check is successful, go to next step.

• The traders run Πnet to check and restart this phase if
there is a new broke trader.

• All traders run Πbackup to check if a backup tree can be
forked, if not, go to Mark to Market phase.

Mark to Market This phase is invoked at the last round t = T ,
or during Margin Settlement.

• The traders run Πget to retrieve their inventory.
• The traders locally update their inventory, commit to the

new inventory, and prove in zero knowledge that the
matching was done correctly (using Fmtm).

• Finally the new inventory is added back to the Merkle
tree T by running Πput.

The Proportional Burden is fulfilled for what is technically
possible as we require traders posting/canceling an order to
prove the validity of their actions before other traders prove
the validity of their inventories according to the new order
book. The latter is necessary for distributed risk management.
It could be optimized by having a trader proving the validity

of an inventory for a range of price values rather than just the
current price (e.g. up/downward ticks as appropriate).

IX. SECURITY ANALYSIS (SKETCH)

The theorem below states the security of protocol ΠDFM.

Theorem 1. Let Com be a statistically hiding (and computa-
tionally binding) commitment scheme. Protocol ΠDFM securely
realizes the ideal functionality FCFM in the (Fzk,Fcompare,
Fpcheck)-hybrid model, where the zero-knowledge functionality
Fzk supports all NP relations defined in §VI.

We sketch here the key step of the security proof (See
Appendix B for details). As in standard simulation-based
security proofs, we exhibit an efficient simulator interacting
with the ideal functionality FCFM that is able to fake the view
of any efficient adversaries corrupting a subset I ⊆ [N ] of the
traders in an execution of protocol ΠDFM.5.

Our protocol is designed in a “hybrid world” with sev-
eral auxiliary ideal functionalities (mainly for zero-knowledge
proofs and for running secure comparisons). Importantly, in
such a world, there is no security issue when using these func-
tionalities: a composition theorem ensures that our protocol is
still secure when we replace the auxiliary ideal functionalities

5We assume the set I is fixed before the protocol execution starts.

344



with sub-protocols securely realizing them. An advantage of
working in the hybrid model is that the simulator gets to see
the inputs that corrupted traders forward to the auxiliary ideal
functionalities in the clear.

On a very high level, our simulator S works as follows.
During the Initialize phase, it commits to zero values for each
commitment forwarded by a honest trader in the real protocol;
the commitments to the token of each inventory are added to
a simulated Merkle Tree that is maintained internally by the
simulator. During a Post/Cancel Order action, it relies on
the ideal functionality FCFM to post/cancel the corresponding
orders; afterwards, in the Margin Settlement phase, for each
match notification received from the ideal functionality FCFM,
the simulator commits to zero for each commitment forwarded
by a honest trader in the real protocol execution. During the
Mark to Market phase, it commits to zero values for each
commitment forwarded by a honest trader in the real protocol.

The hiding property of the commitment scheme implies
that the above simulation is indistinguishable to the view
generated in a mental experiment where the simulator S is
given the real inputs corresponding to each honest trader. The
only difference between this mental experiment and a real
protocol execution is that in the former experiment the market
evolves using the inventories held at the beginning by each
corrupted trader, whereas in the latter experiment the adversary
can try to cheat and fake the inventory of a corrupted trader
(e.g., by claiming an order pertaining to a honest trader).
However, the binding property of the commitment scheme and
the collision resistance of the Merkle Tree, ensure that such
cheating attempts only succeed with a negligible probability.

This allows us to conclude that the view simulated in the
ideal world (with the functionality FCFM) is computationally
indistinguishable from the view in a real execution of the
protocol, thus establishing the security of ΠDFM.

X. BEYOND SECURITY-WITH-ABORT

If every single party participates to the computation, the
baseline protocol is secure. However, an adversary can refuse
to join Fcompare or Fpcheck, or to match an order in Πmatch, or
refuse to cancel pending orders and liquidate her own inventory
during the Margin Settlement phase. Therefore, if even a
single party is byzantine and aborts, the base protocol cannot
continue operating, leading to a clear scalability issue.

A preliminary observation is that in practice one cannot
initialize a market with a self-claimed account. The cash
that get deposited into the market must be backed by a
verifiable source where a debit is acknowledged by every
market participants, for instance ZeroCash. Hence, such source
must be able to publicly verify the validity of the transactions
resulting from the market’s operation at the end of the day to
credit each the account with the corresponding amount.

An approach is to penalize a faulty participant upon
aborting in an MPC, hence make the adversary lose some
digital cash in proportion to their actions. For instance, [36]
and [37] require the adversary to make deposits and forfeit
them upon dropping out. Unfortunately those protocols are
not usable in our scenario. Technically the parties have to
move in a fixed order since order of revelation is important

(the see-saw mechanism, [36, p. 7]) for the aforementioned
penalty mechanism to work. This fixed order conflicts with
our protocol’s anonymity requirement since this will reveal the
identity of the trader who made a posting. Most importantly,
those protocols are not economically viable as the baseline
deposit would need to be progressively staggered in a see-saw
fashion which is unachievable due to the anticipated variety
in financial capability of traders. In a low-frequency market
the trader going first would have to deposit assets 35x times
the stake of the trader going last, and in large markets that
increases to 500 times larger (See Table II, where a single
Eurodollar contract has a notional value of 1M dollars and
margins are measured in basis points).

Hence we opt towards the mechanism of Hawk [34, Ap-
pendix G, §B] in which private deposits are frozen and the
identified aborting parties cannot claim the deposits back in
the withdraw phase. This fits precisely with our scenario as
the deposit can be made to match the initial margin (which is
the largest amount6 a trader can lose when being netted out).

At first we must show that honest participants can eventu-
ally move by themselves to a Mark To Market phase at least
to cash their own inventory. Let us denote by Adv the set of
adversaries who abort between time t and time t+ 1 given a
backup tree TU with a solvable inventory of all traders (mi, vi)
and the corresponding mid price p̄. Since TU is a valid tree, it
satisfies the constraints from Def. 1 & 2, and therefore ηi ≥ 0.
Since ηi = mi + cash(vi) ≤ mi + p̄ · vi, we have

0 ≤
∑

i�∈Adv
(mi + p̄ · vi) ≤

∑
i
m0

i

This implies that there will be no unexpected loss to cover
(0 ≤ . . .) nor additional money would be created (. . . ≤∑

i m
0
i ). Then honest traders can proceed to the Mark To

Market phase to split their own trade proceedings. If enough
traders accept the move so that it ends into the public ledger
this would be considered an acceptable solution. From an
economics perspective, the adversary would be penalized with
at least its initial cash margin which could be substantial.

Now we just need to extend our protocol to identify the
aborting parties in various protocol steps and prevent them
from claiming the deposit in Mark To Market phase by
requiring each trader to present a proof of participation in the
round where the abort happens. A further step can possibly
be taken to divide the money of the adversary if at the end
of the Initialize phase the total sum of money is computed
(by an MPC protocol, i.e. Fsum that receives mi from each
trader and computes

∑
i mi). In the Mark To Market phase,

by computing the sum of money of the honest traders after
the updates of the inventories we can find the difference
corresponding to the money of the adversary and shares it
by updating the inventories again adding the shares.

Formally, in an abort, every honest traders maintain a set
of spent tokens τ ′i of the participants. The Mark To Market
phase now runs exactly the same as before except that a trader
must prove in zk s/he knows the opening to a token τ ′i that
was present in the last step with the relation Roinv which

6In practice traders can deposit additional funds when receiving a margin
call. These incremental deposits could be easily incorporated into our setting
by querying the deposit ledger for all deposited funds before time t < T as
opposed to checking the single deposited value at time 0.

345



takes as input the statement xoinv
i = (τ ′i) and witness woinv

i =
(r′i,mi, vi, m̂i, v̂i, ci, fbad,i, fdel,i, fout,i). The output of Roinv

is defined to be one if and only if τ ′i = Com(mi||vi||m̂i||v̂i
||ci||fbad,i||fdel,i||fout,i; r′i). In the simplest settings, as in a
joint step, the set of tokens from participants can be easily
constructed. We discuss the disqualification of an adversary in
a more complex case, where s/he refuses to match an order o′:

1) All traders Pi cancel all orders o with o �= o′.
2) All traders Pi prove they do not own o′ by decommitting

�ci� and showing that ci = 0.

Similarly, if the Margin Settlement phase is aborted,

1) In cancellation phase, all traders retrieve their inventory
with a token τ ′i , and prove that the inventory flags is not
broke, i.e (fbad,i, fdel,i, fout,i) �= (1, 0, 0).

2) In liquidation phase, all traders retrieve their inventory
with a token τ ′i , and prove that the inventory flags is not
canceled, i.e (fbad,i, fdel,i, fout,i) �= (1, 1, 0).

XI. IMPLEMENTATION

All phases of our protocol have been implemented and
optimized. For the anonymous network and the distributed
consensus protocol, off-the-shelf implementations will do7.

a) Implementation of Components.: We use a digital
cash network that supports a private payment scheme, e.g.
zcash8 for bootstrapping the market’s initial cash. We extend
zcash’s POUR transaction to accept one more input/output:
the commitment �mi�, to deposit and withdraw the market’s
digital cash from and back to the zcash network.

We follow [7] in the instantiation of our building blocks,
at a security level of 128 bits. Let H(·) be a collision-resistant
compression hash function that maps l bits input (l ≥ 512)
into 256 bits output (e.g. SHA256). We use H(·) to instantiate
the commitment scheme Com and also the hash function for
the binary Merkle Tree T . The zero-knowledge functionality
FR is instantiated with zk-SNARKs9 for arithmetic circuit
satisfiability [10], while generic MPC is used for the hybrid
ideal functionalities Fcompare and Fpcheck.

Our zk code is based on the libsnark10 library. We split F inv

into F invm to first check whether the token is one of the leaf of
the Merkle Tree, and then F invt to check consistency of new
commitments and old tokens11. Our MPC uses the SPDZ12

library, along the construction in [11], [24], [49].13

7We use a distributed ledger, e.g. HyperLedger in PBFT mode
(https://www.hyperledger.org) as a byzantine fault tolerant storage for each
protocol step, i.e. each broadcast is replaced with a write into the distributed
ledger. To communicate anonymously, the traders hide behind a Tor network.
While we mention Tor, zcash, and HyperLedger in our implementation, we
can replace any sub-protocol with other protocols for the same task, without
affecting security. See [2], [59] for a comparison between different solutions.

8https://z.cash.
9While SNARKs are problematic in the setting of universal composabil-

ity [35], they are still sufficient for sequential composition.
10https://github.com/scipr-lab/libsnark.
11Our prototype supports 32 bits signed integers (See footnote 3 on prices

in §IV), a Merkle Tree of depth 10 and the net position range choices (i.e.
Osell and Obuy) used in F rng are up to 10 .

12https://github.com/bristolcrypto/SPDZ-2.
13While libsnark is efficient and scalable, SPDZ hits the limit of 10 parties

due to the complexity in implementing SHA256 with the library, i.e. right-
shift is not natively supported for 32-bits word, and we had to implement it
using left-shift and other bitwise operations.

b) Optimization: We also experimented with an opti-
mized version to reduce the cost to only 30% and overcome the
limit of 10 traders for the MPC. To improve the performance of
the protocol we first streamline the number of the validations of
the commitments by packing fbad,i, fdel,i, fout,i into a single
integer fi, this improves the circuit F token, F invt as well as
Fflags. Then we can combine the circuits F invt and Fuinv,
F rng and Fnet. Proof generations can also be parallelized in

a protocol step, e.g. in Πvalid, F invt, Fuinv, F rng, Fnet, F zero+

and F token are independent of each other.

Further, functionalities Fcompare and Fpcheck are used exten-
sively throughout our protocol. As we shall see in Table X, the
consistency check of the commitments slow down the whole
protocol. We can replace Fcompare with a lighter functionality
Fdtc below to detect the flag in an unwanted state (without
validating the consistency of the commitments) and randomly
select a Py owning an unwanted state to open the flag to check.
This is not a problem as Py cannot be traced to any traders
from the previous steps or the subsequent ones due to the
anonymity mechanism (Merkle Tree and ZK Functionalities).
She is just an anonymous volunteer for this round. The
functionality Fpcheck can be similarly replaced.

The Secure Detection Fdtc runs on common input (f)
and interacts with a set of players (P1, . . . , PN ) and receive
(Pi, fi, ri) from each Pi. Upon receiving all inputs, let cf
be the number of pairs (fi = f ), if cf > 0 output y =∑

ri mod cf to all players and ⊥ otherwise. In the protocol,
first each trader samples a random ri and forwards Pi, fi, ri
to Fdtc with common input f to obtain y or ⊥. In case of ⊥,
each trader Pi proves that her flag is different from the f (using
Fnec). Otherwise trader Py proves that the inventory flag is the
same as the common input (by decommitting the flags). Any
trader not able to prove this is considered as aborting.

XII. EVALUATION

We evaluate our protocol in 3 steps. First we evaluate the
performance of the cryptographic primitives that we use in
our protocol, i.e. the zk-SNARK circuits and the MPC func-
tionalities, both in the offline and online phase on a concrete
implementation. Then, we use the obtained values to estimate
the performance of each phase of our protocol. Finally, we
evaluate the full protocol’s performance by matching the above
estimates with the public data available from the order books.
Whilst network latencies are critical for high speed trading,
we ignore them here since this issue is well understood by
traders by either using known optimizations [47], [38], or by
even buying dark fiber to cut delays between exchanges.14

All our experiments are run with an Amazon EC2
r4.4xlarge instance (Intel Xeon E5-2686 v4 @ 2.3Ghz, 16
cores, 122 GB RAM) so we exclude the communication cost15.
The MPC protocol’s off-line phase can also be pipelined with
zk-SNARKs proof generation thus we exclude it as well.

a) zk-SNARK Circuits Performance: In Table IX, we
report the performance metrics for the pre-processing steps:

14http://www.forbes.com/forbes/2010/0927/outfront-netscape-jim-
barksdale- daniel-spivey-wall-street-speed-war.html

15However, each operation requires less than 20 commitments and 10 zk-
SNARKs proof, thus per operation the data is less than 4KB. See Table IX.

346



TABLE IX: zk-SNARK Simple and Opt. Circuits Performance

Pre-processing On-Line Trading
Circuit KeyGen | PK | | VK | Prove | Proof | Verify

(ms) (MB) (KB) (ms) (B) (ms)
F rng 8759 119 9 4752 287 31

F invm 16778 210 2 8447 .. 29

F token 15925 189 .. 7642 .. 27

Fflags 12943 171 .. 6115 .. ..

F invt 12954 171 .. 6111 .. ..

Fuinv 9650 116 .. 4748 .. ..

Fmatch 9644 116 .. 4748 .. ..
Fnet 9638 115 .. 4691 .. ..
Fmtm 5456 57 .. 2365 .. ..
Fec 3343 38 .. 1429 .. ..

Fzero+ 1639 19 .. 739 .. 26
Fmax 1635 19 .. 739 .. ..
Foc 1635 19 .. 729 .. ..
Optimized

F token .. 157 .. 5691 .. ..

Fflags .. 97 .. 3908 .. ..

F invt+Fuinv .. 137 .. 5193 .. ..
F rng+Fnet .. 84 .. 3509 .. ..

TABLE X: MPC Performance

MPC Funct Bytecode Size On-Line Time
#Traders 3 5 10 3 5 10
Fcompare 425 MB 709 MB 1.4 GB 14s 24s 67s
Fpcheck 212 MB 354 MB 708 MB 7s 13s 36s

the key generation time (Key Gen), the size of the proving keys
(PK), and the size of the verifying (VK) keys. We also report
the time to generate a proof (Proving Time) and to verify it
(Verify time), as well as the size of the proof during the actual
trading execution described above. As shown, proving key size
and proof generation time scale linearly with the number of
commitments part of the relation.

b) Performance of the MPC functionalities: To gauge
the effectiveness of our MPC components, we evaluate the
performance for each functionality separately. Table X reports
the size of the bytecode and the corresponding running times
for 3, 5 and 10 traders. The memory requirement for the com-
pilation of the MPC functionalities using SHA-1 commitments
crashed after 10 traders by exceeding 120 GB. We found that
the dynamic memory requirement is typically 100x the final
bytecode size. This was not reported before (e.g. [24]), and it
is an important insight on the limit of the technology.

c) Overall Evaluation: In our experiment, we employ
the futures trades in the first quarter 2017 for the Lean Hog
futures market (See Table II) from the mentioned Thomson
Reuters Tick History database16. For each day, we have five
level limit orders (buy and sell, which we also chose for the
F rng) and transaction data at ticks level with millisecond times-
tamps. At a low end, we must be able to support a minimum
of 10 traders and this is the limit we chose for illustrating our
prototype. From the dataset we cannot determine the status
of each trader (trader anonymity!), so we assume they have a
large margin and never enter a broke state (i.e. we exclude
Margin Settlement). We can combine the number of post,
cancel and matched orders from market data (e.g. Table II

16https://tickhistory.thomsonreuters.com.

TABLE XI: Runtime of Individual Market Operations

Each individual operations can be done in few seconds for a market
of 10 traders. With simple optimizations, we boost the performance
and reduce the role of other traders in the computation which is a
critical “ecological” constraint.

Plain Prot. Runtime Opt. Prot. Runtime
Protocol Trader Others (%) Trader Others (%)
Initialize 11s - 9s -
Post Order 39s 148s (79%) 24s 27s (53%)
Cancel Order 40s 148s (79%) 25s 27s (52%)
Match Order 29s 148s (84%) 26s 27s (51%)
MarkToMarket 28s - 25s -

100

101

102

103

104

01/Jan - 31/Mar 2017

T
o
ta

l
C

ry
p
to

O
v
er

h
ea

d
(x

ti
m

es
) Generic MPC

Plain

Optimized

Performance in terms of execution overhead to the expected processing
time (1 day). For the optimized version, only one day of trading
exhibits overheads greater than 10x and only ten days greater than 5x.
These overheads could be already offset by parallelizing the traders
ZK-proofs (each trader has to do several of them) which would yield
an improvement factor of 6x.

Fig. 7: Crypto Protocol Evaluation on Q1 of Lean-Hog

and XI) to estimate the corresponding execution overhead
throughout a day of trading. The final results are reported
in Table XI. The actual timing of the protocol is still slow
compared to the millisecond delay required by the CME but, if
we compare the cost of our hardware (a $500 EC2 instance) to
the “centralizedcompetitors” (CME’s cost for IT infrastructure
is $30 millions per year), we believe that a 103 delay (seconds
vs milliseconds) with a 107 cheaper kit is acceptable.

Fig. 7 shows the overall record for the plain and optimized
version as well as an estimation of a naive MPC implementa-
tion of the ideal functionality. For most of the entire quarter
our distributed protocol can be optimized to have no overhead
and executes all trades in the very same day.

To estimate the cost of a naı̈ve MPC implementation,
we use as building block the simplest of our stateless MPC
functionalities Fdtc which is used to detect negative inputs
and open one index. It costs only 0.2s for 10 traders. We
then estimate the cost of a naı̈ve MPC implementation of
our stateful ideal functionality by accumulating the steps in
Fig. 2 and Fig. 5 under the favorable assumption (for MPC)
that execution times accrue linearly with the number of steps.

Pure MPC impose a significant burden on retail traders
(the overwhelming majority of the market) in particular dur-
ing peak times when algorithmic traders frequently post and

347



100

101

102

103

Lean-Hog Futures - 01/Jan - 31/Mar 2017

T
o
ta

l
C

o
m

p
u
ti

n
g

E
ff

o
rt

b
y

R
et

ai
l

T
ra

d
er

s
Generic MPC

Hybrid

With MPC retail traders have to always participate whether they make
an order or not (and they overwhelmingly don’t [41]). They would be
supplying to algorithmic traders some orders of magnitude of costly
computing resources. With our approach the burden on retail traders
is significantly smaller.

Fig. 8: Total Burden of Computation by Retail Traders

almost immediately cancel practically all orders (See [41]).
Our hybrid approach shift the burden on computation on
algorithmic traders. As seen from Figure 8, retail traders would
devote significant computational resources in a pure MPC
implementation for allowing speculators to indeed speculate.

The optimized implementation can already break the bar-
rier of ten traders and do the full 66 traders of the peak
day. Parallelization can further reduce the runtime of the sub-
protocol to just 8s (comparing to 24s of sequential proof
generation). Furthermore, additional practical design decisions
can further increase the protocol throughput, e.g. if traders can
prove that their inventory is valid for a range of prices they
would only need prove validity again when the price fluctuates
out of that range, or by allowing multiple traders to post/cancel
in one round, etc. We leave this for future investigation.

XIII. RELATED WORK

Distributed Ledgers are ledgers maintained by a network
of nodes. The most important property, e.g. for distributed
payment networks, is consensus among the nodes, while still
being fully decentralized. The most prominent example of
a distributed payment network is Bitcoin [48], whose core
components are the Proofs-of-Work and the Blockchain. The
current bottleneck of Bitcoin is its low low throughput in
terms of transactions-per-second (TPS). (Roughly, 10 TPS
compared to 2000 TPS achieved, e.g. by Visa.) Several
variants/extensions of Bitcoin appeared recently, including
ZeroCoin [46], ZeroCash [7], and Ethereum [25].

Secure Multiparty Computation Seminal feasibility results
in the theory of MPC established that any functionality is
securely realizable via a distributed protocol in the compu-
tational (resp. information-theoretic) setting, assuming honest
minority (resp. majority) [61], [29], [6], [19], [53]. The recent
progress on efficient implementations of general-purpose MPC
protocols (see, e.g., [24], [23], [3]) opened up the way to
advanced applications, e.g. to privacy-preserving data min-
ing [40]. See also [50] for an overview of applications of
MPC. Privacy-preserving reputation systems only address half
of our requirements (posting a public, yet anonymous, order,

e.g. a rating of a service provider [62]), but not the other half
(personally accruing the order’s revenues).

SNARKs. The influential work of Micali on computation-
ally sound proofs [45] gave the first zero-knowledge succinct
non-interactive argument of knowledge (zk-SNARK) for all of
NP , relying on the random oracle heuristic [5]. Later work
(starting with [22], [13]), showed that zk-SNARKs exist in
the standard model, based on so-called knowledge-of-exponent
assumptions; interestingly, these type of assumptions seem to
be inherent for constructing zk-SNARKs [27]. An overview
of these (and more) results can be found in [60]. In terms of
implementation, the most efficient ones include [8], [10], [51].

XIV. CONCLUSIONS

This paper shows the first practical realization of dis-
tributed, secure, full financial intermediation without a trusted
third party. Our chosen example has been one of the land-
mark institution of financial intermediation: a Futures Market
Exchange. Besides the practical relevance of the application,
such realization was interesting from a security perspectives
as it requires to provide a rich security functionality with
varied and potentially conflicting requirements. One needs to
support a public availability of information about all actions
performed by traders in the market (such as post or cancel
orders) as well as public verifiability of integrity of private
information from the traders. Further we need to provide
participants anonymity and public unlinkability together with
global integrity guarantees and private linkability.

Our hybrid protocol offers an efficient solution to the
requirement of a proportional burden of computation. Traders
infrequently making bids must only participate to the protocol
to control market risk with a significant saving of the compu-
tational resources they would need to stake if general purpose
MPC was used to implement the ideal functionality.

Our analysis of actual trading days using the Thomson-
Reuters database, including a complete trading history at the
level of milliseconds, have shown that the computation behind
our protocol is within engineering reach: we simulated that
on a low frequency market a secure protocol using a normal
server (as opposed to traders’ typical supercomputers) could
still be executed within a day with an handful of exceptions.

The first interesting avenue of future research is the choice
of majority for the distributed consensus protocol. These
solutions need further validation by financial economists:
majority of traders or by weighted volumes? Should traders
making offers far from the market price be considered as
their offers might never be executed? Another direction is to
analyze liveliness and robustness against collusion and price
discrimination. For simplicity, our protocol by default goes
to mark-to-market upon failure. Alternatives are possible, e.g.
margin-call for additional funds, we leave them to future work.

In terms of practical implementation, we found the zk-
SNARKs library to be pretty scalable, whilst the SPDZ library
of our unoptimized implementation hit a hard limit at 10
traders due to the dynamic memory requirements (with the
natural encoding of SHA256 in Python). This was surprising,
as the final size of SPDZ bytecode was acceptable and con-
sistent with the results from the literature [24]. We leave this
issue for further investigations.

348



REFERENCES

[1] F. Allen and A. M. Santomero, “The theory of financial intermediation,”
J. of Banking & Fin., vol. 21, no. 11-12, pp. 1461 – 1485, 1997.

[2] M. Alsabah and I. Goldberg, “Performance and security improvements
for tor: A survey,” ACM Comput. Surv., vol. 49, no. 2, pp. 32:1–32:36,
2016.

[3] D. W. Archer, D. Bogdanov, B. Pinkas, and P. Pullonen, “Maturity and
performance of programmable secure computation,” Proc. of IEEE SSP,
vol. 14, no. 5, pp. 48–56, 2016.

[4] F. Baldimtsi and A. Lysyanskaya, “Anonymous credentials light,” in
Proc. of ACM CCS, 2013, pp. 1087–1098.

[5] M. Bellare and P. Rogaway, “Random oracles are practical: A paradigm
for designing efficient protocols,” in Proc. of ACM CCS, 1993, pp. 62–
73.

[6] M. Ben-Or, S. Goldwasser, and A. Wigderson, “Completeness theorems
for non-cryptographic fault-tolerant distributed computation (extended
abstract),” in Proc. of ACM STOC, 1988, pp. 1–10.

[7] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer,
and M. Virza, “Zerocash: Decentralized anonymous payments from
bitcoin,” in Proc. of IEEE SSP, 2014, pp. 459–474.

[8] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza, “Snarks
for C: Verifying program executions succinctly and in zero knowledge,”
in Proc. of CRYPTO, 2013, pp. 90–108.

[9] E. Ben-Sasson, A. Chiesa, M. Green, E. Tromer, and M. Virza, “Secure
sampling of public parameters for succinct zero knowledge proofs,” in
Proc. of IEEE SSP, 2015, pp. 287–304.

[10] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza, “Succinct non-
interactive zero knowledge for a von neumann architecture,” in Proc.
of USENIX Security, 2014, pp. 781–796.

[11] R. Bendlin, I. Damgård, C. Orlandi, and S. Zakarias, “Semi-
homomorphic encryption and multiparty computation,” in Proc. of Int.
Conf. on the Theory and App. of Crypto. Tech., 2011, pp. 169–188.

[12] D. Bernhard and B. Warinschi, “Cryptographic voting - A gentle
introduction,” in FOSAD, 2013.

[13] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer, “From extractable
collision resistance to succinct non-interactive arguments of knowledge,
and back again,” in Innov. in Theor. Comp. Sci., 2012, pp. 326–349.

[14] F. Boudot, “Efficient proofs that a committed number lies in an interval,”
in Proc. of EUROCRYPT, 2000, pp. 431–444.

[15] J. Camenisch, R. Chaabouni, and A. Shelat, “Efficient protocols for
set membership and range proofs,” in Proc. of ASIACRYPT, 2008, pp.
234–252.

[16] R. Canetti, “Universally composable security: A new paradigm for
cryptographic protocols,” in Proc. of IEEE FOCS, 2001, pp. 136–145.

[17] R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai, “Universally com-
posable two-party and multi-party secure computation,” in Proc. of ACM
STOC, 2002, pp. 494–503.

[18] M. Castro and B. Liskov, “Practical byzantine fault tolerance and
proactive recovery,” ACM TOCS, vol. 14, no. 5, pp. 398–461, 2002.

[19] D. Chaum, C. Crépeau, and I. Damgård, “Multiparty unconditionally
secure protocols (extended abstract),” in Proc. of ACM STOC, 1988,
pp. 11–19.

[20] J. Clark, J. Bonneau, E. W. Felten, J. A. Kroll, A. Miller, and
A. Narayanan, “On decentralizing prediction markets and order books,”
in Workshop on the Economics of Information Security, State College,
Pennsylvania, 2014.

[21] CoinDesk, “Understanding the dao attack,” http://www.coindesk.com/
understanding-dao-hack-journalists/, 2016.

[22] I. Damgård, S. Faust, and C. Hazay, “Secure two-party computation
with low communication,” in Proc. of TCC, 2012, pp. 54–74.

[23] I. Damgård, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. P. Smart,
“Practical covertly secure MPC for dishonest majority - or: Breaking
the SPDZ limits,” in Proc. of ESORICS, 2013, pp. 1–18.

[24] I. Damgård, V. Pastro, N. Smart, and S. Zakarias, “Multiparty compu-
tation from somewhat homomorphic encryption,” in Proc. of CRYPTO,
2012, pp. 643–662.

[25] Ethereum, “A next-generation smart contract and decentralized appli-
cation platform,” 2015.

[26] Futures Industry Association, “Largest derivatives exchanges worldwide
in 2015, by number of contracts traded (in millions),” 2016.

[27] C. Gentry and D. Wichs, “Separating succinct non-interactive arguments
from all falsifiable assumptions,” in Proc. of ACM STOC, 2011, pp. 99–
108.

[28] O. Goldreich, Foundations of Cryptography – Volume 2: Basic Appli-
cations. Cambridge University Press, 2004.

[29] O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental
game or A completeness theorem for protocols with honest majority,”
in Proc. of ACM STOC, 1987, pp. 218–229.

[30] L. Harris, Trading and exchanges: Market microstructure for practi-
tioners. Oxford University Press, 2003.

[31] J. Hull, S. Treepongkaruna, D. Colwell, R. Heaney, and D. Pitt,
Fundamentals of futures and options markets. Pearson H. Edu, 2013.

[32] Y. Ishai, J. Katz, E. Kushilevitz, Y. Lindell, and E. Petrank, “On
achieving the “best of both worlds” in secure multiparty computation,”
SIAM J. on Comp., vol. 40, no. 1, pp. 122–141, 2011.

[33] A. Kiayias, T. Zacharias, and B. Zhang, “An efficient e2e verifiable
e-voting system without setup assumptions,” IEEE S&P Mag., 2016.

[34] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk:
The blockchain model of cryptography and privacy-preserving smart
contracts,” in Proc. of IEEE SSP, 2016, pp. 839–858.

[35] A. E. Kosba, Z. Zhao, A. Miller, Y. Qian, T. H. Chan, C. Papamanthou,
R. Pass, A. Shelat, and E. Shi, “How to use snarks in universally
composable protocols,” IACR Crypto. ePrint Ar., vol. 2015, 2015.

[36] R. Kumaresan, T. Moran, and I. Bentov, “How to use bitcoin to play
decentralized poker,” in Proc. of ACM CCS, 2015, pp. 195–206.

[37] R. Kumaresan, V. Vaikuntanathan, and P. N. Vasudevan, “Improvements
to secure computation with penalties,” in Proc. of ACM CCS, 2016, pp.
406–417.

[38] J. Labuszewski, J. Nyhoff, J. Boudreault et al., “Disseminating floor
quotes from open outcry markets,” Oct. 23 2013, uS Patent App.
14/061,286.

[39] Y. Lindell, “How to simulate it – A tutorial on the simulation proof
technique,” IACR Crypto. ePrint Ar., vol. 2016, p. 46, 2016.

[40] Y. Lindell and B. Pinkas, “Secure multiparty computation for privacy-
preserving data mining,” IACR Crypto. ePrint Ar., vol. 2008, 2008.

[41] K. Malinova, A. Park, and R. Riordan, “Do retail traders suffer from
high frequency traders,” Available at SSRN, vol. 2183806, 2013.

[42] J. W. Markham, “Manipulation of commodity futures prices-the unpros-
ecutable crime,” Yale J. on Reg., vol. 8, p. 281, 1991.

[43] F. Massacci, C. N. Ngo, J. Nie, D. Venturi, and J. Williams, “The
seconomics (security-economics) vulnerabilities of decentralized au-
tonomous organizations,” in Proc. of SPW, 2017, pp. 171–179.

[44] R. C. Merkle, “A digital signature based on a conventional encryption
function,” in Proc. of CRYPTO, 1987, pp. 369–378.

[45] S. Micali, “Computationally sound proofs,” SIAM J. on Comp., vol. 30,
no. 4, pp. 1253–1298, 2000.

[46] I. Miers, C. Garman, M. Green, and A. D. Rubin, “Zerocoin: Anony-
mous distributed e-cash from bitcoin,” in Proc. of IEEE SSP, 2013, pp.
397–411.

[47] M. Morano, I. Wall, S. Gaer, and K. Neumann, “Distributed trading bus
architecture,” Feb. 15 2011, uS Patent 7,890,412.

[48] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.

[49] J. B. Nielsen, P. S. Nordholt, C. Orlandi, and S. S. Burra, “A new
approach to practical active-secure two-party computation,” in Proc. of
CRYPTO, 2012, pp. 681–700.

[50] C. Orlandi, “Is multiparty computation any good in practice?” in IEEE
ICASSP, 2011, pp. 5848–5851.

[51] B. Parno, J. Howell, C. Gentry, and M. Raykova, “Pinocchio: nearly
practical verifiable computation,” ACM Comm., vol. 59, no. 2, pp. 103–
112, 2016.

[52] C. Pirrong, “The economics of clearing in derivatives markets: Netting,
asymmetric information, and the sharing of default risks through a
central counterparty,” Asym. Info., & the Sharing of Default Risks
Through a Central Counterparty, 2009.

349



[53] T. Rabin and M. Ben-Or, “Verifiable secret sharing and multiparty
protocols with honest majority (extended abstract),” in Proc. of ACM
STOC, 1989, pp. 73–85.

[54] K. Sako, “An auction protocol which hides bids of losers,” in Pub.
-Key Crypto., 2000, pp. 422–432.

[55] T. Sander and A. Ta-Shma, “Auditable, anonymous electronic cash,” in
Proc. of IEEE ICC, 1999, pp. 555–572.

[56] D. F. Spulber, “Market microstructure and intermediation,” J. of Econ.
Persp., vol. 10, no. 3, pp. 135–152, 1996.

[57] US CFTC, “Mission & responsibilities,” 2016.

[58] U.S. Securities and Exchange Commission, “Concept release on equity
market structure,” Release No. 34-61458; File No. S7-02, vol. 10, 2010.

[59] M. Vukolić, “The quest for scalable blockchain fabric: Proof-of-work
vs. bft replication,” in iNetSec, 2016, pp. 112–125.

[60] M. Walfish and A. J. Blumberg, “Verifying computations without
reexecuting them,” ACM Comm., vol. 58, no. 2, pp. 74–84, 2015.

[61] A. C. Yao, “Protocols for secure computations (extended abstract),” in
Proc. of IEEE FOCS, 1982, pp. 160–164.

[62] E. Zhai, D. I. Wolinsky, R. Chen, E. Syta, C. Teng, and B. Ford,
“Anonrep: Towards tracking-resistant anonymous reputation.” 2016, pp.
583–596.

APPENDIX

A. Supporting Material: Protocol Construction

Fig. 9 provides the formal description for Πput and Πget

whereas Fig. 10 contains a formal description of our protocol.

B. Supporting Material: Security Analysis

Theorem 1 in §IX states the security of our protocol ΠDFM

from §VIII. Below, we formalize security in the stand-alone
setting with a malicious adversary. We refer to [28], [39] for a
more extensive discussion of the standard formal definitions.

Proof: It is clear that ΠDFM computes FCFM. We proceed
to prove the security of ΠDFM. Let A be a non-uniform deter-
ministic PPT adversary. The simulator S is given access to the
ideal functionality FCFM, and can also read the stored/updated
values of the corrupted traders (that A controls) from FCFM;
recall that, since we prove only static security, the set of
corrupted traders I is fixed before the protocol execution starts.

a) Sub-routines.: To simplify the simulator’s descrip-
tion, we introduce sub-routines Sput, Sget as well as Svalid,
Sbackup, Snet, Smatch that will call Sput, Sget when it is related
to commit and retrieve of inventories. The sub-routines will be
later invoked by S; while reading them, think of the simula-
tor’s behaviour as a simulation strategy for the corresponding
protocols Πput, Πget, Πvalid, Πbackup, Πnet, and Πmatch. Each
sub-routine invokes A and receives messages from it. The sub-
routines use Sget and Sput above. Since we are working in the
hybrid model, whenever A interacts with an ideal functionality
the simulator receives A’s inputs to the functionality in the
clear, and thus it can perfectly emulate the output of the hybrid
functionality.

Sput: When a trader Pi commits to an inventory, it acts as
a prover while the other traders act as verifiers. If Pi

is corrupted, S needs to simulate the views of both the
prover Pi and the corrupted verifiers Pj , by receiving the
inputs from Pi and forwarding them to each corrupted
verifier Pj �=i. Otherwise, S only needs to simulate the
view of the corrupted verifiers Pj , by forwarding �0� and

ρ = Add(T , �0�) to each corrupted verifier Pj . In both
case S simulates the output of F token for each corrupted
players, abort the simulation if any check fails.

Sget: Similar to Sput but using F inv and Fuinv.

Svalid: Similar to Sput but using Foc, F rng, Fnet, and F zero+ .
Sbackup: Similar to Sput but with F rng, Fnet and Fpcheck.
Snet: When a trader Pi needs to be checked for a non-negative

instant net position, it acts as a prover while the other
traders act as verifiers. The steps are also similar to Sput
but with F rng, Fnet, Fflags and Fcompare.

Smatch: When a trader Pi posts an order, it acts as a prover
together with some other trader Pi′ with a matching order,
while the other traders act as verifiers. We distinguish four
cases for the honesty of Pi and Pi′ . The steps are also
similar to Sput but with Foc and Fmatch.

b) Simulator description.: We are now ready to de-
scribe the simulator. In each round t ≤ T , the simulator S
runs as follows depending on the current phase the protocol.

Initialization: Let Pi be the trader committing to a good
inventory. If Pi is corrupted:

1) Receive the commitments of inventory values and �τi�
from Pi; obtain the inputs that A sends to F zero+ and
Fec, and simulate the output of such ideal functionalities
for each corrupted trader in I .

2) Forward (init, Pi,mi) to FCFM; if the ideal functionality
returns 0 simulate an abort of the protocol.

3) Receive the decommitments corresponding to �vi�, �v̂i�,
�ci�, �fbad,i�, �fdel,i�, �fout,i�, and simulate an abort of the
protocol in case such values are not valid openings.

4) Run Sput (for the case of corrupted Pi).

If Pi is honest we proceed as follows.

1) Forward commitments to zero for each of the values
broadcast by Pi in the first step of the initialize phase;

obtain the inputs that A sends to F zero+ and Fec, and
simulate the output of such ideal functionalities for each
corrupted trader in I .

2) Open the commitments to zero corresponding to �vi�,
�v̂i�, �ci�, �fbad,i�, �fdel,i�, �fout,i�.

3) Run Sput (for the case of honest Pi).

Post/Cancel Order: Let Pi be the trader posting an order
or canceling a previous order. We distinguish two cases for
Cancel Order and 4 cases for Post Order. If Pi is corrupted::

1) In case of Post Order, receive the values (1, l, v) and
�i� from Pi; forward (post order, Pi, t, l, v) to FCFM.
Otherwise, receive the values t′ and (−1, l, v) from Pi;
forward (cancel order, Pi, t

′) to FCFM.
2) Run Svalid and Snet (for the case of corrupted Pi).
3) In case of Post Order, for each command (match, t′, l, v′)

received from FCFM run Smatch and then Snet (for the case
of corrupted Pi).

If Pi is honest: we proceed as follows.

1) In case of Post Order, receive (post order, t, l, v) from
FCFM. Otherwise receive (cancel order, t′) from FCFM.

2) Run Svalid and Snet (for the case of honest Pi).

350



Sub-protocol Πput: The protocol is run by (P1, . . . , PN ) in order to let Pi commit to a new inventory by adding the commitment of
the inventory token to a Merkle Tree T (resulting in a new root ρ∗).
1) Pi picks ri ←$ {0, 1}∗, computes τi = Com(mi||vi||m̂i||v̂i||ci||fbad,i||fdel,i||fout,i; ri), and broadcasts �τi�←$ Com(τi).
2) Pi sends (Pi, x

token
i , wtoken

i ) and each other Pj �=i sends (Pj , x
token
j ) to F token.

3) Pi runs ρ∗ = Add(T , �τi�) and broadcasts ρ∗. The other traders accept ρ∗ iff the token has been correctly added to the tree.
Sub-protocol Πget: The protocol is used when a trader either to post a new order (δc = 1, l, v), or cancel a pending order (δc = −1, l, v),

or simply retrieve an unspent inventory that was committed at round t′ ≤ t into a Merkle Tree T ; any spent token is rejected.
1) Pi recovers path = path(T , �τ ′i�) and broadcasts τ ′i .
2) Pi sends (Pi, x

inv
i , winv

i ) and each other Pj �=i sends (Pj , x
inv
j ) to F inv. The token τ ′i is now marked as spent by all traders.

3) If (δc, l, v) 	= (0, 0, 0), additionally Pi sends (Pi, x
uinv
i , wuinv

i ) and each other Pj �=i sends (Pj , x
uinv
j ) to Fuinv.

Fig. 9: Sub-protocols Πput and Πget

Initialize Phase: This phase runs in the first round where each trader Pi commits to a good inventory with cash mi.
1) Trader Pi commits to and broadcasts �mi�, �vi�, �m̂i�, �v̂i�, �ci�, �fbad,i�, �fdel,i�, �fout,i�

where (m̂i = mi and vi = v̂i = ci = fbad,i = fdel,i = fout,i = 0).
2) Trader Pi broadcasts a token �τi�, where τi = Com(mi||vi||m̂i||v̂i||ci||fbad,i||fdel,i||fout,i; ri) with ri ←$ {0, 1}∗.

3) Pi sends (Pi, �mi�,mi) and each other Pj �=i sends (Pj , �mi�) to F zero+ .
4) Pi sends (Pi, (�m̂i�, �mi�), (m̂i,mi)) and each other Pj �=i sends (Pj , (�m̂i�, �mi�)) to F ec.
5) Pi decommits �vi�, �v̂i�, �ci�, �fbad,i�, �fdel,i�, �fout,i� to show the values are 0.
6) All traders run Πput.
7) Set TU := T .

Post/Cancel Order Phase: This phase is run in order to post an order o = (t, l, i, v) at round t (where l ≥ lbuy for v < 0, and l ≤ lsell
for v > 0) or to cancel an order o = (t′, l, i, v).
1) Pi broadcasts the values (1, l, v) and a commitment �i� (resp. Pi broadcasts the values t′ and (−1, l, v) in Cancel Order).
2) All traders run Πvalid then Πnet.
3) In case of Post Order, starting from t′ = 1, for each matching entry (t′, l, �i′�, v′) ∈ O such that v · v′ < 0, until v = 0 or

t′ = t, all traders run Πmatch then Πnet.
Margin Settlement Phase: This phase is run whenever at least one inventory was added to the Merkle Tree T during the sub-protocol

Πnet. The protocol goes back to the invoking phase afterward.
1) For every unspent inventory of Pi in T , each o′ = (t′, l, �i�, v) has to be canceled:

a) Pi broadcasts the values t′ and (−1, l, v).
b) Pi sends (Pi, �i�, ri) to Foc, while Pj �=i sends (Pj , �i�).
c) All traders run Πvalid.
d) Pi forwards f∗del,i and fbad,i to Fcompare; if Fcompare returns 1, proceed to next step, else go back to step (a).

2) The traders run Πnet, and return to step 1 if there is any new broke inventory.
3) For every broke unspent inventory of trader Pi in T , offset the volume holding vi until vi = 0. In particular, Pi locally looks

up the order book from t′ = 1 to t′ = t for an order o′ = (t′, l, �i′�, v′) (where l = lsell for vi < 0, and l = lbuy if vi > 0), and
then the following steps are performed for each o′:
a) The traders run Πmatch.
b) Pi forwards f∗out,i and fbad,i to Fcompare. If Fcompare returns 1, proceed to next step, and else go back to step (a).

4) The traders run Πnet, and return to step 1 if there is any new broke inventory.
5) All traders run Πbackup to check and fork a backup tree, otherwise, the traders proceed to Mark to Market using the tree TU .

Mark to Market Phase: This phase is either called during Margin Settlement, or in the last round, where every trader Pi retrieves and
commits to a good inventory with new marked-to-market values.
1) All traders run Πget.
2) Pi computes m∗i := m̂i

∗ := mi + p̄ · vi and set v∗i := v̂i
∗ := c∗i := f∗bad,i := f∗del,i := f∗out,i := 0.

3) Pi broadcasts �m∗i �, �v∗i �, �m̂i
∗�, �v̂i

∗�, �c∗i � and �f∗bad,i�, �f∗del,i�, �f∗out,i�.
4) Pi decommits �v∗i �, �v̂i

∗�, �c∗i � and �f∗bad,i�, �f∗del,i�, �f∗out,i�. to show the values are 0.
5) Pi sends (Pi, x

mtm
i , wmtm

i ) to Fmtm, while Pj �=i sends (Pj , x
mtm
j ).

6) Pi sends (Pi, (�m̂i
∗�, �m∗i �), (m̂i

∗,m∗i )) and each other Pj �=i sends (Pj , (�m̂i
∗�, �m∗i �)) to F ec.

7) All traders run Πput.

Fig. 10: The protocol ΠDFM

3) In case of Post Order, for each command (match, t′, l, v′)
received from FCFM run Smatch and then Snet (for the case
of honest Pi).

If Pi is honest and Pi′ is corrupted (or viceversa):

proceed as above, depending on who is honest/corrupted.

Margin Settlement: Note that during this phase S always
learns the list of pending orders that are canceled, as a public
output of FCFM. If Pi is corrupted we proceed as follows.

351



1) For each order to be canceled in an unspent inventory:
a) Receive the values t′ and (−1, l, v) from Pi; obtain the

inputs that A sends to Foc, and simulate the output of
such ideal functionality for each corrupted trader in I .

b) Run Svalid and Snet (for the case of corrupted Pi).
c) Obtain the inputs that A sends to Fcompare, and sim-

ulate the output of such ideal functionality for each
corrupted trader in I .

2) For each broke unspent inventory:
a) Run Smatch and Snet (for the case of corrupted Pi).
b) Obtain the inputs that A sends to Fcompare, and sim-

ulate the output of such ideal functionality for each
corrupted trader in I .

3) Run Sbackup (for the case of corrupted Pi).

If Pi is honest: Same as above, except that the values
(l, v′) for each order to be canceled are obtained from FCFM.

Mark To Market: Let Pi be the trader committing to a good
inventory with marked-to-market values. If Pi is corrupted:

1) Run Sget (for the case of corrupted Pi).
2) Receive the commitments and obtain the inputs that A

sends to Fmtm, and simulate the output of such ideal
functionality for each corrupted trader in I .

3) Run Sput (for the case of corrupted Pi).

If Pi is honest: Proceed as follows.

1) Run Sget (for the case of honest Pi).
2) Forward commitments to zero for each of the values

broadcast by Pi in the second step of the Mark to
Market phase; obtain the inputs that A sends to Fmtm,
and simulate the output of such ideal functionality for
each corrupted trader in I .

3) Run Sput (for the case of honest Pi).

c) Indistinguishability of the simulation.: We need to
show that for all PPT adversaries A, all I ⊆ [N ], and every
auxiliary input z ∈ {0, 1}∗, the following holds:

REALΠDFM,A(z),I ≈c IDEALFCFM,S(z),I .

We start by considering a hybrid experiment
HYBRID1A(z),S1,I

with a simulator S1 that runs exactly

the same as S , except that S1 also plays the role of the
ideal functionality FCFM on its own. This means that S1
directly receives the inputs of other honest traders that are
not under control of A. Clearly, for all adversaries A, all
subsets I , and every auxiliary in put z ∈ {0, 1}∗, we have that
HYBRID1A(z),S1,I

≡ IDEALFCFM,S(z),I , as there is no difference

in generating the view of A in the two experiments.

Next, we consider another hybrid experiment
HYBRID2A(z),S2,I

with a simulator S2 that runs exactly

the same as S1, except that whenever S1 committs to zero
values when dealing with dishonest verifiers, S2 commits to
the real values received from the honest provers. The lemma
below shows that the two experiments are statistically close.

Lemma 1. For all (unbounded) adversaries A, all I ⊆ [N ],
and every z ∈ {0, 1}∗: HYBRID1A(z),S1,I

≈s HYBRID
2
A(z),S2,I

Proof: The proof is down to the statistical hiding property
of the non-interactive commitment Com.

We consider a variant of the statistical hiding property
where a distinguisher D is given access to a left-or-right oracle
Olr(b, ·), parametrized by a bit b ∈ {0, 1}, that upon input
v ∈ {0, 1}∗ returns �v� (if b = 0) or �0� (if b = 1), where
|0| = |v|; hence, we have Com is statistically hiding if for all
computationally unbounded D,∣∣∣Pr [DOlr(0,·)(1λ) = 1

]
− Pr

[
DOlr(1,·)(1λ) = 1

]∣∣∣ ≤ ν(λ),

for a negligible function ν : N → [0, 1]. By a standard
hybrid argument, as long as D makes a polynomial (in λ)
number of oracle queries, the above flavor of statistical hiding
is equivalent to that of Com.

Assume there exists a distinguisher D′ and a polynomial
p(λ), such that, for some I ⊆ [N ] and z ∈ {0, 1}∗, and for
infinitely many values of λ ∈ N, we have that∣∣∣∣∣Pr

[
D′(HYBRID1A(z),S1,I

) = 1
]

− Pr
[
D′(HYBRID2A(z),S2,I

) = 1
] ∣∣∣∣∣ ≥ 1/p(λ).

We can construct a distinguisher D breaking the statistical
hiding property of Com as follows. D runs A and simulates
an execution of protocol ΠDFM exactly as S1 does, except that
whenever S1 forwards a commitment to zero, D asks a query
to the left-or-right oracle and sends the output of the oracle to
A; the value v for each oracle query is equal to the value S2
would commit to (instead of committing to zero).

In case D receives always commitments to zero, the view
of A when run by D is identical to the view in the first hybrid
experiment; on the other hand, in case D receives always
commitments to the values queries to the left-or-right oracle,
the view of A when run by D is identical to the view in the
second hybrid experiment.

Thus, D retains the same advantage of D′. This concludes
the proof.

The lemma below says that the view of the adversary in
the last hybrid experiment is computationally indistinguishable
from the view in the real experiment.

Lemma 2. For all PPT adversaries A, all I ⊆ [N ], and every
z ∈ {0, 1}∗, it is HYBRID2A(z),S2,I

≈c REALΠDFM,A(z),I .

Proof: Fix I ⊆ [N ], and z ∈ {0, 1}∗. Consider the
following events, defined over the probability space of the last
hybrid experiment.

Event Badinv: The event becomes true whenever A can
modify the inventory of a corrupted trader Pi, by finding
two distinct valid openings for a token τi. The computational
binding property of Com implies that Pr [Badinv] is negligible.

Event Badspend: The event becomes true whenever A can
double spend the inventory of a corrupted trader Pi, by finding
two distinct valid openings for �τi�. The computational binding
property of Com implies that Pr [Badinv] is negligible.

Event Badforge: The event becomes true whenever A
forges an inventory of a trader Pi, by finding two distinct

352



valid authentication paths for a leaf �τi� of the Merkle Tree.
The computational binding property of the Merkle Tree, which
follows from the collision resistance of the underlying hash
function, implies that Pr

[
Badforge

]
is negligible.

Event Badswap: The event becomes true whenever A claim
a pending order of an honest trader Pi′ , by finding two valid
openings for the commitment �i′�. The computational binding
property of Com implies that Pr

[
Badswap

]
is negligible.

Define Bad := Badinv ∨ Badspend ∨ Badforge ∨ Badswap. It
is not hard to see that conditioning on Bad not happening,
the view of A is identical in the two experiments. This is
because the only difference between the last hybrid and the
real experiment is that in the former experiment the values
mi, vi, m̂i, v̂i, ci, fbad,i, fdel,i, fout,i are read from the internal
storage of S2 (playing the role of FCFM), whereas in the latter
experiment these values are specified by the attacker. Hence,
by a standard argument, for all PPT distinguishers D:∣∣∣Pr [D(HYBRID2A(z),S2,I

) = 1
]

− Pr
[
D(REALΠDFM,A(z),I) = 1

] ∣∣∣ ≤ Pr [Bad] .

The proof of the lemma now follows by a union bound.

Combining the above two lemmas, we obtain that the real
and ideal experiment are computationally close, as desired.

C. Estimating the Cost of Computation

To estimate the burden of computation, we observe that the
summary of each data point from the THTR is described by a
tuple 〈d, np, nc, nm, nt〉 where:

• d is the trading date,
• np is the number of post orders (# increases),
• nc is the number of cancelled orders (# decreases),
• nm is the number of matched orders (# actual trades),
• and nt is the number of traders.

As the plain implementation cannot go beyond 10 traders
we have assumed that only 10 traders could actually participate
(so we cap nt at 10). With this cap made, we estimate
the required computation in a naı̈ve MPC implementation
according to Fig. 2 as follows.

• For Post/Cancel Order, an order requires 3 sub-steps per
trader which yields 3nt sub-steps to process an order.

• Similarly, for Match Order, an order requires 2 sub-steps
per trader hence 2nt sub-steps to match a trade.

• In each sub-step, one phase must walk through
np

2 orders
in average (These operations contribute to most of the
generic MPC overhead).

They are then multiplied by the time τmpc(nt) required by the
elementary MPC operation Fdtc.

Differently, while generic MPC requires all traders to
compute for one trader, the hybrid protocol allows traders to
produce and verify the proof by themselves at the same time so

the cost is not affected by nt. The proof generation time chybi,gen

and the proof verification time chybi,ver are actually performed
by different traders. This is is not important to calculate the
overall crypto-overhead of operating the market in a distributed

fashion (before moving to the next order both operations must
be done) but will be important for the calculation of the
proportional burden.

Therefore the total time to process a trading day d reported
in Fig. 7 of the single trader follows the equations below:

Tmpc
d =

np

2

⎛
⎝∑

i=p,c

ni3nt + nm2nt

⎞
⎠ τmpc(nt)

Thyb
d =

∑
i=p,c,m

ni

(
τhybi,gen + τhybi,ver + τhybi,mpc(nt)

)

and similarly for the optimized version where the costs have
estimated according to Table XI.

To estimate the fraction of retail and institutional traders
ρt we use the data from [41] as well as the fraction of orders
performed by retail traders ρo (ρt = 0.71, ρo = 0.18). Albeit
TSX and CME are different exchanges, the skeweness against
retail traders might be even more pronounced the more active
the market. For the MPC naı̈ve computation a party has to
participate to the computation irrespectively to whether she
actually made any order. So the overall burden of computation
by retail traders for naı̈ve MPC (Fig. 8) is as follows:

Rmpc
d = ρtntT

mpc
d

In the hybrid approach, a retail trader only needs to verify
proofs when an institutional trader has to generate proof, hence
the computation by retail traders (Fig. 8) is determined by the
following equation:

Rhyb
d = ρtnt

∑
i=p,c,m

ni

(
ρoτ

hyb
i,gen + (1− ρo)τ

hyb
i,ver + τhybi,mpc

)

353


