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An Empirical Methodology to Evaluate
Vulnerability Discovery Models

Fabio Massacci and Viet Hung Nguyen

Abstract—Vulnerability Discovery Models (VDMs) operate on known vulnerability data to estimate the total number of vulnerabilities
that will be reported after a software is released. VDMs have been proposed by industry and academia, but there has been no
systematic independent evaluation by researchers who are not model proponents. Moreover, the traditional evaluation methodology has
some issues that biased previous studies in the field. In this work we propose an empirical methodology that systematically evaluates
the performance of VDMs along two dimensions (quality and predictability) and addresses all identified issues of the traditional
methodology. We conduct an experiment to evaluate most existing VDMs on popular web browsers’ vulnerability data. Our comparison
shows that the results obtained by the proposed methodology are more informative than those by the traditional methodology. Among
evaluated VDMs, the simplest linear model is the most appropriate choice in terms of both quality and predictability for the first 6 – 12
months since a release date. Otherwise, logistics-based models are better choices.

Index Terms—Software Security, Empirical Evaluation, Vulnerability Discovery Model, Vulnerability Analysis
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1 INTRODUCTION

T IME-based vulnerability discovery models (VDMs)
are parametric functions counting the total number

of vulnerabilities of a software at an arbitrary time
t. For example, if Ω(t) is the cumulative number of
vulnerabilities at time t, the function of the linear model
(LN) is Ω(t) = At+B where A,B are parameters of LN,
which are estimated from historical vulnerability data.

VDMs can be seen as a specialization of Software Re-
liability Growth Models (SRGMs) which were proposed
to forecast the total number of defects in a software
that could be found as a consequence of testing and
debugging procedures [17], [51], [26]. The purpose of a
VDM is not to identify vulnerable components (as defect
prediction papers do e.g., [29], [42], [15]) but to evaluate
the security profile of the software as a whole. Accurate
VDMs can be used by software vendors and users to
understand security trends, plan patches and updates,
forecast security investments, or decide which open
source software to bundle with one’s own products.

VDMs were initially based on the same principles
behind SRGMs. Yet, empirical evidence (in the reported
literature and this paper) shows that functions which
describe laws for vulnerabilities differ from laws for
software bugs SRGMs. For example, Anderson’s Ther-
modynamic (AT) model [8] was one of the first VDM and
is explicitly based on SRGM concepts. Yet, it is the worst
model in terms of fitting empirical data. Some authors
argued that such difference is due to sociological factors
[2], [28]: the drop in rate of discovery can be explained
by a drop in interest about a software version rather
than by the increased difficulty of finding vulnerabilities.
Independent experiments showed that many vulnerabil-
ities reported for new versions of a software were indeed
present in its previous versions [36], [22].
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SRGM: Software Reliability Growth Model

Fig. 1. Taxonomy of Vulnerability Discovery Models.

Fig. 1 sketches a taxonomy of major VDMs, which
could be classified into two categories: time-based and
effort-based. The former measures the total number of
vulnerabilities in the course of time, as previously dis-
cussed. The latter counts vulnerabilities regard to the
testing effort. This work focuses on time-based VDMs,
which were also the major concern of most VDM papers
in the literature. Apart from the simplest linear model
(LN) [4], and Logarithmic Poisson (LP) model, time-
based VDMs (at the time of writing this paper) include
Anderson’s Thermodynamic (AT) model [8], Rescorla’s
Quadratic (RQ) and Rescorla’s Exponential (RE) models
[39], Alhazmi & Malaiya’s Logistic (AML) model [2],
AML for Multi-version (MVDM) model [19], Weibull
model (JW) [18], and Folded model (YF) [53]. Hereafter,
we shortly refer to time-based VDM as VDM.

There are two fundamental questions in past VDM
papers: “how well does a VDM fit the data?”, and “which
model is better than another?”.
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Many studies tried to address these questions but the
used methodologies suffer from a number of issues that
we document at length in Section 3. In summary:

1) Most past studies do not clearly specify what
counts as one vulnerability. While the conceptual
notion of vulnerability as a software bug is well
understood [20], [35], VDM papers counted entries
in vulnerability databases. Example 1 and Fig. 2(a)
in Section 3.2 show how the same conceptual vul-
nerability could count as 1 or 3 depending on
which database is chosen. Different counts may
favor different VDMs.

2) Some studies (e.g., [47], [49]) considered all versions
of a software as a single entity. They belong to a
product line, but differ by non-negligible amount
of code. Considering them as a single entity makes
the evaluation imprecise (e.g., Fig. 2(b)).

3) The methodology used in the literature estimates
the parameters of a VDM by using all available
vulnerability data (at the time of the writing of
the paper). This is in sharp contrast with defect
prediction techniques in software engineering (e.g.,
[29], [42], [16]) where only a part of the data is used
for fitting, another part is used for validation (e.g.,
cross-validation, next-release validation). For ex-
ample, while fitting AML to the data set of Win2K
vulnerabilities, the experiment in [6] reported a
significance level p-value = 0.44, which could be
positive; whereas p-value is 0.05 in [7], which is
definitely bad. Barring errors, this can only be
explained by the (misleading) methodology.

4) The p-value of a statistical test tells us the chance
that the estimated model is different from the data.
If p-value ≥ 0.05, past papers concluded the model
well fits the data. Lower p-value-values can be
soundly used to reject a bad model, but being
barely over the threshold is overly optimistic to
conclude a model is good. Further, a model is not
just “valid” or “invalid”. Models have evidence in
their favor, and evidence against them. Reporting a
single value may obscure temporal properties (e.g.,
best in the first 6 months since release).

5) Moreover, no study used VDMs as a predictor, for
example, to forecast data for the next quarter.

We proposed an empirical methodology to assess the
empirical performance of VDMs. The methodology con-
sists of two quantitative metrics, quality and predictability,
and a fully guided process. To evaluate the methodology
we apply it to some appropriate domain. In the past,
researchers chose operating systems as target applica-
tions to evaluate VDMs, but paid little attention to other
software classes. Nowadays, web browsers are one of
the most important internet applications, and are the
products with most vulnerabilities, besides operating
systems [52]. According to Google [38] more than two-
third of attacks to internet users exploit vulnerabilities
of browsers or their plug-ins.

TABLE 1
Performance summary of VDMs.

Model Performance

AT, RQ should be rejected due to low quality.
LN is the best model for first 12 months(∗).

AML is the best model from 13th to 36th month (∗).
RE, LP may be adequate for first 12 months (∗∗).
JW, YF may be adequate from 13th to 36th month(∗).

(∗): in terms of quality and predictability for next 3/6/12 months.
(∗∗): in terms of quality and predictability for next 3 months.

We demonstrated the methodology by analyzing the
AML, AT, JW, RQ, RE, LP, LN and YF models on
Internet Explorer (IE), Firefox, Chrome, and Safari. We
selected all major releases which had at least one year
of vulnerability data till the collection date.

The experiment reveals interesting findings (TABLE 1):
the AT and RQ models are not adequate; the traditional
methodology used the maximum horizon of 36 months
and allowed a mediocre model (JW/YF) to apparently
outperform better but specialized models (LN,AML) that
only applied for a limited time span. Such comparison
was not done in past studies, because the traditional
evaluation methodology did not allow it as VDMs were
fitted to a single horizon.

In the next section (§2) we present the terminology.
Then we review related work and discusses how they
impact our study (§3). Section 4 details our proposed
methodology. Section 5 reports the vulnerability ac-
quisition for browser vulnerabilities and Section 6 the
evaluation experiment of VDMs on browsers. Section 7
compares the proposed methodology to the traditional
one using the experiment results. Last we discuss the
threats to the validity (§8) and conclude this work (§9).

2 TERMINOLOGY

• A vulnerability is “an instance of a [human] mistake
in the specification, development, or configuration
of software such that its execution can [implicitly
or explicitly] violate the security policy”[20], later
revised by [35]. The definition covers all aspects of
vulnerabilities discussed in [9], [10], [13], [40].

• A data set is a collection of vulnerability data ex-
tracted from one or more data sources.

• A release refers to a version of an application e.g.,
Firefox v1.0. A release is considered as a major re-
lease depending on its vendor’s version numbering
scheme. For example the version numbers of Firefox
major releases include 1 decimal digit (e.g., Firefox
v1.5, v3.5), whereas the others browsers use only
digits before the decimal (e.g., Chrome v1, IE v4). We
follow software vendors’ decision on what a major
release is (see Section 4.1).

• A horizon is a specific time interval sample. It is
version by the number of months since the release
date, e.g., 12 months since the release date.
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• An observed vulnerability sample (or observed sample,
for short) is a time series of monthly cumulative vul-
nerabilities of a major release since the first month
after release to a particular horizon.

• An evaluated sample is a tuple of an observed sample,
a VDM, and its goodness-of-fit for this sample.

3 RELATED WORK

We recap studies about SRGMs, VDMs, and defect pre-
diction models to highlight similarities and differences.
Then we perform a complete review of VDMs studies.

3.1 SRGMs and Defect Prediction Models

SRGM papers try to predict the defect (or bug) discovery
rate in a software product by its own developers, as a
proxy for the software failure rate [17]. The first and most
representative example by Goel and Okumoto [17] has
two parameters: the expected total number of defects,
and the rate at which the defect discovery rate decreases.
The researchers assume that finding bugs become ex-
ponentially harder as time goes by. Yamada et al. [51]
used the gamma function instead of the exponential
one. Musa et al. [26] proposed the LP model, which
assumed an infinite number of bugs. For a discussion
about SRGMs, interested readers are referred to [50].

VDMs can be seen as a specialization of SRGMs which
focus on security bugs. Yet, this paper and a number
of studies [6], [2], [7], [5] showed that VDMs based on
SRGMs are empirically inadequate.

The need to consider security defect distinctly from
ordinary software bugs has been argued by a number of
authors. Roger Needham [28] claimed that security bugs
are different from ordinary bugs, “not for a technical but
a social reason” because “if a security bug is found in a
system there is a community of people who make their
personal priority to make the wrong behavior happen,
typically in other people’s computers”. This adversarial
process makes the vulnerability discovery process dif-
ferent from normal bug finding as Alhazmi and Malaiya
also advocated [2]. At first, people need time to study the
software, so they discover few vulnerabilities. When they
understand the software, they rapidly discover many
vulnerabilities. Finally, the discovery process flattens not
because vulnerabilities are harder to find but rather
because people lose interest in finding them.

To capture the above phenomenon Alhazmi and
Malaiya proposed a logistic, s-shaped model in their
seminal paper [2]. The AML model has been evaluated in
several applications spanning in various software classes
(TABLE 3), such as operating systems [6], [2], [7], [5],
server applications [3], [48], [49], and browsers [47]. Our
study [22] showed that vulnerabilities found for the cur-
rent version may, as a by-product, affect earlier versions
thus generating an increase of “after-life” vulnerabilities,
i.e. vulnerabilities of a version that has long gone out of
support. The presence of after-life vulnerabilities may

explain why we do not find a strong empirical evidence
that the curve may flatten at the end.

The LN model was firstly proposed as a VDM by
Alhazmi and Malaiya [4]. In [4], they analyzed AML
and LN models in Windows 98/2K and RedHat Linux
7.1. Rescorla [39] proposed RQ and RE models. He
evaluated them on WinNT 4.0, Solaris 2.5.1, FreeBSD 4.0
and RedHat 7.0. Rescorla discussed many shortcomings
of National Vulnerability Database (NVD), but his study
still heavily relied on it. We partially address these
shortcomings by taking into account other data sources.

Joh et al. [18] proposed JW model, and compared it to
AML on WinXP, Win2K3 and Linux (RedHat and Red-
Hat Enterprise). The goodness-of-fit of JW was slightly
worse than AML. In other work, Younis et al. [53]
proposed YF model and compared it to AML on Win7,
OSX 5.0, Apache 2.0, and IE8. The paper claimed that
YF was somewhat better than AML.

Kim et al. [19] introduced AML for Multiple-Version
(MVDM), a generalization of AML. It divides vulner-
abilities of a version into several fragments. The first
fragment includes vulnerabilities affecting this version
and past versions, and other fragments include shared
vulnerabilities. The authors compared MVDM to AML
on Apache and MySQL.

Defect prediction papers aim at predicting whether
a source entity (e.g., method, file, component) has a
defect. In contrast to SRMGs, they typically try to predict
individual vulnerable components based on some charac-
teristics of the software components. For instance, some
papers used code churn [27], [15], library import patterns
[29], code metrics [34], [42], [11], dependencies [54], [32].
These models were often evaluated by two techniques:
cross-validation, and next-release (or future) prediction. The
former divides the data into k folds, then uses k−1 folds
as the training set, and 1 fold as the testing set. The latter,
as its name suggested, divides the data by the versions
affected by defects, then uses data of older versions as
the training set, and data of newer ones as the testing
set. Such approach is not used in past VDMs studies.

3.2 An Analysis of the VDMs Evaluation Results
TABLE 2 summarizes the methodology used in VDM
evaluation studies whereas TABLE 3 summarizes the
evaluation results. In TABLE 2 each study is reported
with its target VDMs and the classes of software ap-
plications used to conduct the experiment. The table
also reports the evaluation methodology of the studies.
VDMs have been evaluated in several software classes
spanning from server applications, browsers, to operat-
ing systems. We briefly discuss some of the issues behind
the methodological choices behind these studies.

Vulnerability Count Methods
Most of past studies (see TABLE 2) did not clarify
exactly what was counted as one vulnerability, and what
considered as one vulnerable software. Since the purpose
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TABLE 2
Summary of VDM evaluation studies.

Akaike Information Criteria (AIC) measures the relative quality of a statistical model for a given data set. Average Error (AE) and Average Bias (AB) measure the
average ratios between the actual data and the generated model.

Validation Method

Study Validated VDM Software Class Fit Model GoF test Predictability

Alhazmi et al.[6] AML Operating System Single time horizon χ2 test –
Alhazmi et al.[2] AML, AT, LP, RE, RQ Operating System Single time horizon χ2 test, AIC –
Alhazmi et al.[7] AML, LN Operating System Single time horizon χ2 test –
Alhazmi et al.[3] AML, LN Web Servers Single time horizon χ2 test AE,AB
Alhazmi et al.[5] AML, AT, LN, LP, RE, RQ Operating System Single time horizon χ2 test, AIC –
Woo et al.[48] AML Operating System, Web Servers Single time horizon χ2 test –
Woo et al.[47] AML Browser Single time horizon χ2 test –
Woo et al.[49] AML Operating System, Web Servers Single time horizon χ2 test AE,AB
Joh et al.[18] AML, JW Operating System Single time horizon χ2 test –
Kim et al.[19] AML, MVDM DBMS, Web Servers Single time horizon χ2 test –
Younis et al.[53] AML, YF Browser, Operating System, Web Servers Single time horizon χ2 test AE,AB
Rescorla [39] RE, RQ Operating System Single time horizon unknown –

of a VDM is to estimate the number of bugs, this lack of
clarity can make reported results difficult to reproduce.

For example, one vulnerability count could be either
an advisory report by software vendors (e.g., Mozilla
Foundation Security Advisories – MFSA), or a secu-
rity bug causing software to be exploited (e.g., Mozilla
Bugzilla), or an entry in third-party data sources (e.g.,
an NVD entry, or CVE, alternatively). A VDM could
perfectly fit data counts using a data source, but poorly
fit data counts using different data sources.

Example 1 In Fig. 2(a), a flaw concerning a buffer
overflow in Firefox v13.0 is reported as 1 MFSA entry
(MFSA-2012-40), 3 Bugzilla entries (744541, 747688, and
750066), and 3 CVEs entries (CVE-2012-1947, CVE-2012-
1940, and CVE-2012-1941). The directional connections
illustrate cross references among entries.

TABLE 9 later in the paper shows how counting
method has a massive impact on the results: by using
NVD alone, LN scores 45% of not-fit samples (third-
worst), while the YF model makes a 55% of good fits
(best of all). By counting number of bugs correlated with
NVD entries, i.e., NVD.NBug, the roles are reversed: LN
exhibits a 41% of good fits (second best), while YF shows
a disastrous 50% of not-fit samples (among the worst).

Some studies [47], [49] assumed all software versions
as a single entity, and counted vulnerabilities for it.

Example 2 Fig. 2(b) visualizes the second fold of this
issue in a plot of the cumulative vulnerabilities of Firefox
v1.0, Firefox v1.5, and Firefox v1.0-1.5 as a single entity.
Clearly, the function of the “global” version is different
from the functions of the individual versions.

Many VDMs assume that the total number of vulner-
abilities in a vulnerable entity (i.e., software) is a time
independent constant (e.g., [2], [18], [53]). Considering
the combination of all releases as a single entity would

MFSA

Bugzilla

NVD

MFSA-2012-40

CVE-2012-1940

CVE-2012-1941

744541

747688

750066

CVE-2012-1947

The arrow-headed lines indi-
cates the cross-references be-
tween entries. One conceptual
flaw is counted differently in
three databases. These counts
are all legitimate. So what
should we choose?

(a) A conceptual security flaw in three data sources
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(b) Trends between individual versions and their combination

Fig. 2. The two folds of the vulnerability counting issue.

severely violate this assumption since software keeps
evolving to introduce new functionality, and thus keeps
introducing new vulnerabilities over time. For example,
each Firefox version has a code base, which may differ by
30% or more from the immediately preceding one, and
10%−30% new vulnerabilities were introduced [22]. The
same applies to Chrome [31].

Example 3 AML and JW curves fitted the ‘bundled’
Linux data set (i.e., all versions as a single entity) but
the models fitted for the single versions v6.0 and v6.2
were statistically different [18].

One could consider all 114 versions of Chrome
35.0.1916.1,. . . , 35.0.1916.114 as separate entities instead
of the major version Chrome 35.0. The notion of VDM
would be meaningless as every version would have a mi-
nuscule lifetime. Further, all minor versions are typically
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released mainly to fix (security) bugs in a major release,
and are unlikely to introduce new vulnerabilities. Thus,
we consider only major releases.

Choice of the Statistical Test

Most of studies (see TABLE 2) shared a common evalu-
ation methodology which fitted VDMs to a single time
horizon of collected vulnerability data. They used χ2 test
to determine whether a VDM fits actual data. If the test
returned p-value ≥ 0.05, they claimed the VDM to be a
good fit to the data. TABLE 3 summarizes the evaluation
results for VDMs. This table reports the p-values returned
by the goodness-of-fit test between generated curves and
actual data as reported in the cited papers. In TABLE 3, p-
values greater than or equal 0.80 (i.e., good fit) are bold,
p-values between 0.05 and 0.80 (i.e., what we consider
an inconclusive fit, but some authors considered a good
fit) are reported in italic. The remaining values with p-
values lower than 0.05 are normally considered a poor fit
by statistical tests. The χ2 test seems to be the most ap-
propriate one among other goodness-of-fit tests, such as
the Kolmogorov-Smirnov (K-S) test, and the Anderson-
Darling (A-D) test. The K-S test is an exact test, but only
applies to continuous distributions and the parameters
of the distribution cannot be estimated from the data.
Hence, we cannot apply it to perform the goodness-of-
fit test for a VDM. The A-D test is a modification of the
K-S test that works for some distributions [33, Chap. 1],
but some VDMs violate its assumption.

Some studies [2], [5] employed Akaike Information
Criteria (AIC) [1], which measures the relative quality
of a statistical model for a given data set, to compare
VDMs. However, AIC gives no information about the
absolute quality. It thus cannot be used to determine the
goodness-of-fit of VDM. Moreover, AIC varies with the
number of free parameters of a VDM. A model with
more free parameters naturally has an advantage in AIC.

Therefore, we do not use AIC, but rely on the χ2 test
in our methodology because it yields comparable results
between traditional analysis and ours (when the horizon
is the largest data set available).

The second issue is the choice of the value to claim
that a VDM was a good fit to a data set. Most studies
reported that a model was a good fit when the χ2 test
returned p-value ≥ 0.05. Statisticians use a p-value lower
0.05 to reject a model but it does not mean that models
with a higher value are good.

We avoid this pitfall by using the statistical practice
of selecting good models with an acceptance threshold
of 0.80 [24, Chap.8]. A p-value between the acceptance
threshold of 0.8 and the rejection value of 0.05 means
that evidence is inconclusive. Since a model may obtain
a good fit on some data, a bad fit on other data, and an
inconclusive fit elsewhere we propose an inconclusiveness
contribution factor ω as a mean to study the impact of
inconclusive VDM in the quality analysis (§4.2).

Model Fitness as a Single Data Point

Previous studies took a snapshot of vulnerability data,
and fitted VDMs to this entire snapshot. The single p-
value result of this fitting process was used to directly
conclude whether a model was “better” than another.
At first, this brittle claim only evaluates a model at
a single time point (of writing of the paper) and not
how this valuation may change over time. This makes
repeatability and comparison of experiments difficult.
Second, it might allow mediocre models (just barely
adequate throughout a product lifetime) to get a better
score that specialized models (very good but only for a
part of a product’s lifetime).

Example 4 In TABLE 3 AML definitely fitted Win98 in
[48], [49] (p-value = 1, essentially a perfect prediction),
but inconclusively fitted it in [6] (p-value = 0.74) and
[7] (p-value = 0.21). The p-values that AML fitted Win2K
vulnerabilities in [6], [7] were 0.44 and 0.05, respectively.
While the former is inconclusive, the latter is essentially
reject (i.e., the model is totally unrelated to the data).

This is a clear evidence that the goodness-of-fit of a
model is changing over time. So, we report the values
of VDM goodness-of-fit as a function of time.

Maximal Horizon vs Training and Test Time Horizons

The traditional procedure for VDMs evaluation (all data
is training data) has an additional drawback. It is in
sharp contrast with the standard procedure used by de-
fect prediction approaches (separating data into training
and testing sets) and does not tell us anything about the
ability of VDMs to be a good “law of nature” that is able
to predict extent the future.

The predictability of VDMs was also discussed in
some studies [3], [49], [53] by exploiting two measures,
namely Average Error (AE) and Average Bias (AB) [21].
However the application of AE and AB in these studies
was inappropriate. The authors used a VDM fitted to
the data observed at time tmax, and measured its “pre-
dictability” at time ti < tmax. In other words, this is
hardly ‘prediction’ in the common sense.

We avoid the above pitfall by analyzing the pre-
dictability of VDMs in a natural way. Concretely, we fit a
VDM to the data observed at time t0, and use the fitted
model to evaluate against data observed at time tj > t0.

4 METHODOLOGY

In this work, we address the following two questions:

RQ1 How to evaluate the performance of a VDM?

RQ2 How to compare between two or more VDMs?
TABLE 4 summarizes the key steps of our methodol-

ogy to answer the research questions, while addressing
the issues discussed in the related work section.
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TABLE 3
Summary of VDM evaluation results (p-values) in the literature.

This table reports the returned p-values for the goodness-of-fit tests. The values are formatted to indicate the goodness-of-fit of the VDM, particularly: blue,bold-good
fit; italic-inconclusive; red-not fit.
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LP [2]∗ 2005 1.00 0.00 0.97
[5]∗ 2008 0.00 0.00 0.00 0.00

MVDM [19] 2007 1.00 1.00
RE [2]∗ 2005 0.93 0.00 0.96

[39] 2005 0.29 0.33
[5]∗ 2008 0.00 0.00 0.00 0.00

RQ [2]∗ 2005 0.92 0.00 1.00
[39] 2005 0.17 0.17 0.59
[5]∗ 2008 0.00 0.26 0.00 0.97

YF [53] 2011 0.98 0.94 0.97 1.00
∗: the validation experiment is conducted by people who are not (co-)authors of the corresponding model.

4.1 Step 1: Acquire Vulnerability Data
We classify data sources used to study VDMs for soft-
ware products. In the sequel software vendor is the com-
pany or institute that develop the software product(s).
• Third-party advisory (TADV): is a vulnerability

database maintained by a third-party organization
(not the software vendor) e.g., NVD, Open Source
Vulnerability database (OSVDB), etc.

• Vendor advisory (ADV): is a vulnerability database
maintained by the software vendor, e.g., MFSA, Mi-
crosoft Security Bulletin. Vulnerability information
in this DB has been always evaluated by the vendor.

• Vendor bug tracker (BUG): is a bug-tracking database,
usually maintained by the vendor.

For our purposes, a vulnerability data entry must have
the following minimal features:
• Identifier (id): is the identifier of a vulnerability.
• Disclosure date (date): refers to the date when a

vulnerability is reported to the database1.
• Vulnerable Releases (R): is a list of releases affected

by a vulnerability.

1. The actual discovery date might be significantly earlier than that
date and it is difficult to reliably estimate it [41], [25].

• References (refs): is a list of links to other sources.
Not every feature is available from all data sources. To
obtain missing features, we use id and refs to integrate
data sources and extract the desired features from sec-
ondary data sources.

Example 5 Vulnerabilities of Firefox are collected from
three data sources: NVD2, MFSA, and Mozilla Bugzilla.
Neither MFSA nor Bugzilla provides the Vulnerable Re-
leases feature, but NVD does. Each MFSA entry has links
to NVD and Bugzilla. We combine these data sources to
obtain the missing data.

TABLE 5 shows the different data sets used in our
study: third-party (i.e., NVD), vendor advisory, and ven-
dor bug tracker data sets. The descriptions of these data
sets for a release r are as follows:
• NVD(r): a set of CVEs claiming r is vulnerable.
• NVD.Bug(r): a set of CVEs confirmed by at least a

vendor bug report, and claiming r is vulnerable.

2. Other third party data sources (e.g., OSVDB, Bugtraq, IBM XForce)
also report Firefox’s vulnerabilities, but most of them refer to NVD by
the CVE-ID. Therefore, we consider NVD as a representative of third-
party data sources.
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TABLE 4
Methodology overview.

Step 1 Acquire the vulnerability data
DESC. Identify the vulnerability data sources, and the way to count vulnerabilities. If possible, different vulnerability sources should

be used to select the most robust one (e.g., vendor confirmed ones). Observed samples then can be extracted from collected
vulnerability data.

INPUT Vulnerability data sources.
OUTPUT Set of observed samples.

CRITERIA
CR1 Collection of observed samples

• Vulnerabilities should be counted for individual releases (possibly by different sources).
• Each observable sample should have at least 6 data points.

Step 2 Fit the VDM to observed samples
DESC. Estimate the parameters of the VDM formula to fit observed samples as much as possible. The χ2 goodness-of-fit test is employed

to assess the goodness-of-fit of the fitted model based on criteria CR2.
INPUT Set of observed samples.

OUTPUT Set of evaluated samples.
CRITERIA

CR2 The classification of the evaluated samples based on the p-value of a χ2 test.
• Good Fit: p-value ∈ [0.80, 1.0], a good evidence to accept the model. We have more than 80% chances of generating the

observed sample from the fitted model.
• Not Fit: p-value ∈ [0, 0.05), a strong evidence to reject the model. It means less than 5% chances that the fitted model

would generate the observed sample.
• Inconclusive Fit: p-value ∈ [0.05, 0.80), there is not enough evidence to neither reject nor accept the fitted model.

Step 3 Perform goodness-of-fit quality analysis
DESC. Analyze the goodness-of-fit quality of the fitted model by using the temporal quality metric which is the weighted ratio between

fitted evaluated samples (both Good Fit and Inconclusive Fit) and total evaluated samples.
INPUT Set of evaluated samples.

OUTPUT Temporal quality metric.
CRITERIA

CR3 The rejection of a VDM.
A VDM is rejected if it has a temporal quality lower than 0.5 even by counting Inconclusive Fits samples as positive (with weight
0.5). Different periods of software lifetime could be considered:

• 12 months (young software)
• 36 months (middle-age software)
• 72 months (old software)

Step 4 Perform predictability analysis
DESC. Analyze the predictability of the fitted model by using the predictability metric. Depending on different usage scenarios, we

have different observation periods and time spans that the fitted model supposes to be able to predict.
INPUT Set of evaluated samples.

OUTPUT Predictability metric.
CRITERIA

CR4 The observation period and prediction time spans based on some possible usage scenarios (in browsers).

Observation Prediction
Scenario Period (months) Time Span (months)

Short-term planning 6–24 3
Medium-term planning 6–24 6
Long-term planning 6–24 12

Step 5 Compare VDMs
DESC. Compare the quality of the VDM with other VDMs by comparing their temporal quality and predictability metrics.
INPUT Temporal quality and predictability measurements of models in comparison.

OUTPUT Ranks of models.
CRITERIA

CR5 The comparison between two VDMs
A VDM vdm1 is better than a VDM vdm2 if:

• either the predictability of vdm1 is significantly greater than that of vdm2,
• or there is no significant difference between the predictability of vdm1 and vdm2, but the temporal quality of vdm1 is

significantly greater than that of vdm2.
The temporal quality and predictability should have their horizons and prediction time spans in accordance to criteria CR3 and
CR4. Furthermore, a controlling procedure for multiple comparisons should be considered.
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TABLE 5
Formal definition of data sets.

Data set Definition

NVD(r) {nvd ∈ NVD|r ∈ Rnvd}
NVD.Bug(r) {nvd ∈ NVD|∃b ∈ BUG : r ∈ Rnvd ∧ idb ∈ refsnvd}
NVD.Advice(r) {nvd ∈ NVD|∃a ∈ ADV : r ∈ Rnvd ∧ ida ∈ refsnvd}
NVD.NBug(r) {b ∈ BUG|∃nvd ∈ NVD : r ∈ Rnvd ∧ idb ∈ refsnvd}
Advice.NBug(r) {b ∈ BUG|∃a ∈ ADV,∃nvd ∈ NVD : r ∈ Rnvd

∧idb ∈ refsa ∧ idnvd ∈ refsa ∧ clustera(idb, idnvd)}
Note: Rnvd, refsnvd denote the vulnerable releases and references of an en-
try nvd, respectively. ida, idb, idnvd denote the identifier of a, b, and nvd.
clustera(idb, idnvd) is a predicate checking whether idb and idnvd are located next
together in the advisory a.

• NVD.Advice(r): a set of CVEs confirmed by at least
a vendor advisory, and claiming r is vulnerable.
Notice that the advisory report might not mention
r, but later releases.

• NVD.Nbug(r): a set of vendor bug reports confirmed
by a CVE claiming r is vulnerable.

• Advice.NBug(r): a set of bug reports mentioned in a
vendor advisory report, which also refers to at least
a CVE that claims r is vulnerable.

We do not use the NVD alone in our studies. We have
shown in [31] that it may contain significant errors to
the point of tilting statistical conclusions.

An observed sample is a time series of (monthly) cu-
mulative vulnerabilities of a release. It starts from the
first month since release to a month specified by the
experimenter. This time interval is the horizon of the
sample. A month is an appropriate granularity for sam-
pling because week and day are too short intervals
and are subject to random fluctuation. Additionally, this
granularity was the same granularity reported by all
studies listed in TABLE 2.

Let R be the set of analyzed releases and DS be the
set of data sets, an observed sample (denoted as os) is a
time series (TS) defined as follows:

os = TS(r, ds, τ) (1)

r ∈ R is a release in the dataset;
ds ∈ DS is the data set where samples are extracted;
τ ∈ Tr = [τ rmin, τ

r
max] is the horizon of the observed

sample, in which Tr is the horizon range of release r.

In the horizon range of release r, the minimum value of
horizon τ rmin of r depends on the starting time of the first
observed sample of r. Here we choose τ rmin = 6 for all
releases so that all observed samples have enough data
points to achieve statistical applicability of the fitting
test. The maximum value of horizon τ rmax depends on
the data collection period.

Example 6 IE v4.0 was released in September, 1997 [45].
The first month was October, 1997. The first observed
sample of IE v4.0 is a time series of 6 numbers of cu-
mulative vulnerabilities for the 1st, 2nd, . . . , 6th months.
On 30th June 2012, IE v4.0 had been released for 182
months, yielding 177 observed samples. The maximum
value of horizon (τ IEv4.0max ) is 182.

4.2 Step 2: Fit a VDM to Observed Samples

We estimate the parameters of the VDM formula by a
regression method. The fitted curve (or fitted model) is

vdmTS(r,ds,τ) (2)

where vdm is the VDM being fitted; os = TS(r, ds, τ) is
an observed sample from which the vdm’s parameters
are estimated. (2) could be shortly written as vdmos.

Example 7 Fitting the AML model to the NVD data
set of Firefox v3.0 at the 30th month, i.e., the observed
sample os = TS(FF3.0,NVD, 30), generates the curve:

AMLTS(FF3.0,NVD,30) =
183

183 · 0.078 · e−0.001·183·t + 1

Fig. 3 illustrates the plots of three curves AMLTS(r,NVD,30),
where r is FF3.0,FF2.0, and FF1.0.

To measure the goodness-of-fit, we employ Pearson’s
Chi-Square (χ2) and calculate the χ2 statistic value of the
curve by using the following formula:

χ2 =

τ∑
t=1

(Ot − Et)2

Et
(3)

where Ot is the observed cumulative number of vul-
nerabilities at time t (i.e., tth value of the observed
sample); Et denotes the expected cumulative number
of vulnerabilities (the value of the curve at time t). The
larger χ2, the smaller goodness-of-fit. If the χ2 value is
large enough, we can safely reject the model. The χ2 test
requires all expected values be at least 5 to ensure the
validity of the test [33, Chap. 1].

The conclusion whether a VDM curve statistically fits
an observed sample relies on the p-value of the test,
which is derived from χ2 value and the degrees of
freedom (i.e., the number of months minus one). The
p-value is the probability that we wrongly reject the null
hypothesis when it is true (i.e., error Type I). The null
hypothesis used in past research papers is that “the model
fits the data.” [7, page 225]. Therefore, if the p-value is
less than the significance level α of 0.05, we can reject
a VDM because there are less than 5% chances that this
fitted model would generate the observed sample. This
provides us a robust test to discard a model.

To consider acceptable a VDM, we use as a threshold
the power of the χ2 test, the probability of rejecting
the null hypothesis when it is indeed false (the com-
plementary of the probability of committing a Type II
error). Normally, ‘an 80% power is considered desirable’
[24, Chap. 8]. Hence we accept a VDM if the p-value is
greater than or equal to 0.80, we have more than 80%
chances of generating the observed sample from the
fitted curve. In all other cases, we neither accept nor
reject the model (inconclusive fit). The criteria CR2 in
TABLE 4 summarizes the assessment based on the p-
value of the χ2 test.
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A,B,C are three parameters in the formula of the AML model: Ω(t) =
B

BCe−ABt + 1
(see also TABLE 8). At the horizon 30 months, AML fits

well Firefox v3.0 vulnerabilities, and might fit Firefox v2.0, whereas, it poorly fits Firefox v1.0.

Fig. 3. Fitting the AML model to the NVD data sets for Firefox v3.0, v2.0, and v1.0.

In the sequel, we use the term evaluated sample to
denote the triplet composed of an observed sample, a
fitted model, and the p-value of the χ2 test.

Example 8 In Fig. 3, the first plot shows the AML
model with a Good Fit (p-value = 0.993 > 0.80), the sec-
ond plot exhibits the AML model with an Inconclusive Fit
(0.05 < p-value = 0.417 < 0.80), and the last one denotes
the AML model with a Not Fit (p-value = 0.0001 < 0.05).
To calculate the χ2 test we refit the model every time.

4.3 Step 3: Goodness-of-Fit Quality Analysis
We introduce the goodness-of-fit quality (or quality, shortly)
by measuring the overall number of Good Fits and Incon-
clusive Fits among different samples.

Let OS = {TS(r, ds, τ)|r ∈ R ∧ ds ∈ DS ∧ τ ∈ Tr} be
the set of observed samples, the overall quality of a model
vdm is the weighted ratio of the number of Good Fit and
Inconclusive Fit evaluated samples over the total ones:

Qω =
|GES|+ ω · |IES|

|ES|
(4)

ES = {〈os, vdmos, p〉 |os ∈ OS} is the set of evaluated
samples generated by fitting vdm to observed samples;
GES = {〈os, vdmos, p〉 ∈ ES|p ≥ 0.80} is the set of Good Fit
evaluated samples;
IES = {〈os, vdmos, p〉 ∈ ES|0.05 ≤ p < 0.80} is the set of
Inconclusive Fit evaluated samples;
ω ∈ [0..1] is the inconclusiveness contribution factor denot-
ing that an Inconclusive Fit is ω times less important than
a Good Fit.

The overall quality metric ranges between 0 and 1. The
quality of 0 indicates a completely inappropriate model,
whereas the quality of 1 indicates a perfect model. Once
again, this metric is an optimistic measure because we
are “refitting” the model as more data become available.

The factor ω denotes the contribution of an inconclu-
sive fit to the overall quality. A skeptical analyst would
set ω = 0: only Good Fits are meaningful. An optimistic
analyst could chose ω = 1: an Inconclusive Fit is as good
as a Good Fit. The optimistic choice ω = 1 has been
adopted by all model proponents.

The value of ω could also be set based on the average
p-value (p̄) of inconclusive cases.

• If p̄ ≈ 0.05, the VDM most likely does not fit the
actual data, ω = 0.

• If p̄ ≈ 0.80, most likely the VDM fits the data, ω = 1.

Therefore, we could approximate ω as follows:

ω ≈ p̄− 0.05

0.80− 0.05
(5)

where p̄ is the average p-value of inconclusive evaluated
samples. We have analyzed about 6, 100 inconclusively
evaluated samples, the average p-value: p̄ = 0.422. Re-
placing this value in (5), we obtain ω ≈ 0.5. It is
consistent with the intuition that an Inconclusive Fit is
as half-good as a Good Fit.

Example 9 Among 3, 895 evaluated samples of AML
for IE, Firefox, Chrome, and Safari, AML has 1, 526
Good Fits, 1, 463 Inconclusive Fits. The overall quality of
AML with different ω thus is: Qω=0 = 0.39, Qω=0.5 =
1,526+0.5·1,463

3,895 = 0.58, Qω=1 = 0.77

The overall quality metric does not capture alternating
performance in time. A VDM could produce a lot of Good
Fits evaluated samples for the first 6 months, but almost
Not Fits at other horizons.

To capture this effect, we introduce the temporal quality
metric which represents the evolution of the overall
quality over time. The temporal quality Qω(τ) is a
function that return the weighted ratio of the Good Fit
and Inconclusive Fit evaluated samples over total sample
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Fig. 4. Temporal quality of AML and AT models.

for each value of the horizon τ .

Qω(τ) =
|GES(τ)|+ ω · |IES(τ)|

|ES(τ)|
(6)

τ ∈ T is the horizon that we observe samples, in which
T ⊆

⋃
r∈R Tr is the subset of the union of the horizon

ranges of all releases r in evaluation;
ES(τ) = {〈os, vdmos, p〉 |os ∈ OS(τ)} is the set of evaluated
samples at the horizon τ ; where OS(τ ) is the set of
observed samples at the horizon τ of all releases;
GES(τ) ⊆ ES(τ) is the set of Good Fit evaluated samples
at the horizon τ ;
IES(τ) ⊆ ES(τ) is the set of Inconclusive Fit evaluated
samples at the horizon τ ;
ω is the same value used for the overall quality Qω .

To study the trend of the temporal quality Qω(τ),
we use the moving average to smooth out short-term
fluctuations. Each point in the moving average is the
average of adjacent points in the original series.

MAQωk (τ) =
1

k

k∑
i=1

Qω(τ − i+ 1) (7)

where k is the window size. The value k is less than the
minimum horizon (k ≤ τ rmin) for the computation to be
possible. Additionally, k should be an odd number so
that variations in the mean are aligned with variations
in the data rather than being shifted in time.

Example 10 Fig. 4 depicts the moving average for the
temporal quality of AML and AT models. We choose a
window size k = 5 because the minimum horizon τ rmin =
6 and k = 3 is too small to smooth out spikes.

4.4 Step 4: Perform Predictability Analysis

The predictability of a VDM measures the capability
of predicting future trends of vulnerabilities, i.e., its
practical relevance. The calculation of the predictability
of a VDM has two phases, learning phase and prediction
phase. In the learning phase, we fit a VDM to an observed
sample at a certain horizon. In the prediction phase, we

evaluate the qualities of the fitted model on observed
samples in future horizons.

Let vdmTS(r,ds,τ) be a fitted model at horizon τ . The
prediction quality of this model in the next δ months
(after τ ) is calculated as follows:

Q∗ω(τ, δ) =
|GES∗(τ, δ)|+ ω · |IES∗(τ, δ)|

|ES∗(τ, δ)|
(8)

ES∗(τ, δ) =
{〈

TS(r, ds, τ + δ), vdmTS(r,ds,τ), p
〉}

is the set
of evaluated samples at the horizon τ + δ in which we
evaluate the quality of the model fitted at horizon τ
(vdmTS(r,ds,τ)) on observed samples at the future horizon
τ + δ. We refer to ES∗(τ, δ) as set of evaluated samples
of prediction;
GES∗(τ, δ) ⊆ ES∗(τ, δ) is the set of Good Fit evaluated
samples of prediction at the horizon τ + δ;
IES∗(τ, δ) ⊆ ES∗(τ, δ) is the set of Inconclusive Fit evalu-
ated samples of prediction at the horizon τ + δ.
ω is the same as for the overall quality Qω .

Example 11 Fig. 5 shows the prediction qualities of two
models AML and AT starting from the horizon of 12th
month (τ = 12, left) and 24th month (τ = 24, right), and
predicting the value for next 12 months (δ = 0 . . . 12).

In planning, the idea of 3-6-12-24 month rolling plans
has been widely adopted in many fields such as banking,
clinical trials, and economic planning. We report the
predictability of VDMs in next 3, 6, and 12 months,
but not in next 24 months because all VDMs perform
badly. Assume a new version is shipped every quarter,
we could envisage the following illustrative scenarios:
• Short-term planning (3 months): we want to predict

the trend in the next quarter to allocate resources
for fixing vulnerabilities.

• Medium-term planning (6 months): we are looking the
next 6 months to decide whether keeping the current
system or updating it.

• Long-term planning (12 months): we would like to
predict vulnerability reports to decide whether to
select the software for inclusion in a product with a
longer lifetime.

We assess the predictability of a VDM not only along
the prediction time span, but also along the horizon to
ensure the VDM is able to consistently predict the vul-
nerability trend in a desired period. For this purpose we
introduce the predictability metric which is the average
of prediction qualities at a given horizon.

The predictability of the curve vdmos at the horizon τ
in a time span of ∆ months is defined as the average of
the prediction quality of vdmos at the horizon τ and its
∆ consecutive horizons τ + 1, τ + 2, ..., τ + ∆, as follows:

Predictω(τ,∆) = ∆+1

√√√√ ∆∏
δ=0

Q∗ω(τ, δ) (9)
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Fig. 5. The prediction qualities of AML and AT.

where ∆ is the prediction time span. We use the geo-
metric mean instead of the arithmetic mean because the
temporal quality is a normalized measure [14].

4.5 Step 5: Compare VDMs
This section addresses the second research question RQ2
concerning the comparison between VDMs based on
quality and predictability.

VDMs only make sense if they could predict the future
trend of vulnerabilities. Hence a VDM which perfectly
fits the historical data, but badly estimates the future
trend even in a short period, is utterly useless: a better
model is the one that better forecasts the future.

The comparison between two models vdm1 and vdm2

is done as follows. Let ρ1, ρ2 be the predictability of vdm1

and vdm2, respectively.

ρ1 = {Predictω=0.5(τ,∆)|τ = 6..τmax, vdm1}
ρ2 = {Predictω=0.5(τ,∆)|τ = 6..τmax, vdm2}

(10)

where the prediction time span ∆ could follow the
criteria CR4; τmax = min(72,maxr∈R τ

r
max). We employ

the one-sided Wilcoxon rank-sum test to compare ρ1, ρ2.
If the returned p-value is less than the significance level
α = 0.05, the predictability of vdm1 is statistically greater
than that of vdm2. It also means that vdm1 is better than
vdm2. If p-value ≥ 1 − α, we conclude the opposite i.e.,
vdm2 is better than vdm1. Otherwise we have not enough
evidence either way.

If the previous comparison is inconclusive, we repeat
the comparison using the value of temporal quality
of the VDMs instead of predictability. We just replace
Qω=0.5(τ) for Predictω=0.5(τ , ∆) in the equation (10), and
repeat the above activities.

To compare models, we run several hypothesis tests.
To avoid the family-wise error rate, which is the proba-
bility of making one or more type I errors by chance, we
apply the Bonferroni correction: the significance level is
divided by the number of tests performed.

Example 12 When we compare one model against
other seven models, the Bonferroni-corrected signifi-

TABLE 6
Vulnerability data sources of browsers.

Data Source Category Apply for

National Vulnerability Database (NVD) TADV All browsers
Mozilla Foundation Security Advisories (MFSA) ADV Firefox
Mozilla Bugzilla (MBug) BUG Firefox
Microsoft Security Bulletin (MSB) ADV IE
Apple Knowledge Base (AKB) ADV Safari
Chrome Issue Tracker (CIT) BUG Chrome

cance level is: α =0.05 /7 ≈ 0.007.

The above comparison activities are summarized in
the criteria CR5 (see TABLE 4).

5 VULNERABILITY DATA INFRASTRUCTURE

This section describes the software infrastructure and the
data sources used to compute and maintain our vulner-
ability warehouse. TABLE 6 presents the vulnerability
data sources for the browsers in our study.

5.1 Software Infrastructure
Fig. 6 reports the software infrastructure for collecting
vulnerability data of browsers. The infrastructure con-
sists of three layers (separated in panels in the figure):
• Layer 1: Data Collector includes a Web Crawler

that downloads HTML/XML files from the servers
of data providers. These files are piped to the
HTML/XML Data Extractor to extract interesting
data features (Section 4.1). Missing features in some
data sources (e.g., version data in MFSA) are ob-
tained by correlating across data sources by the Data
Correlator via the refs feature [23].

• Layer 2: Data Sampler extracts observed samples ((1)
from Section 4.1).

• Layer 3: Data Analysis includes the VDM Model Fit-
ting processor and the VDM Quality/Predictability
Analysis processor. The former takes the output of
Layer 2 and performs model fitting for all data
samples to all VDMs. The output is a collection
of evaluated samples. The latter processor takes
the generated evaluated samples and executes the
quality, predictability analysis (see Step 3, Step 4). It
also executes the VDMs comparison (Step 5).

To enable the reproducibility of the experiment, we do
not apply any manual sanitizer to the data collection.

5.2 Collected Vulnerability Data Sets
TABLE 7 reports the descriptive statistics of observed
samples in five collected data sets described in TABLE 5.
The examined browsers have a very different release cy-
cle. Chrome has a very short cycle (about a month), while
other browsers have a longer one in our study. This
could explain why the means and standard deviations
of Chrome are lower than those of other browsers.
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TABLE 7
Descriptive statistics of observed data samples

Column names: med. - median, µ - mean, σ - standard deviation. Dash (–) means data set is not available due to missing data sources.

Browser Releases NVD NVD.Bug NVD.Advice NVD.NBug Advice.NBug All Data Sets

Total med. µ σ Total med. µ σ Total med. µ σ Total med. µ σ Total med. µ σ Total med. µ σ

Firefox 8 378 42 47 30 378 42 47 30 378 42 47 30 378 42 47 30 378 42 47 30 1,890 210 236 148
Chrome 12 281 20 23 10 281 20 23 10 – – – – 281 20 23 10 – – – – 843 62 70 29
IE 5 573 130 115 59 – – – – 573 130 115 59 – – – – – – – – 1,146 260 229 118
Safari 5 314 60 63 35 – – – – 314 60 63 35 – – – – – – – – 628 120 126 69

Total 30 1,546 36 52 44 659 27 33 23 1,265 64 70 48 659 27 33 23 378 42 47 30 4,507 104 150 118

MSB NVD

MFSA
MBug

CIT

AKB

Web Crawler

IE 
(NVD/
MSB)

HTML/XML Data
 Extractor

IE SafariChromeFirefox

IE SafariChromeFirefox

Data Correlator

Data Sampler

Firefox 
(NVD/
MFSA/
MBug)

Chrome 
(NVD/
CIT)

Safari 
(NVD/
AKB)

NVD 
(Chrome/Firefox/

IE/Safari)

NVD.Bug 
(Chrome/
Firefox)

NVD.Advice 
(Firefox/
IE/Safari)

NVD.Nbug
(Chrome/
Firefox)

Advice.Nbug
(Firefox)

VDM Model 
Fitting

Evaluated Samples
(all browsers)

VDM Quality/
Predictability

Analysis

HTML

<XML>

The Software Infrastructure

Round rectangles denote the data preprocessors. Arrow connections indicate the
direction of data flows.

Fig. 6. The data processing infrastructure.

The latest time horizon for these data sets is 30th June
2012. We selected these major releases because they were
at least one year old in the market at the time of the data
collection. The rationale is that some VDMs only work
for lifetimes of over a a year, as they explicitly try to
model the loss of interest by the attacker. For example,
Firefox versions 6 through 14 were released before the
end date of June 2012, but were not included: not enough
data points. In total, we have collected 4, 507 observed
samples for 30 major releases of browsers i.e., Chrome
v1.0–v12.0, Firefox v1.0–v5.0, IE v4.0–v9.0, and Safari
v1.0–v5.0.

6 AN ASSESSMENT ON EXISTING VDMS

We apply the methodology to assess the performance
of eight existing VDMs (see also TABLE 8). In this
assessment, we consider 8 out of 10 VDMs listed in the
taxonomy (see Fig. 1). Two models MVDM and Effort-
based AML (AML-E) are excluded. MVDM by Kim et
al.[19] require additional data beyond the scope of this
study, i.e., the ratio of share code between versions,
which is only available for Chrome and Firefox, though
Kim et al. offered an explanation for the deviation from
the logistic shape. AML-E [2] uses the test-effort as the
main factor instead of the calendar time, which is not
comparable to other models.

We follow Step 2 to fit the above VDMs to collected ob-
served samples. The model fitting relies on the function
nls() of R [37]. The model fitting took approximately

TABLE 8
The VDMs in evaluation and their equation.

VDMs are listed in the alphabetical order. The meaning of the VDMs’ parameters
are referred to their original work.

Model Equation

Alhazmi-Malaiya Logistic (AML) [6] Ω(t) =
B

BCe−ABt + 1

Anderson Thermodynamic (AT) [8] Ω(t) =
k

γ
ln(t) + C

Joh Weibull (JW) [18] Ω(t) = γ(1− e−
(
t
β

)α
)

Linear (LN) Ω(t) = At+ B

Logistic Poisson (LP) [26] Ω(t) = β0 ln(1 + β1t)

Rescorla Exponential (RE) [39] Ω(t) = N(1− e−λt)

Rescorla Quadratic (RQ) [39] Ω(t) =
At2

2
+ Bt

Younis Folded (YF) [53] Ω(t) =
γ

2

[
erf

(
t− τ
√

2σ

)
+ erf

(
t+ τ
√

2σ

)]

Note: erf() is the error function, erf(x) =
2
√
π

∫ x

0

e
−t2

dt

82 minutes on a dual-core 2.73GHz Windows machine
with 6GB of RAM yielding 31, 241 curves in total. During
the model fitting, nls() is unable to fit some models in
some observed samples. Hence the number of generated
curves are less than the number of observed samples
multiplied by the number of VDMs.

TABLE 9 reports the number of evaluated samples for
each VDM in each data set. We also report the percentage
of Good Fit, Inconclusive Fit, and Not Fit in each data set.
Apparently, AML and YF obtain more Good Fits than
other models, in relative percentage of the number of
evaluated samples in each data set. Additionally, VDMs
obtain more Good Fits in NVD.Advice than other data sets.

6.1 Goodness-of-Fit Analysis for VDMs
The analysis is conducted on all evaluated samples from
all collected data sets. The inconclusiveness contribution
factor ω is set to 0.5 as described in CR3. We reuse
the three-phase idea from the AML model to divide the
lifetime of a browser into three periods: young – when a
browser has been released for 12 months or less; middle-
age – released for 13 – 36 months; and old – released more
than 36 months.

Fig. 7 exhibits the moving average of temporal quality
Qω(τ). We cut Qω(τ) at horizon 72 though we have
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TABLE 9
Overall distribution of evaluated samples.

Column names: G.F - Good Fit, I.F - Inconclusive Fit, N.F - Not Fit.

Model NVD NVD.Bug NVD.Advice NVD.NBug Advice.NBug All Data Sets

Total G.F I.F N.F Total G.F I.F N.F Total G.F I.F N.F Total G.F I.F N.F Total G.F I.F N.F Total G.F I.F N.F

AML 1,375 43% 32% 24% 559 30% 48% 22% 1,064 49% 24% 27% 559 77% 12% 10% 338 62% 13% 25% 3,895 49% 28% 23%
AT 1,378 8% 18% 74% 559 10% 15% 75% 1,157 9% 17% 74% 559 8% 15% 77% 338 5% 38% 57% 3,991 8% 19% 73%
JW 1,344 39% 18% 44% 547 28% 30% 42% 1,019 64% 10% 26% 551 40% 14% 46% 336 60% 21% 19% 3,797 46% 17% 37%
LN 1,378 36% 19% 45% 559 20% 31% 49% 1,157 41% 16% 43% 559 41% 23% 36% 338 40% 15% 45% 3,991 36% 20% 44%
LP 1,377 42% 14% 43% 559 19% 34% 46% 1,069 46% 13% 41% 559 28% 20% 52% 338 33% 46% 20% 3,902 37% 20% 42%
RE 1,378 41% 14% 44% 559 20% 34% 46% 1,069 46% 13% 41% 559 13% 27% 60% 338 17% 30% 52% 3,903 33% 20% 47%
RQ 1,378 29% 20% 51% 559 24% 34% 43% 1,157 50% 10% 39% 559 14% 13% 74% 338 4% 2% 94% 3,991 30% 16% 53%
YF 1,358 55% 20% 25% 551 54% 29% 17% 966 71% 11% 19% 558 28% 22% 50% 338 14% 7% 78% 3,771 51% 18% 31%

Total 10,966 37% 19% 44% 4,452 26% 32% 43% 8,658 46% 14% 40% 4,463 31% 18% 51% 2,702 30% 22% 49% 31,241 36% 20% 44%
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The X-axis is the number of months since release (i.e., horizon τ ). The Y-axis is the value of temporal quality. The solid lines are the moving average of Qω=0.5(τ)
with window size k = 5. The dotted horizontal line at 0.5 is the base line to assess VDM. Vertical lines are the marks of the horizons of 12th and 36th month.

Fig. 7. The trend of temporal quality Qω=0.5(τ) of the VDMs in first 72 months.

more data for some systems (e.g., IE v4, FF v1.0): the
vulnerability data reported for versions released after 6
years might be not reliable, and might overfit the VDMs.

Fig. 7 shows a clear evidence that both AT and RQ
should be rejected since their temporal qualities always
sink below the base line (i.e., less than 0.5). Other models
may be adequate when browsers are young. AML and
LN look better than other models in this respect.

In the middle-age period, AML is still relatively good.
JW and YF improve when approaching month 36th
though JW get worse after month 12th. The quality of
both LN and LP worsen after month 12th, and sink
below the base line when approaching month 36th. RE
is almost below the base line after month 15th. Hence,
in the middle-age period, AML, JW, and YF models may
be adequate; LN and LP are deteriorating but might be
still considered adequate; RE should clearly be rejected.

When browsers are old (36+ months), AML, JW, and
YF deteriorate and dip below the base line since month

48th (approx.), while others collapse since month 36th.
Additional boxplot comparisons can be found in [30].

In summary, our quality analysis shows that:
• AT and RQ models should be rejected.
• All other models may be adequate when browser

is young. Only s-shape models (i.e., AML, YW, YF)
might be adequate when browsers are middle-age.

• No model is good enough when browsers are old.

6.2 Predictability Analysis for VDMs
From the previous quality analysis, AT and RQ models
are low quality. Hence, we exclude these models from
the predictability analysis. Furthermore, since no model
is good when browsers are too old, we analyze the
predictability of these models only for the first 36 months
from a release date. This period is still large as recent
releases live less than a year [12], [44], [45], [46].

Predictability is a bi-dimensional function as it takes
the horizon of data collection for fitting and the predic-
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A horizonal line at value of 0.5 is the base line to assess the predictability. LN’s predictability is above the base line (i.e., adequate) til month 24th for a relative
short prediction time span (3-6 months). The predictability of S-shape models is adequate after month 12th for a relative short time span (3-6 months), after month
18th for longer time span (12 months).

Fig. 8. The predictability of VDMs at fixed prediction time spans ∆ for varying horizons τ .

tion time. Fig. 5 shows a graph where the horizon is
fixed at 12 and 24 while the prediction time varies and
the ability to predict invariably decreases as we move
further into the future. Here we keep the prediction time
∆ fixed and let the fitting horizon τ vary: our purpose is
to understand which is the best model for a given time
horizon, see Fig. 8.

Fig. 8 reports the moving average VDMs’ predictabil-
ity along horizons in different prediction time spans. The
horizonal line at 0.5 is the base line for a qualitative
assessment of the predictability of VDMs (as same as
the temporal quality of VDMs). The predictability lines
go down (model is good at the beginning but deterio-
rates with software ages) as well as up (model is more
appropriate for older software).

For the first year after the release date of a major
version (τ ≤ 12), the predictability of LN is the best for
all prediction time spans (∆ = 3, 6, 12). All other models
are under performing and well below the LN line. At
around 15 − 18 months, the AML predictability line
overtakes the LN line. S-shape models (AML, JW, and
YF) are inadequate for young software, but improves as
software ages. They become adequate after month 18th
and keep being so until the end of the study period.
The LP and RE models are usually below the others and
below the base line except when the browser is young
(τ < 12), and the prediction time span is short (∆ = 3).

When the prediction time span is very long (i.e., 24
months) no model is good enough as all models sink
below the base line.

6.3 Comparison of VDMs
The comparison between VDMs follows Step 5. Instead
of reporting tables of p-values, we visualize the compar-
ison results in terms of directed graphs where nodes
represent models, and connections represent the order
relationship between models.

Fig. 9 summarizes comparison results between models
for different horizons (τ ) and prediction time spans (∆)
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(a) Young releases, short-term
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A directed connection from two nodes determines that the source model is better
than the target one with respect to their predictability (dashed line), or their
quality (dotted line), or both (solid line). A double circle marks the best model.
RQ and AT are not shown as they are the worst models. LN is the best model to
predict trend of vulnerabilities for young browsers, otherwise AML is the best
model for middle-age browsers.

Fig. 9. Comparison results among VDMs.

along the following convention:
• Solid line: predictability and quality of the source is

significantly better than the target’s.
• Dashed line: predictability of the source is signifi-

cantly better than the target.
• Dotted line: quality of the source is significantly

better than the target.
By the word significantly, we means the p-value of the

corresponding one-sided Wilcoxon rank-sum test is less
than the significance level. We apply the Bonferroni cor-
rection to control the multi comparison problem, hence
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TABLE 10
Suggested models for different usage scenarios.

Observation Prediction Best 2nd Best
Period (month) Time Span (month) Model Model(s)

6 – 12 3 (short-term) LN AML, JW
6 – 12 6 (medium-term) LN JW, LP
6 – 12 12 (long-term) LN LP

13 – 24 3 (short-term) AML YF
13 – 24 6 (medium-term) AML YF, LN
13 – 24 12 (long-term) AML YF, LN

TABLE 11
A potentially misleading results of fitting VDMs in the

largest horizon of browser releases, using NVD data sets

The goodness of fit of a VDM is based on p-value in the χ2 test. p-value < 0.05:
not fit (×), p-value ≥ 0.80: good fit (X), and inconclusive fit (blank) otherwise.
It is calculated over the entire lifetime.

Firefox Chrome IE Safari

1 1.5 2 3 3.5 3.6 4 5 1 2 3 4 5 6 7 8 9 10 11 12 4 5 6 7 8 1 2 3 4 5

AML × × × X X × × X × X × X × X
AT × × × × × × × × × × × × × × × × × × × × × × × × × ×
JW × × X X X X X × × × × X X × X × X × × × × ×
LN × × × X × × × × × × × × X × × × ×
LP × × X X X X X × × × × × × × X × × X × × × ×
RE × × X X X X X × × × × × × × X × × X × × × ×
RQ × × × × × X × × × × × × × × × × × × X × × × × ×
YF × × X X X X X X X X X X X X × X X X × X × × × ×

the significance level is: α = 0.05/5 = 0.01.
Based on Fig. 9, TABLE 10 suggests model(s) for dif-

ferent usage scenarios described in CR4 (see TABLE 4).
In short, when browsers are young, the LN model is the

most appropriate choice. This is because the vulnerability
discovery process is linear. When browsers are approaching
middle-age, the AML model becomes superior.

7 DISCUSSION

This section compares our methodology to the tradi-
tional evaluation method described in Section 3. For the
traditional methodology: VDMs are fitted to the NVD
data set at the largest horizon. In other words, we use
following observed samples to evaluate VDMs:

OSNVD = {TS(r,NVD, τ rmax)|r ∈ R}

where R is the set of all releases mentioned in Section 5.2.
The fitting results are reported in TABLE 11. To im-

prove readability, we report the categorized goodness-
of-fit based on the p-value (see CR2) instead of the raw
p-values. As in the literature we set the inconclusiveness
contribution factor ω = 1.

The table shows that two models AT and RQ have a
large number of Not Fits entries (90% and 70% respec-
tively); whereas other models have less than 50% Not Fits
entries. Only the YF model has more than 50% Good Fits
entries. Some systems have long gone into retirement.
For example, FF v2.0 vulnerabilities are no longer sought
by researchers. The publication of those vulnerabilities is
a byproduct of research on later versions.

From TABLE 11, we might conclude: (1) AML and YF
are the “best” model (YF is slightly better than AML);
(2) AT and RQ are the “worst”; and (3) other models are
approximately equal.

With reference to TABLE 1 (or TABLE 10), the conclu-
sions obtained by the traditional methodology are clearly
less informative than those by our methodology. They
both agree that AT and RQ are the worst. However,
our methodology provides statistical evidences about the
superior performance of LN and AML in different periods
of browser lifetime, whereas the traditional one does not.

An interesting issue is whether we need the full com-
plexity of the methodology and could attain the same
insight by a reduced number of steps. We could have
stopped the analysis at Step 2, after TABLE 9. This table
does not distinguish between AML and YF. Moreover, it
obfuscates the greater performance of LN for the first
year since release. This is a major issue for today’s
software whose lifecycle is very short.

In summary, our methodology provides more practical
information about the performance of VDMs in different
scenarios than the traditional methodology.

8 THREATS TO VALIDITY

Some threats to Construct validity may affects our data.
Bugs in data collector. The vulnerability data is collected

by a crawler parsing HTML pages. It might be buggy.
We minimize this threat by randomly checking the data.
When an error was found we corrected the crawler and
recollected the data.

Bias in bug-to-nvd linking scheme. While collecting data
for Advice.Nbug, we apply heuristics to link a bug to an
NVD entry based on their positions in an MFSA report.
We manually checked many links for inconsistencies.

Bias in bug-affects-version identification. We do not com-
pletely known which bugs affect which versions. We
assume that a bug affects all versions mentioned in its
linked NVD entry. This might overestimate the number
of bugs in each version. So, we estimate the latest release
that a bug might impact, and filter all vulnerable releases
after this latest. Such estimation is done by the technique
discussed in [43], [31]. The potential errors in NVD
discussed in [31] only affect the retrospective fitness of
models over the long term so only valuations after 36
months might be affected.

Internal validity threats affect the causal relationship
between the collected data and the conclusion in the
study. Our conclusions are based on statistical tests. We
analyzed the tests assumptions to make sure no unwar-
ranted assumption was present. We did not apply any
tests with normality assumptions since the distribution
of vulnerabilities is not normal.

Notably, the collected data sets in TABLE 7 are not
independent each others, for instance NVD.Bug and
NVD.Advice are sub sets of NVD. They represent for
different ways of counting vulnerabilities from the NVD



16

data source. We treat these data sets equally and fit them
all to VDMs to address the issues behind vulnerability
count methods (Section 3). This might have an accumu-
lative effects on quality and predictability. We believe
this accumulative effect is negligible because TABLE 9,
reporting statistics of evaluated samples, shows that re-
sponses of VDMs to different data sets are very different.

Another potential internal validity problem is the ‘in-
dependently distributed’ assumption that statistical tests
might violate. This could be the case when developers
discover a vulnerability, realize they make mistake else-
where, and go back to fix other mistakes in the same area
of the system. For reported vulnerabilities in Firefox and
Chrome, the analysis of the commit logs shows that each
fix mostly corresponds to a fix of a single vulnerability,
and each fix touches very few components (on average,
1.17 for Firefox, and 1.84 for Chrome [30]). It means the
problem is minor in our study, at least for Firefox and
Chrome. If mistakes are not reported as vulnerability
entries, they do not “exists” for us, and therefore the
reported entries are indeed independent (the dependent
events are not present at all).

External validity is the extent to which our conclusion
could be generalized to other scenarios. Our experiment
is based on the four most popular browsers. So we
can be confident about our conclusion for browsers in
general, but it might not be valid for other types of
application such as operating systems. Such validity
requires additional experiments.

9 CONCLUSION
Vulnerability discovery models (VDMs) have the poten-
tial to help us in predicting future trends of vulnerabil-
ities, adapting software update and patching schedule,
or selecting (open source) products to bundle into other
proprietary products.

The major contribution of this work is an empiri-
cal methodology to conduct evaluation experiments on
VDMs. The quality and predictability of VDMs in ques-
tion are measured by two functions that report the ability
to fit vulnerability data and the ability to predict future
vulnerabilities as function of time. As a result, we obtain
a better insight about VDMs.

To illustrate the methodology, the paper reports an
evaluation experiment to assess eight VDMs (i.e., AML,
AT, LN, JW, LP, RE, RQ, and YF) on 30 major releases of
four web browsers: IE, Firefox, Chrome, and Safari. We
classify the age of a browser’s version in three different
periods: youth (within 6 – 12 months since release date),
middle age (12 – 36 months since release date), and
old age (beyond 36 months). Our experiment reveals
interesting findings on these existing VDMs: if a version
is relatively young, then we should use a linear model
to estimate the vulnerabilities in the next 3 – 6 months.
For middle-aged browsers it is better to use an s-shape
logistic model. This would have insight been impossible
to achieve with the traditional methodology.

A number of further investigations is possible such
as replicate the experiment with other software types.
We did not consider MVDM model [19] and effort-based
models because they require data that is beyond the
scope of this study. An interesting issue is understanding
whether the speed of the release cycle and/or the size
of the releases impacts VDMs quality. Another question
is evaluating how errors in the datasets may impact the
analysis [31]. Further assessments in these directions will
make the understanding of VDMs more comprehensive.

10 REPLICATION GUIDELINE

We have made the data in this work available online. In-
terested readers who want to reproduce the experiment
could attain the data at http://securitylab.disi.unitn.it/.
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