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Abstract

Tabular and graphical representations are used to communicate security risk assessments for IT
systems. However, there is no consensus on which type of representation better supports the com-
prehension of risks (such as the relationships between threats, vulnerabilities and security controls).
Cognitive fit theory predicts that spatial relationships should be better captured by graphs. In this
paper we report the results of two studies performed in two countries with 69 and 83 participants
respectively, in which we assessed the effectiveness of tabular and graphical representations with
respect to extraction correct information about security risks. The experimental results show that
tabular risk models are more effective than the graphical ones with respect to simple comprehension
tasks and in some cases are more effective for complex comprehension tasks. We explain our findings
by proposing a simple extension of Vessey’s cognitive fit theory as some linear spatial relationships
could be also captured by tabular models.

Keywords: Empirical Study, Security Risk Assessment, Risk Modeling, Comprehensibility,

Cognitive Fit

1. Introduction

Security risk analysis plays a vital role in the software development life cycle because “it provides

assurance that security concerns are identified and addressed as early as possible in the life cycle,

yielding improved levels of attack resistance, tolerance and resilience” (Mead et al. 2004). Risk

analysis is usually performed by security experts but its results are consumed by ‘normal’ IT

professionals (from managers to software architects and developers).
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Presenting and communicating risk to all stakeholders is a key step to make sure risk analysis

is not an empty exercise (e.g., fit is an explicit step out of nine in the US NIST 800-30 standard

process). This is particularly challenging as risk analysis tries to link a multitude of entities into

a coherent picture: threats exploit vulnerabilities to attack assets and are blocked by security

controls; attacks may happen with different likelihood and may have different levels of severity;

one vulnerability may be present in several assets and an asset may be subject to several threats;

security controls must address and reduce risks to acceptable levels in an optimal manner. Hence,

the representation of security risk assessment results should be clear to all involved parties, from

managers to rank-and-file developers otherwise, they “[. . . ] may find themselves lost in the process,

misinterpreting result, and unable to be a productive member of the team.” (Landoll and Landoll

2005, p. 45). A qualitative empirical study on the success criteria for security risk assessment with

professionals with 17.5 years of work experience on average and in particular 7 years of experience in

risk assessment highlighted communication as one the key features (Labunets et al. 2014, Table 2).

Existing risk analysis methods and techniques use different notations to describe the result of risk

analsys. Industry methods typically use a tabular modeling notation (eg. ISO 270001, NIST 800-

30, SESAR SecRAM, SREP (Mellado et al. 2006)) whereas academic based methods use graphical

modeling notations (eg. SI∗ (Giorgini et al. 2005), Secure Tropos (Mouratidis and Giorgini 2007),

ISSRM (Matulevičius et al. 2008), or CORAS (Lund et al. 2011)). Yet, there is limited empirical

evidence whether one of the two risk modeling notation better supports the comprehension of

security risks. Hence, this paper aims to investigate the following research questions:

RQ1 Which risk modeling notation, tabular or graphical, is more effective in extracting correct

information about security risks?

RQ2 What is the effect of task complexity on participants’ actual comprehension of information

presented in risk models?

To answer these research questions we have conducted two studies with 69 and 83 students. The

first study consisted of three experiments: one performed at the University of Trento, Italy, and

two performed at PUCRS, Porto Alegre, Brazil. In Trento, the experiment involved 35 graduate

students; in Porto Alegre, the two experiments were run with 13 graduate and 21 undergraduate

students. The second study included two experiments: one performed at the University of Calabria

in Cosenza, Italy, the experiment involved 52 master graduates attending a professional post-master
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course in Cybersecurity, and the second one at the University of Trento with 51 master students

attending a Security Engineering course.

We considered comprehension tasks of different complexity in line with Wood’s theory of task

complexity (Wood 1986). We selected scenarios from the healthcare and online banking domains,

modeled the security risks of the scenario in the two modeling notations, and asked the participants

to answer several questions of different level of complexity. By using the metrics of precision and

recall on the answers provided by participants we compared the effect of the modeling notation

and other potential factors (education, modeling or security experience, knowledge of the English

language) on the comprehensibility of the risk models.

In the rest of the paper we discuss related work (§2), describe the study design (§3), and report

the experiments realization (§4). Section 5 presents the results of the analysis and Section 6 discusses

their implications. Finally we discuss the threats to validity of our study (§7) and conclude the

paper (§8).

2. Related Work

Several studies have compared textual and visual notations: some studies have proposed cog-

nitive theories to explain the differences between the two notations or to explain their relative

strengths (Vessey 1991; Moody 2009); other studies have compared different notations from a con-

ceptual point of view (Kaczmarek et al. 2015; Saleh and El-Attar 2015). Several empirical studies

have compared graphical and textual representations for requirements (Sharafi et al. 2013; Stålhane

and Sindre 2008; Stålhane et al. 2010; Stålhane and Sindre 2014), software architectures (Heijstek

et al. 2011), and business processes (Ottensooser et al. 2012). Studies that focus on compar-

ing textual and visual notations for security risk models are less frequent (Hogganvik and Stolen

2005; Grondahl et al. 2011) or compared the effectiveness of tabular or graphical methodologies as

whole (Massacci and Paci 2012; Labunets et al. 2013, 2014) as opposed to the specific aspect of

comprehensibility.

2.1. Empirical Comparisons of Software Modelling Notations

Among the works which reported empirical studies on the effectiveness of visual vs. textual

notions focusing on the early stages of software development (Hoisl et al. 2014) compared three
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notations for defining scenario-based tests (a semi-structured natural-language notation, a dia-

grammatic notation, and a fully structured textual notation). The metrics considered accuracy and

effort involved in understanding scenario-test definitions, and detection of the errors in the models

under test. The results of the study showed that the participants who used the natural-language

notation spent less time and completed the task with higher accuracy than the participants who

used the other two notations. Participants also expressed higher preference for the natural-language

notation. Based on the results of the ex-post questionnaire, the authors concluded that possible ex-

planations of these results could be that (1) the diagrammatic notation has poor scalability and for

complex scenarios it becomes hard to understand, and (2) fully structured notation needs specific

preparation and additional materials in order to be understood.

Scanniello et al. (2014) conducted four controlled experiments with students and professional

to investigate the effect of UML analysis models on comprehensibility and modifiability of source-

code. The participants were asked to complete tasks using both treatments (i.e. having source

code and analysis models and having source code only) for two different systems to control learning

effect. The results revealed no difference in understanding source code and ability to modify it with

and without having UML analysis models. The authors explained the results by the fact that the

provided UML models did not contain any details on the systems implementation, and therefore,

not very helpful for understanding and modifying source code.

Sharafi et al. (2013) assessed the effect of using graphical vs. textual representations on par-

ticipants’ efficiency in performing requirements comprehension tasks. They found no difference in

accuracy of the answers given by participants who used the textual and the graphical notations

but it took them considerably more time to perform the task with a graphical notation than with

textual one. Still, the participants preferred the graphical notation. Surprisingly, the participants

spent significantly less time and less effort while working on the third model with both graphical

and textual representations than with the other two models. The authors explained this finding as

being due to the fact that the participants learned the graphical notation after performing the com-

prehension task which led to the improved results with the mixed model. Similarly, Abrahao et al.

(2013) assessed the effectiveness of dynamic modeling in requirements comprehension. The study

included 5 controlled experiments with 112 participants with different levels of experience. The

paper revealed that providing requirements specification together with dynamic models, namely
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sequence diagrams, significantly improves comprehension of software requirements in comparison

to having just specification document.

Heijstek et al. (2011) investigated the effectiveness of visual and textual artifacts in commu-

nicating software architecture design decisions to software developers. Their findings suggest that

neither visual nor textual artifacts had a significant effect in that case. Ottensooser et al. (2012)

compared the understandability of textual notations (textual use cases) and graphical notations

(BPM) for business process description. The results showed that all participants well understood

the textual use cases, while the BPMN models were well understood only by students with good

knowledge of BPMN.

2.2. Empirical Comparisons of Security Modeling Notations

In the specific domain of modeling security issues, Stalhane et al. conducted a series of experi-

ments (Stålhane and Sindre 2008; Stålhane et al. 2010; Stålhane and Sindre 2014) to compare the

effectiveness of textual and visual notations in identifying safety hazards during security require-

ments analysis. Stålhane and Sindre (2008) compared misuse cases based on use-case diagrams to

those based on textual use cases. The results of the experiment revealed that textual use cases

helped to identify more threats related to the computer system and category “wrong patient” than

use-case diagrams. This can be explained by the fact that the layout of the textual use case helps

the user to focus in the relevant areas which led to better threat identification for these areas. In

more recent experiments (Stålhane et al. 2010; Stålhane and Sindre 2012, 2014) they compared

textual misuse cases against UML system sequence diagrams. The experiments revealed that tex-

tual misuse cases are better than sequence diagrams when it comes to identifying threats related

to functionalities or user behavior. Sequence diagrams outperform textual use cases when it comes

to threats related to the system’s internal working. The authors concluded that “It is not enough

to provide information related to the system’s working. It must also be continuously kept in the

analyst’s focus.”

As far as we know, only two studies have investigated the comprehensibility of security risk

models. The first work, Hogganvik and Stolen (2005) reported two empirical experiments with

students to test (a) understanding of the conceptual model of the CORAS and (b) the use of

graphical icons and their effect on the understanding of risk models. The results showed little

difference in the correctness of answers using CORAS over UML models, while the participants
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used less time to complete a questionnaire with the CORAS models than with the UML models.

The only difference between the two type of risk models was the presence of graphical CORAS-

specific icons. The second work, Grondahl et al. (2011) investigated the effect of textual labels and

graphical means (size, color, shape of elements) on the comprehension of risk models. The study

involved 57 IT professionals and students and shows that some textual information in graphical

models is preferred over purely graphical representation. These works focused on the graphical

representation of risk models and leaves open the question of which modeling notation, graphical

or textual, is better to represent security risks.

We have started to fill this gap by investigating the actual and perceived effectiveness of textual

and visual methods for security risk assessment in two previous empirical studies with MSc students

in Security Engineering (Labunets et al. 2013, 2014). Although the two types of methods were

similar in terms of actual effectiveness, participants always perceived the visual methods as more

effective than the textual methods. For example, Labunets et al. (2013) reported that “some of the

participants indicated that a visual representation for threat would be better that a tabular one”,

and in (Labunets et al. 2014) participants emphasized that “the advantage [of graphical method] is

the visualization” and that the results obtained with the graphical method would be easy to explain

to customer (Labunets et al. 2014, Table III). In this paper we explore whether such preference

may be explained by the widely held belief that graphical representations are easier to read.

3. Study Planning

3.1. Motivation

In our previous study (Labunets et al. 2014) we conducted a qualitative study with security

experts in the ATM domain to investigate the success factors of a security risk assessment. The

participants were 20 professionals with 17.5 years of work experience on average and in particular

7 years of experience in risk assessment. As reported in (Labunets et al. 2014, Table 2), among

method’s success criteria we identified category “Comprehensibility of method outcomes”. We have

reviewed the experts’ statements that were included in this category and discuss them below in

order to understand the role of comprehensibility in security risk assessment.

According to some experts “for a method to be successful means that you get the means to

reason about your problem and to analyze the information and to extract the results that you
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want.” Indeed, an effective security risk assessment method “must support understanding and

communication [of the information]” because the possible shortfall in the risk assessment process

is that “people don’t understand each other, so they’re using the same words, but they think

about totally different things”. Besides the common language that should be used throughout risk

assessment process, it is also important to have a comprehensive representation: “If you have a

good template, it would be easy to understand.” Also “you need a definition that lots of people can

understand, not just a security expert” in order to have a “basis to share with other stakeholders,

and to have the same way of thinking”. In fact, you need “to address different stakeholders who

look at the risk assessment. And basically you can divide them into two [types]: the ones who need

the big picture and the ones who need ... operation knowledge [low level picture] . . . The first kind

is making the basic decisions and the others for subsequent execution of the results.” Some experts

believe that “The big picture is effective when you provide usually a graphical representation of it.”

3.2. Designing Comprehensibility Tasks

The understanding of the results by different stakeholders is one of the main factors for the

success of security risk assessment. Different presentations of the same findings might require

different levels of cognitive effort to extract the correct information. Hence, we aim to investigate

which risk model representation is more comprehensive for stakeholders from the point of view of

extracting correct information about security risks?

To design a comprehensibility task we reviewed existing works investigating comprehensibility of

different notations in requirements engineering (Hadar et al. 2013; Scanniello et al. 2014) and data

modeling (De Lucia et al. 2010; Purchase et al. 2004). In summary, all proposed comprehensibility

questions tested the ability of the user to identify (1) an element of a specific type that is in

relationship with another element of a different type and (2) an element of a specific type that

has multiple relationships with other elements of a different type. We used both approaches to

formulate questions for our comprehensibility task as they provide a possibility to investigate the

comprehension of different elements of a notation and relations between them.

3.3. Task Complexity and Other Factors

We also take into consideration the complexity of the questions, as this may be a significant

factor for the risk model comprehensibility. To define this we rely upon the work of Wood (1986),
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according to which a task (or question) complexity is defined by the information cues that need to

be processed and the number and complexity of the actions that need to be performed to accomplish

the task:

• “Information cues are pieces of information about the attributes of stimulus objects” (Wood

1986, p. 65);

• “The required acts for the creation of a defined product [output] can be described at any one

of several levels of abstraction. . . ” (Wood 1986, p. 66);

• “Coordinative complexity refers to the nature of relationships between task input and task

product. As the number of precedence relationships between acts increases, the knowledge

and skill required will also increase. . . ” (Wood 1986, pp. 68–69).

In the definition of task complexity Wood also used the notion of “product” as a specific entity

produced by the task. We do not use this concept because only one product is given to the

participants (a risk model) and every question only asks them for one type of element of the risk

model. We map other components to the elements of a security risk modeling notation as follows:

• Information cues (IC) describe some characteristics that help to identify the desired element

of the model. They are identified by a noun. In the sentence “Which are the assets that can

be harmed by the unwanted incident Unauthorized access to HCN ?” the part in italics is an

information cue.

• Required acts (A) are judgment acts that require selecting a subset of elements meeting some

explicit or implicit criteria. For example, in “What is the highest consequence?” or “What are

the unwanted incidents that can occur?” the parts in italics are judgment criteria.

• Relationships (R) are relationships between a desired element and other elements of the model

that must to be identified in order to find the desired element. They are identified by a verb.

In the sentence “the assets that can be harmed by”, the part in italics is a relationship.

To calculate the complexity of question i (QCi) we extend Wood’s formulation as follows:

QCi = |ICi|+ |Ri|+ |Ai|, (1)

where ICi is the number of information cues presented in question i, Ri is the number of relation-

ships that the participant needs to identify, and Ai is the number of judgments to be performed

over a set of elements.
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As an example of computing task complexity, consider the following question: “What is the

highest possible consequence for the asset “Data confidentiality” that Cyber criminal or Hacker

can cause? Please specify the consequence.” The question complexity according to formula (1) is

3+(2+1) = 6 because there are three information cues (“Data confidentiality” for the element type

“consequence”, and “Cyber criminal” and “Hacker” for the element type “threat”), two relationships

among them (A “possible consequence for” B and C “can cause” D), and one judgment on the

product (“highest possible consequence”).

Another possible confounding factor is the complexity of the particular execution of the exper-

iment itself. Therefore, after the comprehension task we asked participants to fill in a post-task

questionnaire about their perception of the clarity of the questions and the overall settings and

whether the risk model was easy to understand. The aim of the post-task questionnaire is to con-

trol for possible effects of the experimental settings on the results as done in previous studies (Hadar

et al. 2013; Agarwal et al. 1999). Table A.15 in Appendix A reports the post-task questionnaire

that we proposed to our participants.

3.4. Selection of Risk Modeling Notations

There are many different methods for security requirements engineering and risk assessment

that use either graphical, or tabular, or mix of two representations. To make the study fair and

representative we need to find notations that have similar level of expressiveness and cover the

core security concepts used by many international security standards, e.g., ISO/IEC 27000, NIST

800-30, or BSI Standard 100-2 IT- Grundschutz. In this respect, Fabian et al. (2010) presented

a comprehensive comparison of various security requirements engineering methods based on their

conceptual framework that is consistent with the framework by Mayer et al. (2007) (see Table

3 in (Fabian et al. 2010)). The core concepts that emerged from the studies are asset, threat,

vulnerability, risk, and security control.

The comparison by Fabian et al. (2010) showed that only several methods adopted these con-

cepts, namely tabular SREP (Mellado et al. 2006), graphical CORAS (Lund et al. 2011), and

model-based information system security risk management (ISSRM) approach proposed by Mayer

et al. (2005). The ISSMR method initially used i* models to support risk analysis and has been

later adapted to by Matulevičius et al. (2008) to combine the graphical-based method proposed by

Mouratidis and Giorgini (2007) Secure Tropos.
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To the best of our knowledge, the work by Massacci and Paci (2012) is the only study that

empirically investigated and compared different security methods including Secure Tropos, CORAS,

si∗, and Security Argumentation. Both CORAS and Secure Tropos methods were empirically

evaluated by Massacci and Paci (2012). The study also included goal-based method si∗ and problem

frame-based method Security Argumentation. The results showed that the CORAS is the best

method across the four investigated methods.

Further, neither ISSRM nor Secure Tropos provide a comprehensive one-diagram models that

provides a global picture of security risk assessment results and that can be compared to a single

table summarizing the risk assessment result as provided by NIST’s or ISO’s standards. In contrast,

CORAS has a treatment overview diagram that fits these requirements. Asking the particpants to

go over several diagrams would have significantly biased the results against graphical methods.

As tabular representation we used the risk tables provided by the NIST 800-30 (Stoneburner

et al. 2002) standard for security risk assessment. The NIST standard adopts a different table

for each step of the security risk assessment process. CORAS similarly comes with a number of

different kinds of diagrams. In our study we focused on the NIST table template for adversarial

and non-adversarial risk, and the CORAS treatment diagrams, because these two give an overview

of the most important elements of the risk assessment. In order to ensure the same expressiveness

of the two notations we needed to add three columns to the NIST template to represent impact,

asset and security controls, which are usually documented in different tables. Figure 1a shows an

example of CORAS treatment diagram related to the risk of a Healthcare Collaborative Network,

and Figure 1b illustrates the same risks using the NIST table template. The graphical model

provides a good visual view of several attacks that can be committed by a “threat”. At the same

time, tabular model reports all possible attacks (one per line) which requires duplication of the

information for the similar attacks with slight difference. However, this redundancy is compensated

by simple navigation providing a possibility to look-up the information related to the same notation’s

concept. The availability of labels with concepts’ name may provide a significant benefit comparing

to the graphical icons, but Hogganvik and Stolen (2005) showed that there is a little difference in

the correctness of responses by participants using models with graphical icons from the CORAS

notation and UML models that contained textual labels with concepts’ names. Moreover, the

participants used less time to find response with graphical icons comparing to the UML models
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Threat Threat scenario

Vulnerability

Treatment

Unwanted incident

Asset

Likelihood

Consequence

(a) CORAS diagram

(b) NIST table row entries

Figure 1: Fragment of a risk model in graphical and tabular notations

with textual labels. Figures A.7 and A.8 in Appendix A illustrate the full graphical and tabular

risk models that we provided to our participants.
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3.5. Variables

The independent variable of our study is the risk model representation which can take one of

the values: tabular or graphical. The dependent variable is the level of comprehensibility which is

measured by assessing the answers of the participants to a series of comprehension questions about

the content presented in the risk models. In what follows, we will use the word “task” when referring

to the entire exercise of answering all questions. The answers to the questions were evaluated

using information retrieval metrics that are widely adopted in the empirical software engineering

community for the measurement of model comprehension (Agarwal et al. 1999; Hadar et al. 2013;

Scanniello et al. 2014, 2015): precision, recall, and their harmonic combination, the F-measure.

Precision represents the correctness of given responses to the question, and recall represents the

completeness of the responses. They are calculated as follows:

precisionm,s,q =
|answerm,s,q ∩ correctq|

|answerm,s,q|
, (2)

recallm,s,q =
|answerm,s,q ∩ correctq|

|correctq|
, (3)

Fm,s,q = 2 ∗ precisionm,s,q × recallm,s,i
precisionm,s,q + recallm,s,q

, (4)

Fm,s = mean(∪q∈{1...Nquestions}Fm,s,q} (5)

where answerm,s,q is the set of answers given by participant s to question q when looking at model

m, and correctq is the set of correct responses to question q.

Since we want to measure the level of comprehension such activity should be performed by

keeping the other confounding variable (time for comprehension) fixed. Hence we limit the amount

of time that can be used to complete the comprehension task. As a consequence, there may be

participants which could not answer all questions within the allotted time. We follow the approach

in (Abrahao et al. 2013) and aggregate all answers to calculate precision and recall for the individual

participant.

precisionm,s =

∑Nquestions

q=1 |answerm,s,q ∩ correctq|∑Nquestions

q=1 |answerm,s,q|
, (6)
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recallm,s =

∑Nquestions

q=1 |answerm,s,q ∩ correctq|∑Nquestions

q=1 |correctq|
, (7)

Fm,s = 2 ∗ precisionm,s × recallm,s
precisionm,s + recallm,s

. (8)

A similar function aggregates over participants when reporting precisionm,q and recallm,q for each

question q.

3.6. Hypotheses

The main objective of our study was to compare the effectiveness of tabular and graphical ap-

proached for risk modeling in extracting information about security risks from the models (RQ1).

Additionally, we wanted to investigate if the complexity of comprehension task affects participa-

tion’ comprehension of risk models. We formulated the alternative two-way hypotheses as there

is no consensus about the superiority of one type of notation over the other in the literature (see

Section 2), and therefore, we did not make any assumptions in this regard. For example, Stålhane

and Sindre (2014) and Hogganvik and Stolen (2005) report opposite results on the superiority of the

textual and graphical notation for the comprehension of use cases. Thus, the null and alternative

hypotheses were formulated as presented in Table 1.

Table 1: Experimental Hypotheses

Hyp Null Hypothesis Alternative Hypothesis

H1 No difference between tabular and graphical risk mod-
eling notations in the level of comprehension (as mea-
sured by precision, recall, F-measure of answers) when
answering comprehension questions.

There is a difference in the level of comprehension
between tabular and graphical risk models when an-
swering comprehension questions

H2 No difference between simple and complex questions
in the level of comprehension when answering com-
prehension questions for both modeling notations

Difference between simple and complex questions in
the level of comprehensibility when answering com-
prehension questions for some modeling notation

3.7. Experimental Design

In the first study we chose a between-subject design with one factor (risk modeling notation)

and two treatments (graphical and tabular risk models) to avoid interference between the treat-

ments (MacKenzie 2012, Ch. 5). The participants were randomly assigned to one of the two

treatments and worked individually. Each experiment that we executed followed the same design.

The graphical and tabular risk models provided to the participants are presented in Appendix A
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in Figures A.7 and A.8 respectively. The material used during the experiment is available online

(e.g., risk models and tutorial slides).1

The experiments consist of three main phases:

• Training phase. All participants attend a short 10 min presentation about both types of risk

models and the application scenario. Then they answer a short demographics and background

questionnaire.

• Application phase. During this phase the participants are asked to review proposed graphical

or tabular risk models of the application scenario and complete the task which contains 12

comprehension questions. The order of the questions in the task was randomized for each

participant. Moreover, the participants are randomly assigned to Group 1 or Group 2 so

that half of them answer questions related to the graphical risk model, and the other half

respond to questions on the tabular risk model. We ask participants to complete the task in

40 minutes. All necessary materials, like risk model diagrams or tables and tutorial slides, are

provided to the participants in electronic form at the beginning of the task. After completion

of the task, the participants answer a post-task questionnaire.

• Evaluation phase. Researchers independently check the responses of the participants and code

correct and wrong answers to each comprehension question based on the predefined list of

correct responses.

Inspired by similar studies (Hadar et al. 2013; De Lucia et al. 2010; Hoisl et al. 2014), for the

second study we chose a within-participants design with two factors (risk modeling notation and

application scenario) and two levels for each factor. This allowed us to collect participants’ level

of comprehension of both risk models. To mitigate a possible effect of the treatments’ order on

the experimental results we used a Latin square. Table 2 summarizes the experimental design

that we adopted. The participants were randomly assigned to one of the four groups and worked

individually. The graphical and tabular risk models provided to the participants were similar to

the ones used in the first study with several small changes. We have made available online the risk

models and tutorial slides that we used in the second study.2

The experimental procedure of the second study is similar to the one reported previously, with

1https://securitylab.disi.unitn.it/doku.php?id=validation_of_risk_and_security_requirements_
methodologies

2https://securitylab.disi.unitn.it/doku.php?id=unitn-comprehensibility-exp-2015
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Table 2: Experimental design of the second study

Each group applied one of the method on a scenario and then the second method on the remaining scenario
(OB=Online Banking scenario; HCN=Health Care Network scenario; Tab=Tabular risk modeling notation;
Graph=Graphical risk).

Session Group 1 Group 2 Group 3 Group 4

Session 1 Tab; OB Tab; HCN Graph; OB Graph; HCN
Session 2 Graph; HCN Graph; OB Tab; HCN Tab; OB

Table 3: Comprehension questionnaire design

Half of the answers require no judgment and combine 1 or 2 information cues connected by 1 or 2 relationships.
The other half of the questions have the same combination of information cues and relationships augmented
by the judgment element. There are no question with one information cue and two relationships as this
combination is impossible.

One Relationship Two Relationships

One information Cue 2 questions -
One Information Cue + Judgment 2 questions -
Two information Cues 2 questions 2 questions
Two Information Cues + Judgment 2 questions 2 questions

one difference. Basically, each session of the second study is the application phase. Therefore, in

the second study we have two consecutive application phases (Session 1 and Session 2) of about

40 minutes each. To mitigate the learning effect in Session 2 each participant receives a treatment

different from the one that he received in Session 1. Section 5.4 will provide statistical verification

that there were no significant differences between the results of the two sessions and between the

results of the two application scenarios.

Comprehension Questionnaire Revision. The results of the first study revealed a statistically sig-

nificant effect of task complexity on the participants’ comprehension of the risk models. Thus, we

revised the comprehensibility questions for our second study with the focus on the task complexity

to better investigate RQ2. Table 3 presents the distribution of the questions by the number of

information cues, relationships and judgments present in the question. Table A.17 in Appendix A

reports the comprehension questionnaire for the graphical risk model in the second study. Similar

to the first study these questions were reviewed by independent researchers from SINTEF who are

the experts in the graphical risk modeling notation. The questions for the textual risk model are

the same but the names used to denote the elements and relations are instantiated to the textual

risk modeling notation.
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3.8. Selection of Application Scenarios

In the first study we used an application scenario developed by IBM about the Healthcare

Collaborative Network (HCN). HCN is a health information infrastructure for interconnecting and

coordinating the delivery of information to participants in the collaborative network electronically.

In the second study in order to avoid learning effects between two application sessions we used

two different application scenarios. In addition to the HCN scenario, we used an Online Banking

scenario developed by Poste Italiane, describing online banking services provided by Poste Italiane’s

division through a home banking portal, a mobile application and prepaid cards.

The graphical risk models for the two application scenarios were developed by independent

researchers from the Norwegian research institute SINTEF who are the designers of the CORAS

graphical risk modeling notation in the framework of the EMFASE project. We developed the

corresponding tabular risk models. After the models were developed, together with experts from

SINTEF we checked that the models are conceptual copies of one another to the extent that the

two different notations allow this.

For each risk model we developed the comprehension questionnaire. The questionnaires were

reviewed by the researchers from SINTEF. In cooperation with the designers from SINTEF we

developed the list of correct responses. Tables A.16 and A.17 in Appendix A report the compre-

hension questionnaire for the graphical risk model for both studies. The questions for the textual

risk model are identical but for the names used to denote the elements and relations that are

instantiated to the textual risk modeling notation.

3.9. Analysis Procedure

We test the null hypothesis H10 using an unpaired statistical test in the first study as we have

a between-participants design, and a paired statistical test in the second study because of a within-

participants design. Distribution normality is checked by the Shapiro–Wilk test. If our data are

normally distributed we use an unpaired t-test to compare comprehension of independent groups in

the first study and paired t-test to compare the comprehensibility of matched groups in the second

study; otherwise we use their non-parametric analogs, the Mann–Whitney (MW) and Wilcoxon

tests respectively.

We investigate the effect of task complexity and test the null hypothesis H20 using the Wilcoxon

test for non-normal distribution. We have paired data because we investigate the difference in
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responses to questions with different complexity level obtained from the same participant.

We also use interaction plots to check the possible effects of co-factors on the dependent variable.

If the plot reveals any interaction between co-factors and the treatment we also use a permutation

test for two-way ANOVA to check whether this interaction is statistically significant. The post-task

questionnaire is used to control for the effect of the experimental settings and the documentation

materials.

We adopt 5% as a threshold of α (i.e. the probability of committing Type-I error). To report

the effect size of observed differences between treatments we used Cohen’s d with the following

thresholds: negligible for |d| < 0.2, small for 0.2 ≤ |d| < 0.5, medium for 0.5 ≤ |d| < 0.8, and large

for |d| ≥ 0.8. To run statistical tests and visualize the results we used RStudio3 with the following

packages:

- Package “car” by Fox and Weisberg (2011) for Levene’s test for homogeneity of variance

(function leveneTest),

- Package “stats” by R Core Team (2016) for Shapiro-Wilk normality test (function shapiro.test),

- Package “exactRankTests” by Hothorn and Hornik (2015) for Wilcoxon and Mann-Whitney

tests (function wilcox.exact). We use it because this package can handle tied observations

that present in our samples.

- To produce graphics we used the combination of the following packages: “ggplot2” byWickham

(2009), “gtable” by Wickham (2016), and “grid” by R Core Team (2016).

4. Study Realization

4.1. Experiments Execution

Table 4 summarizes the experimental set-up for the first study. The first experiment was

conducted at the University of Trento in the fall semester of 2014 as part of the Security Engineering

course. The participants were 35 MSc students in Computer Science. The experiment took place in

a single computer laboratory. The experiment was presented as a laboratory activity and only the

high-level goal of the experiment was mentioned; the experimental hypotheses were not provided

so as not to influence the participants but they were informed about the experimental procedure.

3www.rstudio.com
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Table 4: Participants Distribution to Treatments - study 1

In total 36 participants completed the comprehension task using the graphical risk model and 32 participants
used the tabular notation.

Experiment Graph Tabular Total

1. UNITN-MSC 18 17 35
1. PUCRS-MSC 6 7 13
1. PUCRS-BSC 12 9 21
Total 36 33 69

Table 5: Participants Distribution to Treatments - study 2

In total we had 83 participants who were randomly assigned to one of four groups. The description of the
groups see in Table 2. each group answered questions on a scenario described in one risk modeling notation
and then questions on a different scenario on the other risk modeling notation.

Session Group 1 Group 2 Group 3 Group 4 Total

2. POSTE 12 9 10 10 41
2. UNITN 12 10 10 10 42

At the end of the experiment we had a short discussion on the experiment’s procedure and on the

two modeling notations.

The same settings were maintained in two replicated experiments which were executed at the

PUCRS University in Porto Alegre, Brazil. The first replication involved 13 MSc students enrolled in

the Computer Science program. The second one involved 27 BSc students attending the Information

Systems course taught at the Computer Science department. Both replications took place in a single

computer laboratory.

Six participants failed to complete the task and we discarded their results: one participant

answered the question in Portuguese instead of English and they were not related to the model,

other participants did not provide responses based on the model.

Table 5 summarizes the experimental set-up for the second study. The first experiment was

conducted in Cosenza at Poste Italiane cyber- security lab (a large corporation) in September

2015. The participants were 52 MSc/MEng graduates attending a professional master course in

Cybersecurity. The experiment took place in a single computer laboratory. The experiment was

presented as an entry evaluation activity for the course and only the high-level goal of the experiment

was revealed. The participants were instructed about the experimental procedure.

The same settings were kept in the replication conducted at the University of Trento in October

2015 as part of the Security Engineering course. The replication involved 51 MSc students in

Computer Science. The experiment was presented as a laboratory activity.
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Table 6: Demographic statistics - study 1

The participants were 35 Italian MSc students attending a Security Engineering course at the University of
Trento, 13 MSc and 21 BSc students studying Computer Science the PUCRS University in Porto Alegre, Brazil.

Variable Scale Mean/Med. Distribution

Age Years 25.8 45% were 19–23 yrs old; 36% were 24–29 yrs old; 19% were
30–46 yrs old

Gender Sex 78% male; 22% female
Work experience Years 3.9 25% had no experience; 43% had 1–3 yrs; 15% had 4–7

yrs; 17% had >7 yrs
Expertise in security 0–4 (Novice–

Expert)
1 (median) 29% novices; 49% beginners; 17.5% competent users; 4.5%

proficient
Expertise in modeling
languages

0–4 2 (median) 11.5% novices; 21.5% beginners; 54% competent users;
10% proficient users; 3% experts

Expertise in HCN 0–4 0 (median) 67% novices; 23% beginners; 10% competent users

There were some participants who failed to complete both sessions, i.e. they finished the task

at home, or had a problem with the SurveyGizmo platform and restarted their task4. We removed

the responses of these participants from our dataset to eliminate the bias created by the varying

time. In total we discarded 11 participants from the first experiment (21%) and 9 participants

from the second one (18%) which allowed us to keep a significant number of participants without

compromising the internal validity of the experiment.

4.2. Demographics

Table 6 summarizes the demographic information about the participants of our experiments for

the first study. Most participants (75%) reported that they had working experience. With respect

to security knowledge most participants had limited expertise. In contrast, they reported good

general knowledge of modeling languages: software engineering courses taught at both universities

are compulsory and included several lectures on UML and other graphical modeling notations. The

participants only had very basic knowledge of the application scenario.

Table 7 summarizes the demographic information about the participants of our experiments

for the second study. Most participants (51%) reported that they had working experience. The

participants of the second study had slightly better security knowledge and slightly worse knowledge

of modeling languages compared to the participants of the first study (see Table 6). They also had

very basic knowledge of the application scenarios.

4When a participant by mistake closes the web page with the task in SurveyGizmo she loses the session and
cannot restore it and must restart from scratch. From the platform perspective she has used the same amount of
time of other participants, but in practice might have had significantly more time.
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Table 7: Demographic statistics - study 2

The participants were 42 Italian MSc/MEng graduates attending a professional master in cybersecurity in
Cosenza organized by Poste Italiane, a large corporation, and 41 MSc students attending a security engineering
course at the University of Trento. .

Variable Scale Mean/Med. Distribution

Age Years 26.4 (mean) 25.3% were 21–23 yrs old; 55.4% were 24–29 yrs old; 19.3%
were 30–40 yrs old

Gender Sex 75% male; 25% female
English level A1–C2 1% Elementary (A1); 5% Pre-Intermediate (A2); 37% In-

termediate (B1); 31% Upper-Intermediate (B2); 15% Ad-
vanced (C1); 11% Proficient (C2)

Work experience Years 1.3 (mean) 49% had no experience; 39% had 1–3 yrs; 11% had 4–7
yrs; 1% had >7 yrs

Expertise in
security

0–4 (Novice–
Expert)

1 (median) 19% novices; 52% beginners; 18% competent users; 6%
proficient; 5% experts

Expertise in modeling
languages

0–4 2 (median) 16% novices; 33% beginners; 36% competent users; 13%
proficient users; 2% experts

Expertise in online
banking

0–4 0 (median) 73% novices; 21% beginners; 4% competent users; 1% pro-
ficient users; 1% experts

Expertise in HCN 0–4 0 (median) 81% novices; 18% beginners; 1% experts

5. Experimental Results

In this section we report the results obtained in two studies and its analysis. The results of

preliminary analysis with Shapiro–Wilk test showed that our dependent variable (precision and

recall) was not normally distributed. Thus, in RQ1 we proceeded with a non-parametric MW test

for the results of the first study as it has between-subject design and with Wilcoxon test for the

second study because it has within-subject design. In RQ2 we used Wilcoxon test as we compare

the responses to questions with different complexity but from the same participant, and therefore,

our data were paired.

5.1. RQ1: Effect of Risk modeling notation on Comprehension

Tables 8 and 9 report descriptive statistics for precision and recall based on the results of

application phase across experiments of the first and second study respectively. As can be seen,

in the first study the answers to the questions on the tabular risk model demonstrated 7% better

average precision and 22% better average recall over the questions posed on the graphical risk model.

In the second study we got similar results: the responses to the questions on the tabular risk model

showed an overall 13% better precision and an overall 30% better recall over the responses given

with the graphical risk model. We also report precision and recall by questions in Tables A.18

and A.19 in Appendix.
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Table 8: Descriptive statistics of precision and recall by modeling notation - study 1

For both precision over all questions and recall over all questions the tabular risk model was easier to compre-
hend than the graphical one within each experiment and overall across the three experiments.

Tabular Graphical
Mean Med. sd Mean v sd

Precision
1. UNITN-MCS 0.90 0.92 0.06 0.84 0.88 0.11
1. PUCRS-MCS 0.82 0.87 0.12 0.70 0.74 0.10
1. PUCRS-BSC 0.81 0.90 0.15 0.80 0.83 0.13
Overall 0.86 0.92 0.11 0.80 0.84 0.12

Recall
1. UNITN-MCS 0.89 0.89 0.07 0.75 0.78 0.15
1. PUCRS-MCS 0.89 0.93 0.09 0.61 0.66 0.11
1. PUCRS-BSC 0.89 0.96 0.12 0.75 0.79 0.17
Overall 0.89 0.89 0.09 0.73 0.76 0.16

Table 9: Descriptive statistics of precision and recall by modeling notation - study 2

For both precision and recall over all questions the tabular risk model was easier to comprehend than the
graphical one within each experiment and overall across the two experiments.

Tabular Graphical
Mean Med. sd Mean Med. sd

Precision
2. POSTE 0.92 0.96 0.09 0.80 0.88 0.19
2. UNITN 0.93 0.95 0.09 0.84 0.86 0.14
Overall 0.92 0.96 0.09 0.82 0.87 0.17

Recall
2. POSTE 0.87 0.88 0.11 0.64 0.65 0.19
2. UNITN 0.89 0.91 0.11 0.71 0.72 0.17
Overall 0.88 0.90 0.11 0.68 0.69 0.18

Figure 2 presents precision and recall of participants’ responses to the comprehension task

in the two studies. Participants who used tabular risk model showed better precision and recall

of responses than the participants who used a graphical model. Tables 8 and 9 support this

observation. When looking at individual experiments we can observe that in the first study the

participants of experiment PUCRS-BSC demonstrated the least difference in precision. A possible

reason can be language issue as the participants were BSc students from Brazil speaking Portuguese

and may have problems with understanding English text.

The H10 is tested with Wilcoxon and MW tests and the results presented in Table 10. The

tests revealed a statistically significant difference in precision and recall for most of the experiments

with effect size ranging from small to very large except PUCRS-BSC where we obtained p-value

> 0.05. Only for overall recall of the first study Levene’s test returned p-value <0.05 which means

that sample does not meet homogeneity of variance assumption required by MW test. To validate
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For both studies participants using a tabular risk model showed a much better significant recall than the
graphical one (see the number of points to the left of median bar and the non overlapping boxplots on the
top of the diagrams). The participants using a graphical model have a slightly lower significant precision than
participants using tabular models as can be seen from the number of points below the median bar and the
boxplots on the right of the diagrams.

Figure 2: Distribution of participants’ precision and recall by modeling notation

its result we run Kruskal-Wallis test that can be used instead of MW test and does not require

homogeneity of variance. The test returned p-value = 1.2 ∗ 10−5 and confirmed the findings of

MW test. Overall, we can conclude that the tabular risk modeling notation is more effective in

supporting comprehension of security risks than the graphical one.

5.2. RQ2: Effect of Task Complexity on Comprehension

Figures 3a and 3b compare the distribution of precision and recall of the participants’ responses

to full comprehension task (Q1–Q12) (left) and only to the complex questions (right), namely

question complexity level > 2.

There is a significant difference in recall of the responses to the complex questions between

tabular and graphical risk models. In the first study 76% of the participants who used the tabular

risk model achieved recall better than or equal to the overall median value, whilst only 28% of the

participants who used the graphical risk model passed the recall threshold. In the second study

we observed bigger difference: 80% and 23% of the participants passed the overall median recall

threshold in tabular and graphical group respectively.

In the case of precision the gap in comprehension is reduced: in the first study 67% and 39%
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Table 10: RQ1 – Summary of Experimental Results by Modeling Notation

The results of Wilcoxon test for the first study and MW test for the second study revealed showed that tabular
risk modeling notation are statistically easier to comprehend as measured by both in precision (small-medium
effect) and in recall (large-very large effect) at the 5% confidence level.

Experiment #part. #obs. µT -µG σ p-value Cohen’s d

P
re
ci
si
on

1. UNITN-MCS 35 35 0.06 0.12 0.024 Small 0.49
1. PUCRS-MCS 13 13 0.13 0.18 0.046 Medium 0.71
1. PUCRS-BSC 21 21 0.01 0.22 0.66 Negligible 0.06
2. POSTE 41 82 0.12 0.15 6.7 · 10−5 Medium 0.79
2. UNITN 42 84 0.09 0.12 4.1 · 10−6 Large 0.81
Study 1: Overall 69 69 0.06 0.17 0.018 Small 0.32
Study 2: Overall 83 166 0.11 0.13 1.9 · 10−8 Medium 0.79

R
ec
al
l

1. UNITN-MCS 35 35 0.14 0.14 0.002 Large 0.95
1. PUCRS-MCS 13 13 0.27 0.15 0.001 Very large 1.87
1. PUCRS-BSC 21 21 0.15 0.21 0.054 Medium 0.70
2. POSTE 41 82 0.23 0.16 1.9 · 10−9 Very large 1.46
2. UNITN 42 84 0.18 0.14 5.7 · 10−9 Very large 1.25
Study 1: Overall 69 69 0.16 0.17 5.0 · 10−6 Large 0.98
Study 2: Overall 83 166 0.20 0.15 4.1 · 10−13 Very large 1.35

of the participants who used respectively tabular and graphical risk models passed the threshold.

In the second study the difference is smaller and these proportions were 66% and 34% for tabular

and graphical risk models respectively.

To better investigate this effect, we used the interaction plots between precision, recall, and

questions’ complexity. Figures 4a and 4b shows that there is no significant interaction between

precision, recall and modeling notation.

For both simple and complex questions the tabular risk model has better recall than the graph-

ical one and this holds for both studies. The difference in precision is significant only in the first

study, where tabular risk model showed significantly better precision for simple questions (0.96 as

mean value) over the complex ones (0.80). In the second study for both risk modeling notations

there is no significant difference in precision between simple and complex questions. As there is no

major interaction between risk model notation and either precision or recall, we can simply use the

F -measure as an aggregated measure of participants’ comprehension for further co-factor analysis

and for answering the second research question.

To make this analysis more precise we calculate the F -measure by aggregating it by questions’

complexity, so that Fm,s,` is the mean value for participant s using risk model m over all questions

q with complexity level `. We aggregate the levels as ` = 2 and ` > 2 (see complexity levels in

Tables A.18 and A.19 in Appendix). The formulation is essentially identical to (5) except that q
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(b) Study 2
For both simple and complex questions participants using a tabular risk model have better recall than the
graphical one. There is a significant difference in precision across simple and complex questions. The partic-
ipants using a graphical model have a lower precision than participants using tabular models as can be seen
from the larger number of points below the median bar and the boxplot on the right of the diagrams.

Figure 3: Distribution of participants’ precision and recall by task complexity

only ranges over the questions with complexity `.

Tables 11 and 12 presents the descriptive statistics for F -measure of simple and complex ques-

tions for tabular and graphical models in two studies. In both studies participants’ obtained better
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There is no significant interaction between precision, recall, and risk modeling notation. Only for simple
questions participants using the tabular notation performed significantly better albeit for a small effect.

Figure 4: Interaction among risk modeling notation and task complexity

F -measure for simple questions in comparison to the complex ones. Interesting fact that partici-

pants of experiments PUCRS-MCS in the first study obtained small difference (0.03) and UNITN in

the second study showed no difference in F -measure of simple and complex questions when respond

using graphical risk model.

The H20 is tested with Wilcoxon test and the results reported in Table 13. Overall the results

revealed small but statistically significant difference in favor of simple questions. The difference

is significant in most of the experiments when participants’ used tabular risk model but not for

graphical one. We can conclude that tabular notation is more prone to the effect of task complexity

comparing to the graphical notation.

In Appendix B we report the additional information showing the effect of different task com-
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Table 11: Descriptive statistics of F -measure by task complexity - study 1

In the first study F -measure of simple questions was significantly higher than of complex questions and this is
true for both risk modeling notations. Only in experiment PUCRS-MSC when participants used graphical risk
model the difference in F -measure between simple and complex questions was smaller (0.03) than in the other
experiments.

Simple Complex
Mean Med. sd Mean Med. sd

T
ab

ul
ar

1. UNITN-MCS 0.98 1.00 0.04 0.83 0.88 0.10
1. PUCRS-MCS 0.90 1.00 0.17 0.82 0.86 0.13
1. PUCRS-BSC 0.91 1.00 0.17 0.81 0.84 0.13
Overall 0.94 1.00 0.12 0.82 0.86 0.11

G
ra
ph

ic
al 1. UNITN-MCS 0.85 0.86 0.15 0.75 0.80 0.17

1. PUCRS-MCS 0.67 0.66 0.18 0.64 0.65 0.13
1. PUCRS-BSC 0.81 0.85 0.23 0.74 0.79 0.14
Overall 0.80 0.83 0.19 0.73 0.79 0.15

Table 12: Descriptive statistics of F -measure by task complexity - study 2

In the second study still there was a difference in F -measure in favor of simple questions over the complex
ones, but it was smaller for tabular risk model and same for the graphical one. In experiment UNITN the
participants who used graphical risk model obtained same mean F -measure for simple and complex questions
(0.76).

Simple Complex
Mean Med. sd Mean Med. sd

T
ab

ul
ar 2. POSTE 0.93 1.00 0.20 0.89 0.90 0.09

2. UNITN 0.94 1.00 0.15 0.90 0.91 0.09
Overall 0.93 1.00 0.17 0.89 0.90 0.09

G
ra
ph

. 2. POSTE 0.76 0.86 0.27 0.70 0.75 0.18
2. UNITN 0.76 0.86 0.26 0.76 0.79 0.15
Overall 0.76 0.86 0.26 0.73 0.77 0.17

Table 13: RQ2 – Summary of Experimental Results by Tasks’ Complexity

The results of Wilcoxon test for tabular risk model revealed a statistically significant difference in F -measure in
favor of simple questions (µC ≤ µS). Only for PUCRS-MSC and PUCRS-BSC experiments the test returned
p-value > 0.05. The results for graphical risk modeling notation is less convincing as only the experiment
UNITN in the first study and overall for the first study we obtained significant results and only for a small
effect.

Experiment #part. #obs. µC -µS σ p-value Cohen’s d

T
ab

ul
ar

1. UNITN-MCS 17 17 -0.14 0.08 1.5 · 10−5 Very large 1.69
1. PUCRS-MCS 7 7 -0.08 0.23 0.30 Small 0.36
1. PUCRS-BSC 9 9 -0.10 0.23 0.055 Small 0.45
2. POSTE 41 41 -0.04 0.24 0.0003 Negligible 0.19
2. UNITN 42 42 -0.04 0.20 0.002 Negligible 0.18
Study 1: Overall 33 33 -0.12 0.17 1.1 · 10−5 Medium 0.68
Study 2: Overall 83 83 -0.04 0.22 6.4 · 10−6 Negligible 0.18

G
ra
ph

ic
al

1. UNITN-MCS 18 18 -0.09 0.23 0.03 Small 0.41
1. PUCRS-MCS 6 6 -0.03 0.25 1.00 Negligible 0.11
1. PUCRS-BSC 12 12 -0.07 0.30 0.15 Small 0.23
2. POSTE 41 41 -0.06 0.36 0.08 Negligible 0.16
2. UNITN 42 42 0.00 0.33 0.41 Negligible -0.00
Study 1: Overall 36 36 -0.07 0.27 0.01 Small 0.28
Study 2: Overall 83 83 -0.03 0.35 0.06 Negligible 0.08
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Table 14: Post-task questionnaire results

For both modeling notations participants agreed that settings were clear, tasks were reasonable, and documen-
tation was clear and sufficient. Scale from 1 (strongly disagree) to 5 (strongly agree).

(a) Study 1

Tabular Graphical
Q# Mean Med. sd Mean Med. sd

Q1 4.67 5.00 0.54 4.67 5.00 0.54
Q2 3.88 4.00 1.05 3.88 4.00 1.05
Q3 4.18 4.00 0.68 4.18 4.00 0.68
Q4 4.00 4.00 0.75 4.00 4.00 0.75
Q5 4.00 4.00 0.83 4.00 4.00 0.83
Q6 4.27 4.00 0.76 4.27 4.00 0.76
Q7 4.33 4.00 0.82 4.33 4.00 0.82
Q8 4.30 4.00 0.77 4.30 4.00 0.77
Q9 Yes (64%) / No (36%) Yes (50%) / No (50%)

(b) Study 2

Tabular Graphical
Q# Mean Med. sd Mean Med. sd

Q1 4.22 4.00 0.83 4.22 4.00 0.83
Q2 3.86 4.00 0.84 3.86 4.00 0.84
Q3 4.10 4.00 0.77 4.10 4.00 0.77
Q4 3.93 4.00 0.82 3.93 4.00 0.82
Q5 3.92 4.00 0.80 3.92 4.00 0.80
Q6 3.98 4.00 0.78 3.98 4.00 0.78
Q7 4.02 4.00 0.87 4.02 4.00 0.87
Q8 4.04 4.00 0.77 4.04 4.00 0.77
Q9 Yes (45%) / No (55%) Yes (39%) / No (61%)

plexity elements (IC, R, and J) on F -measure by mean of interaction plots.

5.3. Post-task Questionnaire

To control the effect of the experiment settings on the results, we analyzed participants’ feedback

collected with post- task questionnaire after the application task. Tables 14a and 14b present

descriptive statistics of the responses to post- task questionnaire of the first and second studies

respectively. Responses are on a five-category Likert scale from 1 (strongly disagree) to 5 (strongly

agree).

Both for tabular and graphical risk models participants concluded that the time allocated to

complete the task was enough (Q1). Participants who used the tabular risk model were more confi-

dent in the adequacy of allocated time than participants who used the graphical risk model. They

found the objectives of the study (Q2) and the task (Q3) clear. In general, the participants were

confident that the comprehension questions were clear (Q4) and they did not experience difficulty

in answering the comprehension questions (Q5). Also, neither group experienced significant diffi-

culties in understanding (Q6) and using electronic versions (Q7) of risk model tables or diagrams.

The online survey tool was also easy to use (Q8).

Since we provided participants with electronic versions of the tabular and graphical risk models,

we decided to investigate whether the participants used search/filtering information in tables and

diagrams. In the first study most of the participants (64%) who used tabular risk models also used

search or filtering information in a browser or MS Excel, while only half of the participants who

used the graphical risk model used search in PDF format. In the second study this ratio was 21%
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less for participants who used the tabular risk model and 11% lower for participants who used the

graphical risk model.

5.4. Co-factor Analysis

We investigated the effect of co-factors on the dependent variable through interaction plots.

We considered co-factors like education degree (BSc or MSc), working experience, experience in

security and privacy projects or initiatives, and level of expertise in security, modeling languages,

and in the domain. In the first study only an handful number of participants reported their

knowledge as “proficient user” in Security, and therefore we merged this category with the category

“competent user”. For the same reason we merged the category “expert” in Modeling with the

category “proficient user”. Similarly, in the second study we had small number of participants who

reported their knowledge as “expert” in either Security or Modeling we merged this category with

the category “proficient user”.

Figure 5a shows the interaction plots between the F -measure by modeling notation (graphical vs.

tabular) and education degree, security knowledge, or modeling knowledge for the first study. The

results of permutation test for two-way ANOVA showed that these interactions are not statistically

significant. The test returned p = 0.55 for security knowledge vs risk modeling notation, p = 0.74

for modeling knowledge vs risk modeling notation, and p = 0.42 for education degree vs risk

modeling notation. Thus, we did not observe a statistically significant interaction between factors

and dependent variable.

In the experiments of the second study we considered co-factors like knowledge of English,

working experience, experience in security and privacy projects or initiatives, level of expertise in

security, modeling languages and in the domain. Figure 5b shows the interaction plots between the

F -measure by modeling notation (graphical vs. tabular) and level of English, security knowledge,

or modeling knowledge. The results of permutation test for two-way ANOVA showed that these

interactions are not statistically significant. The test returned p = 0.95 for the security knowledge

level and risk modeling notation, p = 0.56 for the modeling knowledge level and risk modeling

notation, and p = 0.38 for the level of English and risk modeling notation. Thus, in the second

study we did not observe a statistically significant effect of co-factors on the experimental results.
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(a) Study 1
Better expertise corresponds to obviously better results but otherwise security and modeling expertise do not
interact with the modeling notation. There is only a limited interaction for participants who are just competent
in modeling notation but this is not confirmed by either novices or experts. A permutation test for two-way
ANOVA did not reveal any statistically significant interaction.

0.5

0.6

0.7

0.8

0.9

1.0

Security Knowledge

Risk model type

F
−

m
ea

su
re

Graphical Tabular

novice
beginner
competent
proficient+exp.

0.5

0.6

0.7

0.8

0.9

1.0

Modeling Knowledge

Risk model type

F
−

m
ea

su
re

Graphical Tabular

novice
beginner
competent
proficient+exp.

0.5

0.6

0.7

0.8

0.9

1.0

English

Risk model type

F
−

m
ea

su
re

Graphical Tabular

A1&A2
B1&B2
C1&C2

(b) Study 2
Once again better expertise corresponds to better results but otherwise security and modeling expertise do not
have major interactions with the modeling notation. The difference in performance due to expertise is smaller
for participants using the tabular notation. The permutation test for two-way ANOVA did not reveal any
significant interaction.

Figure 5: Interaction of modeling notations with expertise co-factors

29



0.5

0.6

0.7

0.8

0.9

1.0

Scenario

Risk model type

F
−

m
ea

su
re

Graphical Tabular

HCN
Online Banking

0.5

0.6

0.7

0.8

0.9

1.0

Session

Risk model type

F
−

m
ea

su
re

Graphical Tabular

Session 1
Session 2

There is no interaction between scenario, session and modeling notation. There is a slight improvement in
actual comprehension in favor of the risk model based on the Online Banking scenario as it is clearly more
familiar than a Health Care Network. The improvement between two sessions is due to the learning effect, the
participants became experienced in fulfilling comprehension task throughout the sessions.

Figure 6: Interaction of scenario and session vs modeling notation - study 2

Learning Effect in Study 2. We investigated a possible learning effect that may be caused by

between- participants design. Figure 6 shows the interaction plots between F -measure by mod-

eling notation and scenario and session. The results of permutation test for two-way ANOVA test

show that there are no statistically significant interactions. The test returned p = 0.88 for the

scenario and risk modeling notation and p = 0.96 for the session and risk model type.

6. Discussion and Implications

In this section we discuss our results with respect to the hypotheses presented in Section 3.6. We

also discuss possible explanation of the outcomes and their implications to research and practice.

The first null hypothesis H10 (about no difference between tabular and graphical risk models

in the level of comprehensibility when performing comprehension task) can be rejected for both

precision and recall. The second null hypothesis H20 (no difference between simple and complex

questions in the level of comprehensibility when performing comprehension task) can be rejected

only for tabular representation, but not for the graphical one.

In summary, Participants who applied the tabular risk model gave more precise and complete

answers to the comprehension questions when requested to find simple and complex information

about threats, vulnerabilities, or other elements of risk models. Further, participants showed equal

preference when asked about their own perception of the two risk modeling notations (Q5 and Q6
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in post-task questionnaire). These results are consistent across both our studies (See Table 14).

Such result is partly surprising as the theory of cognitive fit (Vessey 1991) suggests that a match

between problem representation and task should result in a better problem solving performance. As

our questions are all about finding relations between elements, a graphical notation with its explicit

representation of spatial relations should have a better comprehension performance. It was also

against the original expectation of the authors’ team who invented one of the most cited graphical

method for security requirements engineering (Giorgini et al. 2005). Indeed, in all our own previous

studies where graphical and textual risk assessment methods were compared (Labunets et al. 2013,

2014; Massacci and Paci 2012), participants systematically perceived the graphical risk assessment

method (the some one used in this study) as superior in terms of ease of use and effectiveness (albeit

they often had the same actual effectiveness).

We argue that such difference in comprehension between the risk modeling notation can be

explained by cognitive fit theory itself if we do not unnecessarily restrict spatial relationships to

graphs as initially argued by Vessey (1991). Whereas columns are clearly devised for looking up

elements, tables implicitly capture elementary linear spatial relationships by their rows: each row

relates some column elements to each other.

Consider again our example question ‘What is the highest possible consequence for the asset

“Data confidentiality” that Cyber criminal can cause?’. Finding the first consequence in Figure 1a

requires walking one straight line from left to right. Most relations in the models and our natural

questions are linear or tree relations.

The same left-to-right eye’s flight can be performed in the Tabular representation in Figure 1b

after finding the first instance of “Cyber criminal” in the appropriate column. This example il-

lustrates that the row itself captures the linear relationship. Therefore, according to cognitive fit

theory both representations would be equally well suited for the task (of finding one consequence).

However, our question is not about finding one consequence, is about finding the most critical

consequence which is the important question to ask given the role of risk analysis to prioritize

countermeasures (see the experts’ opinion discussed in (Labunets et al. 2014)).

Graphical notation’s ability to “summarize” elements (there is only one single “Cyber criminal”)

and its a minimal duplication (such as reporting twice the ‘Data confidentiality’ asset to avoid

cluttering the diagram) should make it easier to cluster the elements and therefore to report more
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consequences. In contrast, our example Table in Figure 1b has four instances of “Cyber criminal”s

and three instances of “Data confidentiality”. More elements to search for would therefore mean a

higher likelihood to omit one element give the limited time.

As apparent from our experimental results, finding the second consequence turns out to be

harder when using a graphical notation: it requires to navigate through the graph in a tree structure:

right first, then down through the node “HCN network infected by malware” and then again right

to the end. The analysis of the spatial relationships in a table can be seen as a sequence of look

ups (on which tabular methods are notoriously good at) followed by a quick spatial relationship

analysis (by row). Therefore, the higher number of look ups is apparently compensated by the

easier processing of linear spatial relations against tree-based relationships.

This theory could be tested by performing additional experiments in which progressively more

complex questions are asked to determine whether a sweet spot exists where graphical models

would be identical or easier to understand than tabular models. When questions could no longer be

subsumed by sequences of look ups and linear relations the performance of the graphical notation

should be superior. Yet, if the models were to get too large for such questions to make sense, then

both tabular and graphical models would produce poor results.

Implications for practice. Translating Table 10 into practical values, participants exposed to a risk

analysis represented with a graphical notation gave one wrong answer out of ten and failed to report

one key element out of five more than participants exposed to a tabular risk modeling notation.

Given the role of risk analysis such failures may be considered unacceptably high for some domain.

The adoption of a tabular notation by international standards might have been dictated by

simplicity considerations but turns out to be better from comprehension purposes. In case of a

wide range of stakeholders it is likely that some of them may not know a particular graphical risk

modeling notation, while tables provide a notation closer to natural language. The stakeholders

also may benefit from using the ‘look-up’ bonus of tables with filters and sorting option in the

tables.

It is however unclear whether tabular notation might scale to very large risk assessments as

our result in Table 13 showed that there is a drop in effectiveness when faced with more complex

questions. Such drop is small (less than one question out of ten is answered incorrectly) but is

nonetheless significant. In contrast, graphical models did not suffer from such drop albeit it might
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just be because their performance was already low. More investigations are needed in this respect.

Another practical issue to investigate is the impact on comprehension of the use of a standard

terminology for the definition of the specific instances of threat and controls (as opposed to the class

names of the elements). Security catalogues are widely used in industry and they have a notable

effect on the production of risk assessments (see (De Gramatica et al. 2015)). The use of a well

defined terminology might also ease the comprehension tasks, especially for complex questions.

Implications for research. The importance of our study is that we investigated a) the effectiveness of

tabular and graphical risk modeling notations in extracting correct information about security risks

and b) the effect of task complexity on the level of comprehension of risk models by non-security

experts.

The experimental results showed that tabular notation is more effective than the graphical one

in extracting correct information about security risks and we have argued that such performance

might be due to the ability of a tabular notation to capture simple linear relationships. As we

have discussed above such theory could be tested by further experiments where either questions or

models are increasingly made more complex. There should be a point when either both notations

perform poorly or the tabular notation ability to capture simple linear relations can no longer cope

with complex relationships captured by a graphical notation.

Also task complexity factor requires further investigation. Our results showed that tabular rep-

resentation is prone to questions’ complexity, while graphical representation seems to be equally

good for both simple and complex questions. Only for Judgements there seems to be a signifi-

cant drop in comprehension for both graphical and tabular modeling notations (see Figure B.11).

Therefore, task complexity should be always taken into account when researchers investigate the

comprehensibility of different representations.

Indeed, the apparent contradiction between this result and our own previous research that we

mentioned above (Labunets et al. 2013, 2014; Massacci and Paci 2012) could be well explained

by the difference in task complexity: in those studies participants had to produce models in the

required notation. These studies were full- scale applications of security risk assessment methods

to real-sized application scenarios that lasted for several weeks.

The generalization of our results is of course limited by our experimental set-up and we discuss

the threats to validity more in details in the next section. We do not believe that different experi-
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ments would produce different results by changing the tabular notation as almost all standards are

based on very similar tables. Yet there might be other modeling graphical notations that could

perform better. From this perspective, the past experiments reported in (Grondahl et al. 2011;

Massacci and Paci 2012) give us confidence that we have selected one of the best graphical risk

analysis notation available at the time of writing.

Beyond comprehension: retention.. Another, orthogonal avenue of research goes beyond the sim-

ple task of comprehension and we would like to thank our reviewer for pointing out this possibility.

We term the phenomenon retention retention as it is a ‘Gestalt’ memorization of the key aspect of

the risk assessment after the assessment has been presented and is no longer available.

The experiment could use the existing comprehension tasks reported in this paper but the models

will be provided to participants only for a limited time to read and memorize. Then participants

have to answer the questions without having the models available.

7. Threats to Validity

In this section we discuss the main threats to validity.

Construct validity threats are mainly due to the method used to assess the outcomes of tasks. In

our experiments the main threat to construct validity is related to the design of the questionnaires

to assess the comprehension level of the participants and the risk models. To eliminate any po-

tential bias introduced by a particular researcher, the questions and the risk models were checked

by five researchers independently. The post-task questionnaire was designed based on previous

studies (Hadar et al. 2013; Ricca et al. 2007). However, the design of the questionnaire may be

strongly favoring one treatment over the other. Inspired by similar studies (Heijstek et al. 2011;

Sharafi et al. 2013), we used the names of element types in the question statements.

This may work in favor of the tabular risk model as the graphical model is more difficult to

navigate and reply “look-up” questions. However, our data showed different. If we look at Figure 4a,

in Study 1 the drop in precision of responses between simple and complex questions is very small

for graphical representation and more evident for the tabular one and the difference in recall is

similar to both representations. In Study 2 the drop in precision and recall is consistent for both

representations. Also a significant part of the participants (39% in study 1 and 50% in study 2)

used search in PDF documents with graphical risk models (see Tables 14a and 14b). An alternative

34



way to validate whether the availability of textual labels has an effect on comprehensibility, is to

compare tabular model with a UML-based graphical risk model containing names of element types

as a part of representation.

Another threat can be cause by self-evaluation the level of knowledge in related areas (i.e.

Security, Modeling, Domain Knowledge, etc.) that we collected with pre-task questionnaire. The

source of threats in this case can be the so-called DunningâĂŞKruger effect (Dunning et al. 2003),

when less competent people tend to evaluate their knowledge too high suffering from internal

illusion about their skills level, while highly competent people tend to downgrade the level of their

knowledge as they assume that others are more competent than themselves. We possibly observed

this effect in the first study when the participants that evaluated themselves as “novices” in Modeling

obtained better results than the “proficient” and “expert” participants who received worse results

(see Figure 5a). However, this threat is not major to our study as we used self-evaluation of

participants’ knowledge only to control for possible effects, but not as the main factor or dependent

variables.

Internal validity threats are mitigated by the use of randomized assignment to the treatments,

even though some of the threats remain. The risk models used in the study are quite generic

but were designed by real experts in CORAS and correspond to realistic models reporting risk

assessment results. Also, the comprehension questions were validated by the risk model designers

to ensure that the questions covered the comprehension of all risk modeling notation concepts. As

can be seen from Tables 14a and 14b, most of the participants clearly understood the objectives of

the study and the task to be performed.

Conclusion validity concerns the relationship between treatment and outcome. Aggregating

data from different individual experiments may threaten validity due to the differences between the

settings of the experiments and the groups of participants. However, we mitigated these threats

by defining the family of experiments belonging to the same study (i.e. Study 1 or Study 2)

as exact replications of the experimental procedure described in Section 3.7. Another threat to

conclusion validity lies in the data analysis. We used a non-parametric test because it does not

assume a normal distribution of the data. We used permutation test for two-way ANOVA only

to find a possible interaction between the treatment and co-factors. The permutation test is a

good alternative to standard test when the assumption about normal distribution is violated or the
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dataset is small (Kabacoff 2015).

External validity may be limited by the comprehension tasks and risk models used in the exper-

iment and by the type of participants. Regarding the first point, we can say that the models chosen

were created based on real application scenarios provided to us by an industrial partner. The HCN

scenario was provided by IBM. Regarding the second point, others studies (Svahnberg et al. 2008)

have shown that students have a good understanding of the way that industry behaves, and may

work well as participants in empirical studies. Moreover, students are not security experts and secu-

rity standards place a big emphasis on “communicating risk”, so that risk models/recommendations

can be “consumed” by non-experts in security ((Stoneburner et al. 2002, Section 2.1) or (BSI 2012,

Sec. 4.3)). Further studies may confirm whether or not our results can be generalized to more expe-

rienced participants (e.g., risk analysts and security professionals) and/or additional stakeholders’

types who may be potential consumers of risk models (e.g., decision-makes or managers).

8. Conclusion and Future Work

This paper has reported the results from a replication of experiments aimed at investigating the

actual comprehension of a security risk represented using tabular and graphical modeling notations.

In particular, the experimentation consisted of two studies of three and two replicated experiments,

involving undergraduate students (21), master students (90) and graduate students in a professional

master (41), in several different locations. The comprehension task was reading a risk model in

either the tabular and graphical notation and answering questions on the model.

The results showed that tabular risk models are more effective than graphical ones with respect

to extracting relevant information about security risks. The effect is medium in terms of precisions of

their answers and large in terms of recall. We believe that these results can be explained by a simple

extension of Vessey’s cognitive fit theory (Vessey 1991) as some linear spatial relationships can also

(and possibly more easily) be captured by tabular models. Hence, for some natural comprehension

questions about relationships among elements in a model the tabular representation also has a good

fit in terms of matching tasks with representation.

The experiments provided less evidence on the impact on task complexity as defined by Wood

(1986) and adapted by us to the comprehension of risk models in terms of questions involving

different information cues, different relationships and different judgements. Only for participants
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using the tabular modeling notation there is a small drop in the level of comprehension as assessed

by the the F-measure of their answers.

The dataset with the results of reported experiments is openly available for research purposes5

and the additional material for replication can be found on the web page of our research group6.

We plan to replicate our study with security professionals, as well as investigating further the

effect of the modeling notation on the retention of the key information of a risk assessment i.e. on

the precision and recall of participants’ answers after the model has been presented to them but

is not readily available for consultation. The empirical findings would have major implications for

practice as we can expect that most people would only refer back to the actual risk analysis on

occasional basis.
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Appendix A. Additional Data

Figure A.7: Risk Model for HCN Scenario in Tabular Notation Provided to the Subjects

41



Page 1

Page 2

Figure A.8: Risk Model for HCN Scenario in Graphical Notation Provided to the Subjects
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Table A.15: Post-Task Questionnaire

This is the post-task questionnaire that we distributed to the subjects. Questions Q1-Q8 included closed
answers on a 5-point Likert scale: 0 – strongly agree, 1 – agree, 2 – not certain, 3 – disagree, and 4 – strongly
disagree. Only question Q9 had “yes” and “no” answers.

Q# Statement

Q1 I had enough time to perform the task
Q2 The objectives of the study were perfectly clear to me
Q3 The task I had to perform was perfectly clear to me
Q4 The comprehensibility questions were perfectly clear to me
Q5 I experienced no difficulty to answer the comprehensibility questions
Q6 I experienced no difficulty in understanding the risk model tables (diagrams)
Q7 I experienced no difficulty in using electronic version of the risk model tables (diagrams)
Q8 I experienced no difficulty in using SurveyGizmo
Q9 [Tabular] Did you use search, or filtering, or sorting function in Excel or OpenOffice document?

[Graphical] Did you use search in the PDF document?

Table A.16: Comprehension Questions for Graphical Risk Model (Study 1)

This table presents the exact comprehension questionnaire that we provided to the subjects of the first study
with graphical risk model.

Q# Complexity Question statement

1 2 Which threat scenarios can be initiated by exploiting vulnerability “Insufficient routines”,
according to the risk model? Please list all threat scenarios:

2 4 Which unwanted incidents are possible as a result of exploiting vulnerability “Lack of
security awareness” by Cyber criminal? Specify all unwanted incidents:

3 2 Which are the assets that can be harmed by the unwanted incident “Unauthorized access
to HCN”? Please list all assets:

4 2 What is the likelihood that unwanted incident “Unauthorized data access” occurs? Specify
the likelihood:

5 6 What is the highest possible consequence for the asset “Data confidentiality” that Cyber
criminal or Hacker can cause? Please specify the consequence:

6 2 Which threats can exploit the vulnerability “Insufficient routines”? Please specify all
threats:

7 3 What are the vulnerabilities that can be exploited to initiate each of the following threat
scenarios: “HCN network infected by malware” and “Elevation of privilege”? Please list
all vulnerabilities:

8 4 Which treatments are used to mitigate vulnerabilities “Insufficient routines” or threat
scenario “Elevation of privilege”? Please specify all treatments:

9 2 Which threats can attack the asset “Privacy”? Please specify all threats:
10 4 Which threat scenarios can Cyber criminal initiate to harm the asset “Data confidential-

ity”? Please list all threat scenarios:
11 4 Which treatments can be used to mitigate vulnerabilities exploited by Cyber criminal to

attack the asset “Privacy”? Please list all treatments:
12 6 Which are the unwanted incidents that can be initiated by Hacker or Cyber criminal and

can occur, according to the risk model? Please list all unwanted incidents:
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Table A.17: Comprehension Questions for Graphical Risk Model (Study 2)

This table presents the exact comprehension questionnaire that we provided to the subjects of the second study
with graphical risk model.

Q# IC R J Question statement

1 1 1 - What are the consequences that can be caused for the asset “Availability of service”?
Please specify the consequences that meet the conditions.

2 1 1 - Which vulnerabilities can lead to the unwanted incident “Unauthorized transaction via
Poste App”? Please list all vulnerabilities that meet the conditions.

3 2 1 - Which assets can be impacted by Hacker or System failure? Please list all unique assets
that meet the conditions.

4 2 1 - Which unwanted incidents can be initiated by Cyber criminal with consequence equal to
“sever”? Please list all unwanted incidents that meet the conditions.

5 2 2 - Which threat scenarios can be initiated by Cyber criminal to impact the asset “Confiden-
tiality of customer data”? Please list all unique threat scenarios that meet the conditions.

6 2 2 - Which treatments can be used to mitigate attack paths caused by any of the vulnerabili-
ties “Poor security awareness” or “Lack of mechanisms for authentication of app”? Please
list all unique treatments for all attack paths caused by any of the specified vulnerabilities.

7 1 1 1 What is the lowest consequence that can be caused for the asset “User authenticity”?
Please specify the consequence that meet the conditions.

8 1 1 1 Which threats can impact assets with consequence equal to “severe” or higher? Please
list all threats that meet the conditions.

9 2 1 1 Which unwanted incidents can be initiated by Hacker with likelihood equal to “likely” or
higher? Please list all unwanted incidents that meet the conditions.

10 2 1 1 What is the lowest likelihood of the unwanted incidents that can be caused by any of
the vulnerabilities “Use of web application” or “Poor security awareness”? Please specify
the lowest likelihood of the unwanted incidents that can be initiated using any of the
specified vulnerabilities.

11 2 2 1 Which vulnerabilities can be exploited by Hacker to initiate unwanted incidents with like-
lihood equal to “likely” or higher? Please list all vulnerabilities that meet the conditions.

12 2 2 1 What is the lowest consequence of the unwanted incidents that can be caused by Hacker
and mitigated by treatment “Regularly inform customers of security best practices”?
Please specify the lowest consequence that meets the conditions.
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Table A.18: Precision and recall by questions, study 1

The most significant difference (≥ 0.2) in precision was observed for Q1, Q6 and in recall for Q2, Q6-Q7, and
Q10. In all these questions tabular models showed better results. Column “∅” reports the number of empty
responses to a question which can be caused by task termination forced by SurveyGizmo due to time limit.

Q# Comp- Tabular Graphical
lexity #obs. ∅ Mean Med. sd #obs. ∅ Mean Med. sd

Precision
Q1 2 33 0 1.00 1.00 0.00 36 0 0.79 1.00 0.37
Q2 4 33 0 0.92 1.00 0.25 36 0 0.81 1.00 0.40
Q3 2 33 0 0.99 1.00 0.06 36 0 0.95 1.00 0.19
Q4 2 33 0 0.94 1.00 0.24 36 0 0.86 1.00 0.35
Q5 6 33 0 0.58 1.00 0.50 36 0 0.42 0.00 0.50
Q6 2 33 0 0.99 1.00 0.06 36 0 0.66 1.00 0.44
Q7 4 33 0 0.97 1.00 0.10 36 0 0.94 1.00 0.20
Q8 4 33 0 0.99 1.00 0.06 36 0 0.96 1.00 0.18
Q9 2 33 0 0.94 1.00 0.24 36 0 0.88 1.00 0.32

Q10 4 33 0 0.87 1.00 0.27 36 0 0.85 1.00 0.31
Q11 4 33 0 0.83 1.00 0.29 36 0 0.85 1.00 0.31
Q12 6 33 0 0.53 0.50 0.27 36 0 0.61 0.50 0.35
Overall 33 0 0.88 1.00 0.28 36 0 0.80 1.00 0.37

Recall
Q1 2 33 0 0.97 1.00 0.12 36 0 0.79 1.00 0.37
Q2 4 33 0 0.92 1.00 0.25 36 0 0.61 0.50 0.38
Q3 2 33 0 1.00 1.00 0.00 36 0 0.96 1.00 0.18
Q4 2 33 0 0.94 1.00 0.24 36 0 0.86 1.00 0.35
Q5 6 33 0 0.58 1.00 0.50 36 0 0.42 0.00 0.50
Q6 2 33 0 0.95 1.00 0.15 36 0 0.65 1.00 0.44
Q7 4 33 0 0.89 1.00 0.20 36 0 0.62 0.75 0.24
Q8 4 33 0 0.80 0.67 0.17 36 0 0.78 1.00 0.28
Q9 2 33 0 0.87 1.00 0.26 36 0 0.73 0.80 0.32

Q10 4 33 0 0.91 1.00 0.23 36 0 0.66 0.67 0.30
Q11 4 33 0 0.98 1.00 0.09 36 0 0.89 1.00 0.27
Q12 6 33 0 0.80 1.00 0.35 36 0 0.79 1.00 0.38
Overall 33 0 0.88 1.00 0.27 36 0 0.73 1.00 0.37
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Table A.19: Precision and recall by questions, study 2

The most significant difference (≥ 0.2) in precision was revealed for Q1, Q8, Q10, and Q12, and in recall of
almost half of the questions (Q1, Q4-Q6,Q8,Q10, and Q12). For all these questions tabular model showed
better results than the graphical one. Column “∅” reports the number of empty responses to a question which
can be caused by task termination forced by SurveyGizmo due to time limit.

Q# Comp- Tabular Graphical
lexity #obs. ∅ Mean Med. sd #obs. ∅ Mean Med. sd

Precision
Q1 2 83 1 0.94 1.00 0.24 83 0 0.64 1.00 0.48
Q2 2 83 1 0.95 1.00 0.22 83 1 0.95 1.00 0.20
Q3 3 83 1 1.00 1.00 0.04 83 0 0.99 1.00 0.07
Q4 3 83 0 0.95 1.00 0.20 83 2 0.90 1.00 0.29
Q5 4 83 0 0.99 1.00 0.07 83 0 0.90 1.00 0.28
Q6 4 83 0 1.00 1.00 0.03 83 0 0.99 1.00 0.08
Q7 3 83 2 0.89 1.00 0.32 83 0 0.72 1.00 0.45
Q8 3 83 1 0.97 1.00 0.15 83 0 0.71 1.00 0.44
Q9 4 83 1 0.85 1.00 0.29 83 0 0.88 1.00 0.24

Q10 4 83 1 0.65 1.00 0.48 83 1 0.43 0.00 0.50
Q11 5 83 0 0.93 1.00 0.19 83 0 0.84 1.00 0.32
Q12 5 83 1 0.85 1.00 0.36 83 0 0.64 1.00 0.48
Overall 83 9 0.91 1.00 0.27 83 4 0.80 1.00 0.39

Recall
Q1 2 83 1 0.94 1.00 0.24 83 0 0.64 1.00 0.48
Q2 2 83 1 0.94 1.00 0.23 83 1 0.76 1.00 0.28
Q3 3 83 1 1.00 1.00 0.00 83 0 0.96 1.00 0.14
Q4 3 83 0 0.87 1.00 0.25 83 2 0.63 0.67 0.29
Q5 4 83 0 0.94 1.00 0.15 83 0 0.64 0.75 0.32
Q6 4 83 0 0.86 1.00 0.17 83 0 0.60 0.60 0.20
Q7 3 83 2 0.89 1.00 0.32 83 0 0.72 1.00 0.45
Q8 3 83 1 0.97 1.00 0.14 83 0 0.64 0.67 0.42
Q9 4 83 1 0.77 1.00 0.32 83 0 0.81 1.00 0.29

Q10 4 83 1 0.65 1.00 0.48 83 1 0.43 0.00 0.50
Q11 5 83 0 0.84 1.00 0.25 83 0 0.67 0.50 0.32
Q12 5 83 1 0.85 1.00 0.36 83 0 0.64 1.00 0.48
Overall 83 9 0.88 1.00 0.28 83 4 0.68 1.00 0.38
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Appendix B. Effect of Task Complexity Components on the Risk Model Comprehen-

sion

Figure B.9 shows the interaction plots between F -measure by model type (graphical vs. tabular)

and the levels of IC.
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Figure B.9: Effect of complexity (IC) on F -measure

Figure B.10 shows the interaction plots between F -measure by model type (graphical vs. tab-

ular) and the levels of R.
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Figure B.10: Effect of complexity (R) on F -measure
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Figure B.11 shows the interaction plots between F -measure by model type (graphical vs. tab-

ular) and the presence of the judgment component.
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Figure B.11: Effect of complexity (J) on F -measure
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