
UNICORN: A Tool for Modeling and Reasoning
on the Uncertainty of Requirements Evolution ?

Le Minh Sang Tran and Fabio Massacci

University of Trento, Italy
{tran, fabio.massacci}@disi.unitn.it

Abstract. Long-living software systems keep evolving to satisfy changes
in their working environment. New requirements may arise, while cur-
rent requirements may become obsoleted. Such requirements evolution
fortunately could be foreseen at some level of (un)certainty. The paper
presents UNICORN, a CASE tool for modeling and reasoning on the
uncertainty of requirements evolution. The tool provides graphical con-
structs as well as different views of requirements evolution to assist users
to model requirements evolution. The tool also supports the evolution
analysis in which facilitate the selection of design alternative.

Keywords. requirements evolution, known-unknown evolution, max be-
lief and deferral belief, CASE tool.

1 Introduction

Long-living software systems keep evolving as they need to continue to satisfy
changing business needs, new regulations and standards, and the introduction
of new technologies. Some of future requirements may be known to be possible,
but it is unknown whether they would actually be needed: the known unknown.
The final standardization of two competing alternatives is a simple example of
such phenomenon. Unfortunately, a company who ship or buy software cannot
wait until all unknowns become known. The process of tendering and organiza-
tional restructuring requires a significant amount of time and planning. There-
fore, when having a number of possible design alternatives for the system-to-be,
decision makers at high-level need to choose a viable design alternative that is
evolution-resilient (i.e. minimize the risks that it cannot satisfy evolving require-
ments and thus needs replacement). Obviously, implementing a new design to
replace for an obsoleted one may be more expensive than having a design that
still be applicable when new requirements arise.

In this paper we present a CASE tool which aims to support an RE approach
to model and reason on requirements evolution (previously proposed in [4, 5].
The objective of the approach is to capture what Loucopoulous and Kavakli
identified as the knowledge shared by multiple stakeholders about “where the
enterprise is currently”, “where the enterprise wishes to be in the future”, and

? This work is supported by the European Commission under the project EU-FP7-
NoE-NESSOS

“alternative designs” for the future state [3]. The approach assists choosing an
appropriate design alternative, in consideration of uncertainty of requirements
evolution, based on quantitative metrics.

This paper is organized as follows. In §2 we give an overview about the RE
approach [4, 5] as a baseline for the tool. We then present the tool architecture
in §3. We run a demo scenario in §4 and conclude the paper in §5.

2 The Approach on Requirements Evolution

Our approach [5] aims at dealing the uncertainty of the requirements evolution to
leverage the selection of an ‘optimal’ design alternative. Requirements evolution
is captured in terms of evolution rules. There are two kinds of rules: observable
rule and controllable rule.

The observable rule captures the way requirements evolve. Requirements evo-
lution might be either intentional (e.g., planned changes) or unintentional (e.g.,
changes dues to new business needs). Both may be uncertain because when men-
tioning about future, “the only certainty is that nothing is certain”(Pliny the
Elder1). Concretely, the unintentional evolution is uncertain because we do not
know whether it happens. The intentional evolution is planned, but it is still
not 100% for sure because some expected reasons might impact the future plan,
e.g., financial issues, introduction of new standards. Therefore, intentional evo-
lution is also uncertain. The uncertainty of evolution is captured by the evolution
probability which is the belief that evolution might materialize in future. The se-
mantic of such belief could be accounted by using the game-theoretic approach
described in [5].

Let RM be the original requirements model, and RMi be one of the evolution
possibilities that RM may evolve to. For sake of simplicity, all RMi are complete
and mutual exclusive, i.e. one and only one RMi materializes. The observable
rule (ro) is as follows.

ro(RM) =

{
RM

pi−→ RMi

∣∣∣∣∣
n∑

i=1

pi = 1

}
(1)

where pi is the evolution probability for which RM evolves to RMi; n is the
number of all evolution possibilities of RM. The sum of all pi equals to one.

The controllable rule captures the way how requirements are satisfied. A
requirements model usually have different design alternatives whose implemen-
tation will satisfy the requirements. This is described in a controllable rule. Let
RM be a requirements model, and DAj be a design alternative (i.e. set of ele-
ments satisfying all mandatory requirements) of RM. The controllable rule (rc)
is as follows.

rc(RM) = {RM −→ DAj |j = 1..m} (2)

where m is the number of design alternatives of RM. Here we abuse the arrow
notation (−→) to express both observable and controllable rules.

1 Gaius Plinius Secundus (23 – 79), a Roman naturalist, and natural philosopher.

Our analysis on design alternatives relies on two quantitative metrics namely
Max Belief and Deferral Belief 2. The former indicates the maximum belief that
a design alternative will still be applicable when evolution happens. The latter is
the belief that a design alternative turns out to be not applicable when evolution
happens. The criterion to justify among design alternatives in terms of evolution
resilience is that: “Higher max belief, lower deferral belief”. Interested readers
are referred to [5] for more detailed discussion on these two metrics.

3 The Main Features and Architecture

3.1 Features Overview

UNICORN is an Eclipse-based tool which aims to support the approach de-
scribed in [5] (and briefly reviewed in §2). The tool is provided as a set of EMF-
based Eclipse plug-ins written in Java, relying on standard EMF technologies
such as GMF, Xtext. The features of the tool can be categorized into two major
categories: Modeling support and Reasoning support.

The modeling support includes features necessary to model requirements evo-
lution. Important features in this category are as follows:

– Support requirements evolution modeling. UNICORN provides several con-
structs to capture evolution rules in a requirements model. Different evolu-
tion possibilities and different design alternatives are supported. Evolution is
supported in different levels: from high level requirements to low level ones.

– Support different views. Several views are supported to assist designers. In
particular, Normal View shows the complete requirements with evolution
rules; Evolution View presents only evolving parts of the model; and Original
View displays the requirements model without any evolution.

– Support large model. A large requirements model can be partitioned into
several sub models. Sub models are edited in separated windows. Each model
can reference to other models. Changes in a model will be automatically
reflected to other models.

– Support customization and extension. The graphical constructs of UNI-
CORN are highly customizable. Adding a new constructs with custom fig-
ures and attributes, or modifying existing constructs can be done without
changing the UNICORN source code.

Fig. 1 presents the basic constructs by which we draw requirements models
in UNICORN. A requirement entity represents a requirement. A refines relation
connects a requirement to other requirement. It means that the parent require-
ment can be fulfilled if its child is fulfilled. If more than one children are required,
these children connect to an extra compound node which in turn connects to the
parent requirement. By allowing several refines relations to connect to a require-
ment, we can model the different design alternatives of a controllable rule. An
observable entity represents an observable rule where the original requirement is

2 We rename the Residual Risk metric in [5] to Deferral Belief to distinguish it with
the concept of Residual Risk in the field of risk management.

Fig. 1. The constructs to modeling requirements evolution in UNICORN.

connected by an evolves relation. Evolution possibilities are connected by evolu-
tion possibility relations. Elements in other diagram could be reference by special
construct off-diagram reference.

In Fig. 1, the original requirements model RM has three requirements: RQ-
1, RQ-2, and RQ-3. RQ-1 is refined to RQ-2 and RQ-3. Therefore, RM has one
design alternative which is {RQ-2,RQ-3}. RM might evolve to a possibility RM1

in which RQ-4 is refined to either RQ-5 or RQ-6. The evolution probability for this
evolution is 0.6. Besides, RM might remain unchanged with the probability of
0.4. The observable and controllable rules captured by this figure are as follows.

ro(RM) =
{

RM
0.6−−→ RM1,RM

0.4−−→ RM
}

rc(RM) = {RM −→ {RQ-2,RQ-3}}
rc(RM1) = {RM1 −→ {RQ-5} ,RM1 −→ {RQ-6}}

The reasoning support provides an environment for developing automated
analyses on requirements models. For example, the graphical models could be
transformed into a data structure that facilitates the analysis. The traceability
between the modeling constructs and transformed data structure is also main-
tained. Currently, we have implemented following analysis:

– Evolution analysis: This analysis walks through the entire requirements mod-
els and calculate quantitative metrics (Max Belief, Deferral Belief) for each
design alternative. The analysis can incrementally update the metric values
with respect to changes in the model as soon as the user changes the models.

3.2 Architectural Overview

The tool architecture is specially designed to support a high level of customiza-
tion and extension. Fig. 2 presents the overall architecture of the UNICORN
tool. In this figure, components are depicted by rectangles. The headed-arrow
connections denote the interaction between components where the source com-
ponents invoke (or use) the target ones. These components are briefly described
as follows:

– The Universal Data Model is a common storage for the constructs of all
models. Since graphical constructs could be defined by users (e.g., add new

Language Registry

Universal Data Model

Construct Definitions

Model Conversion Rules

Data Service

GUI ServiceCustom GUI

Figures

Themes

Layouts

...

GUI Editor

Model Conversion Engine

Incremental Converter

TracerConverter

Custom Analysis

Evolution
Analysis

...

Visualizer

Analysis 2nd Visualizer

Analysis nth Visualizer

Modeling Support Reasoning Support

Fig. 2. The overall architecture of the UNICORN tool.

Element

Entity Relation

1
*

Attribute * 1
1

1

*
*

source

target

Fig. 3. The class diagram of the Universal Data Model
.

construct with custom attributes, or add new attributes to existing con-
structs), the Universal Data Model is a meta-meta model (see Fig. 3).

– The Language Registry maintains definitions of graphical constructs in re-
quirements models, as well as conversion rules to transform the data model
to other data structures used by analysis. The construct definitions and con-
version rules are defined in configuration files which are fully customizable.

– The Data Service uses the construct definitions in the Language Registry to
allow other components to manipulate the data stored in the data model.

– The GUI Service is in charge of manipulating graphical objects and data
model. It employs the Custom GUI components to create several GUI ob-
jects (e.g., construct figures, themes, and so on) consumed by the GUI Edi-
tor, which is a front-end graphical editor.

– The Model Conversion Engine uses the conversion rules stored in the Lan-
guage Registry to convert the requirements model to the underlying data
structures used by the custom analysis.

– The Custom Analysis is a set of analyses run on the editing requirements
model. Each custom analysis has a Visualizer to show the analysis result.

Fig. 3 describes the class diagram of the Universal Data Model. The Element
is an abstract class representing any element in the model, which could be either
an entity, or a relation. An Entity could be a requirement, or an observable node.
A relation captures the relationship between entities. An Attribute is a special
kind of element, holding the attribute value of an element.

Fig. 4 shows the syntax of the construct definition file in the Extended
Backus-Naur format. To keep the syntax tidy and clear we do not provide com-
plete definition of some non-terminal production rule such as expression, as well
as common terminal symbols such as identifier (ID). The definition file begins

1 language ::= ”language” ID (element)* ”;”
2 element ::= (”entity”|”relation”) ID ”{” attribute * ”}”
3 attribute ::= (”field”)? ID (”:” type)? ”=” expression ”;”
4 tag ::= ID ”:” expression
5 type :: = ”string”|”float”|”date”|”boolean”|ID

Fig. 4. The compact syntax of the construct definition file.

1 entity requirement {
2 figure = new RoundRectFigure() { Size=(50,60),
3 addChildFigure(new CenterLabelFigure(”req name”), DOCK FILL)};
4 req name parser = {pattern=”{0}:{1}”, fields=(Name, Description)};
5 field Actor: string = ””;}

Fig. 5. A fragment of a construct definition file.

with a keyword language followed by an ID which is the language name and a
set of elements. An element is either an entity or a relation. Each element has a
set of attributes which has name, data type (optional), and initial value.

Fig. 5 exhibits an example where the requirement construct is defined with
respect to the grammar denoted in Fig. 4. The requirement construct is an entity
whose graphical representation is a round rectangle with a label inside. The label
is to show and edit the name and the description of this requirement. There is
one text field Actor in requirement. The initial value of this field is a blank.

4 Demo Scenario

We demonstrate the features supported by our tool in a scenario taken from
an industrial project: the System Wide Information Management (SWIM) [1,2].
The scenario concerns the evolution in the requirements models of the Enter-
prise Information System Security and the External Boundary Protection Se-
curity [1, section 5.6]. In this scenario we focus on the authentication and the
implementation of boundary protection (BP) services.

Table 1 reports the list of requirements, and their design alternatives. The
table is divided into two parts: design alternatives on top, and requirements
on bottom. The check mark (X) in the cross join of a design alternative and
a requirement indicates that this design alternative satisfies the corresponding
requirement. Both design alternatives and requirements have unique identifiers,
and short descriptions.

Modeling requirements evolution. Fig. 6 illustrates the requirements model with
evolution rules of the scenario. The model says that the requirement RQ-0 is
refined to both RQ-1 and RQ-2. RQ-1 is later refined to RQ-3, and so on. RQ-1
has an evolution rule where RQ-1 might remain unchanged with probability 0.4,
or might evolve such that RQ-1 will be refined, in a new way, into RQ-3, RQ-4,
and RQ-5. The rest of the diagram can be read in the similar manner. Due to
space limit, some screen shots (e.g., different views) are not provided. Interested
readers are referred to the web site of the tool 3.

3 http://disi.unitn.it/~tran/pmwiki/pmwiki.php/Main/Unicorn

http://disi.unitn.it/~tran/pmwiki/pmwiki.php/Main/Unicorn

Table 1. The requirements and design alternatives.

ID Design Alternative

RQ-10 Simple IKMI
RQ-11 Ad-hoc SSO solution
RQ-12 OpenLDAP
RQ-13 Active Directory
RQ-14 Oracle Identity Directory
RQ-15 Ad-hoc solution for BP services
RQ-16 Common gateway for BP services
RQ-17 Centralized Policy Decision Point (PDP)

ID Requirements Alternative

RQ-3 Manage keys and identities of system entities X X X X
RQ-4 Support Single sign-on X X X X
RQ-5 Support large number of entities X X
RQ-6 Less program dependencies BP services X
RQ-7 Robust and scalable BP services X
RQ-8 Simpler operation of BP services X
RQ-9 Overall security assessment supported X

Fig. 6. The requirements model of the scenario with evolution rules.

Reasoning on requirements evolution. Fig. 7 shows the evolution analysis on the
requirements model of the scenario, in which the evolution metrics for each de-
sign alternative are calculated. The analysis result is shown in two tabs. The first
tab reports possible alternatives derived from the model and their correspond-
ing evolution metrics. The second tab displays the DAT which is an internal
structure stored at every node in the model to calculate the evolution metrics.
Additionally, users can specify their own alternative, and have its evolution met-
rics calculated.

Any changes in the diagram will be automatically reflected in the analysis
result. Since the analysis on requirements evolution is incremental, only changed
nodes in the model are recalculated. This improves the overall performance of
the tool.

Fig. 7. The evolution analysis on the requirements model of the scenario.

5 Conclusion

We have presented UNICORN, a tool for modeling and reasoning on require-
ments evolution. By modeling support, UNICORN provides several customiz-
able graphical constructs to model the requirements evolution. By reasoning sup-
port, UNICORN provides an environment where the graphical notation could
be transformed to a data structure facilitating the analysis. UNICORN demon-
strates this by implementing an analysis for requirements evolution.

As a part of future work, we will develop some plug-ins that allow our tool
to read requirements models drawn by other tools (for example Si*4 models).
These models could then be referenced in the evolution rules.

References

1. F. A. Administration. System Wide Information Management (SWIM). Segment 2
Technical Overview. Technical report, October 2009.

2. Federal Aviation Administration. System Wide Information Management (SWIM)
segment 2 technical review. Technical report, FAA, 2009.

3. P. Loucopoulos and E. V. Kavakli. Enterprise knowledge management and concep-
tual modelling. In ER’99, 1999.

4. F. Massacci, D. Nagaraj, F. Paci, L. M. S. Tran, and A. Tedeschi. Assessing a
requirements evolution approach: Empirical studies in the air traffic management
domain. In EmpiRE’12, 2012.

5. L. M. S. Tran and F. Massacci. Dealing with known unknowns: Towards a game-
theoretic foundation for software requirement evolution. In CAiSE’11, 2011.

4 http://www.sistar.disi.unitn.it

http://www.sistar.disi.unitn.it

	UNICORN: A Tool for Modeling and Reasoning on the Uncertainty of Requirements Evolution
	Introduction
	The Approach on Requirements Evolution
	The Main Features and Architecture
	Features Overview
	Architectural Overview

	Demo Scenario
	Conclusion

