
1

Emerging Mobile Platforms: Firefox OS and Tizen

Olga Gadyatskaya, Fabio Massacci, Yury Zhauniarovich

Department of Information Engineering and Computer Science,
University of Trento, Italy

e-mail: name.surname@unitn.it

Existing mobile platforms landscape evolves very quickly,
as the big players in the field and the research community
are challenged to develop novel solutions with minimal costs
of application development and possibility to support natively
mobile web applications. This process to a great amount has been
driven by the presence of Android, an open-source operating
system developed by Google. In this article we overview two
promising platforms that are both open-source and web-based:
Firefox OS (contributed by Mozilla) and Tizen (backed by
Samsung and Intel), and compare their security features with
those of the Android OS.

I. INTRODUCTION

Emerging mobile operating systems target the booming
market of mobile web applications (webapps). A traditional
mobile webapp is essentially a web page (HTML, CSS and
JavaScript) that is accessible through a special web rendering
component of a smartphone. Webapps can be easily distributed
across multiple platforms, as only a limited fraction of code
requires rewriting. Their only (and severe) limiting factor was
the lack of access to the native device features, such as the GPS
sensor or accelerometer. In order to address this limitation,
W3C and a number of companies, including Mozilla, push
to standardize a set of client-side APIs that could make the
device hardware available to webapps. These client-side APIs
provide access to, e.g., the device filesystem, settings, location,
telephony services, calendar and alarm mechanism.

With the development of the client-side web API standards,
new mobile platforms have emerged. These platforms offer a
lightweight mobile application distribution channel via web,
while attracting the end-users with relatively cheap devices.
This article presents an overview of two novel mobile plat-
forms, Firefox OS and Tizen, compares their security features
with those Android OS, and attempts to understand which
lessons were learned by the mobile platform manufacturers.
We assume the reader is familiar with the Android security
architecture (the paper [1] by Enck et al. might be a good
starting point to discover Android).

For the scope of this article we use the following namings:
• Native application – an application (app) developed in a

platform-specific language (e.g., a Java app for Android)
• Webapp, or HTML5 app – a stand-alone application

for a specific mobile platform developed using the web
technologies;

• (Browser-based) web page – an application/web module
that is rendered in a (mobile) browser;

• Device APIs – a set of APIs on a specific mobile device
that enables webapps to access the device capabilities;

II. FIREFOX OS

Firefox OS is a Linux-based mobile operating system sup-
ported by Mozilla. In the nutshell, Firefox OS is a modification
of the Android stack to run Gecko, the application runtime of
this operating system (which is also the basis of the Mozilla
Firefox web browser).

Currently, Firefox OS is still in its early days, but some
hardware companies, including ZTE, LG and Huawei, have
already announced the appearance of devices based on this
operating system, while GeeksPhone already sells Firefox
OS phones. Additionally, Firefox OS was ported to Android
smartphones (for instance, to Galaxy Nexus and Nexus S),
although they are not considered as primary targets for Firefox
OS.

A. The Firefox OS Architecture

Firefox OS relies a lot on the architecture and core princi-
ples of its predecessor, Android. Fig. 1 depicts the architecture
layers, each with its own name, and the main components
of Firefox OS. After looking at the firmware code, one can
conclude that in essence the Linux kernel of Firefox OS
dubbed Gonk is nothing more than an “Androlyzed” Linux
kernel. Gecko is the main app runtime and corresponds to
the Android Framework layer. Gaia is the user interface layer
entirely implemented using web technologies.

Gecko is a framework that provides the device functionality
to webapps in Firefox OS. During the system startup the
first user-space process init starts the system core process
called b2g (short for “boot to Gecko”, the original name of
the Firefox OS project), which is also known as the parent
or master process. This process mediates all accesses to the
system resources including filesystem access. This means that
webapps do not directly interact with the operating system.
The communication between the child and the parent processes
occurs through an IPC mechanism described using the IPC
Protocol Definition Language (IPDL) (that is similar to AIDL
in Android). In Firefox OS the APIs available to webapps are
defined using this language. Thus, a webapp can interact with
the system resources only through the set of well-defined APIs
(the Web API). This architecture serves Firefox OS in several
aspects. First, it provides an API set, which can be used by
child processes to access the features provided by the parent



Fig. 1: The Firefox OS architecture [2]

process. Second, it serves as a centralized policy enforcement
point, where permissions of the child processes are checked.
Additionally, this architecture provides a centralized solution
for handling race conditions (when several child processes
request the same system feature) [3].

This architecture allows Firefox OS to have security imple-
mented on several layers. On the Gonk layer, it provides ap-
plication sandboxing using discretionary access control (DAC)
implemented in the Linux kernel. On the Gecko layer, it
provides mandatory access control (MAC) implemented in the
form of permissions.

B. App Ecosystem

For its operation, Firefox OS relies only on HTML5 we-
bapps that are divided into three categories: web, privileged
and certified. Certified apps are the apps that are pre-installed
on the device (supposedly by phone manufacturers or telco
operators). These applications are located on the system im-
age. Generally, certified apps correspond to Android’s system
applications that receive access to the API protected with the
signatureOrSystem permissions. Similarly to Android,
only certified apps may receive access to the “dangerous” func-
tionality, e.g., to the telephony stack or webapp management
(non-certified apps cannot detect the presence or any changes
to the state of any other particular app).

Privileged apps are webapps that are verified and signed by
the app marketplace. Prior to signing an app, the marketplace
should perform a code review process, when app authentic-
ity and integrity are verified, the requested permissions are
reviewed, and the code is checked for absence of malicious
actions. Unlike Android, where the app signature is used to
enable trust relationship between applications and to verify
that updates come from the same developer, in Firefox OS the
marketplace signature is used to elevate the available privileges
of the application. Basically, privileged apps are similar to
Android third-party apps signed with the system signature (the
signature permission level) – they also get higher access
to the API.

Web apps are similar to ordinary web pages accessible
through mobile browser. These apps may have resources stored

on the device or located on a web server. According to Mozilla,
most third-party apps on Firefox OS will be web apps, because
they are the cheapest to develop and maintain. They could
be distributed through a website and, thus, do not require
an update process. Moreover, the one of the most interesting
features of Firefox OS, the ability to work with apps returned
by a search engine, works only for web applications. However,
web apps have the least set of available permissions.

According to the distribution method, apps can be classified
as hosted and packaged. Hosted apps act like browser-based
web pages. All resources of these apps, except the manifest
file that is stored locally, are located on an external web server.
In contrast, packaged apps contain all their resources (HTML,
CSS, JavaScript, manifest, etc.) archived in a zip file. Web
apps can be either packaged (in this case they are called plain
packaged apps) or hosted. At the same time, privileged and
certified apps can be only be distributed as packaged apps.

C. Sandboxing

In Firefox OS the apps run in independent sandboxes com-
pletely isolated from each other. The sandboxing mechanism
is implemented similarly to Android. This technique is based
on the well-known DAC model implemented in the Linux
kernel. In particular, when the b2g process starts a new web
application, the webapp process is run with its own unused,
low-privilege user ID (UID). This allows Firefox OS to
create a simple powerful sandbox preventing applications from
reading each other data. Furthermore, each content process
may be additionally sandboxed using the seccomp mode [4].
If a process runs in this mode it has access to a limited
set of system calls (usually, sigreturn, exit, read and
write). If the process does other system calls, the Linux
kernel simply kills it. Additionally, all interactions of the
webapps with the system (including the filesystem access)
occur only through the exposed API calls. Interactions of a
webapp with a filesystem occur on the whitelist basis, i.e., the
master process limits the access of the child one only based
on the list of allowed locations. Moreover, such architecture
prohibits direct interactions between applications. Thus, all
interactions between applications are only indirect, i.e., they
happen through the parent process.

This sandboxing solution provides an effective way to sep-
arate the data, like cookies and local data (e.g., IndexedDB),
stored by different applications. This means that two applica-
tions installed on a device will receive different cookies, local
data, etc., even if they both open an <iframe> pointing to the
same origin. Unfortunately, this may create additional storage
overhead (for instance, in case when a web page opened in
both applications stores a lot of data). However, as a benefit
this architecture prevents some attacks from malicious web
sites.

D. Permissions

A webapp running on Firefox OS may act as a simple web
application opened in a web browser of a desktop operating
system. However, to exploit the full potential of a smartphone
sometimes it may require access to some device features as,

2



for instance, contacts database, telephony, or location of the
user. At the same time, access to these features may pose
additional threat to user’s privacy and, thus, should be tightly
controlled.

App access to the protected API is restricted through
permissions. For each type of permission and application
Firefox OS specifies one of the three default actions:
DENY, ALLOW, and PROMPT. For instance, for a permission
device-storage:music, which guards the access to mu-
sic on the device, the default action for web apps is DENY,
for privileged is PROMPT, and for certified is ALLOW. The
DENY action prohibits access of the app type to the feature.
Permissions with the ALLOW action are granted on Firefox
OS at the app install time. The user cannot grant or deny
such permissions; she can only remove the app as a whole
(as in Android). The most interesting is the PROMPT action.
This action requires explicit user’s consent at the time of the
first feature use; it may be granted or denied permanently.
Additionally, at any time the user may revoke this permission
through the system settings application.

A Firefox OS permission may have the optional property
called access. Currently, this property controls the type of
access (e.g., readonly, readwrite, readcreate, or
createonly) to data. This allows developers to specify
more fine-grained control over the data.

Another requirement for an app willing to be granted with
permissions is that it has to declare in the manifest file
the permissions it wishes to receive, along with a textual
“justification”. The latter in the future will be used to explain
to the user why she should grant the requested permission (this
feature is still under discussion [5]).

It is worth mentioning that some permissions are implicitly
granted to any application (e.g. network access). These are
based, according to Mozilla, on what is already available to
standard browser-based apps, or are innocent enough to be
granted to anyone. At the same time, on Android access to
network capabilities is considered as a dangerous permission,
because in this case an application may leak user’s sensitive
data. It would be interesting to re-run on Firefox OS the same
experiment by Enck et al. on Android [1] to see if tuples of
dangerous permissions could be granted.

Permissions granted by the user are segregated according to
their origin: e.g., if an application has received the permission
to access geolocation, all scripts of an external origin loaded
by this application will still have to request the user for it; this
measure protects against privilege escalation attacks.

E. Additional security mechanisms
Gecko also enforces a Content Security Policy (CSP). In

essence, CSP is a declarative policy notation to express the
expected sources of content loaded in the page [6]; it can be
useful for prevention of cross-site scripting attacks. CSP is
enforced by the client JavaScript engine, e.g., by restricting
loading of resources from outside these sources. Firefox OS
apps can express their CSP in the manifest files. Additionally
to the declared CSP policy, privileged and certified apps
are subjects to additional CSP restrictions enforced by the
platform [7].

Fig. 2: The Tizen architecture [8]

Another additional security mechanism implemented in
Firefox OS is that an app may request two sandboxes: one
for itself and another one for any website it accesses. The
second sandbox is needed to prevent the accessed content from
attacking the resources of the original app. This feature is
widely used if a main application is used to visit lots of web
resources (e.g., a web browser).

III. TIZEN

Tizen is an open-source Linux-based mobile operating
system. It is supported by the Linux Foundation and by a
number of companies e.g., Intel, Samsung, Huawei, Fujitsu,
and telecommunication operators (Orange, Vodafone, etc.).

Initially, Tizen was developed as a web-based operating
system, i.e., for webapps only. However, starting from the
version 2.0 it is possible to run native applications (developed
in C++) on this platform.

A. The Tizen Architecture

Unlike Android, which adopted only the kernel from Linux,
Tizen more resembles a Linux distributive. It has the X11
window system with the Enlightened window stack manager.
Moreover, it includes a lot of system tools and utilities, such
as ssh and sshd (secure shell and secure shell daemon,
respectively), scp (secure copy), bash, and rpm (package
manager).

Fig. 2 depicts the Tizen architecture. The lowest layer
represents the Linux kernel and device drivers. The higher
Core layer provides basic functionality required by the Web
and the Native frameworks.

The Tizen Web framework provides a possibility to develop
and run applications using HTML5 functionalities (referred to
as W3C/HTML5 APIs) defined by W3C and other standard-
ization groups. It includes new device APIs (Tizen Web Device
APIs), which enable access to the device capabilities, such as
Bluetooth, Near Field Communication (NFC), messaging, etc.
The runtime environment for webapps (the Web Runtime) is
based on WebKit. The Tizen Native framework is composed

3



by system services and a set of native libraries for development
of native applications in C++.

The top layer in Fig. 2 represents user applications. Combin-
ing the frameworks used for app development all Tizen apps
can be divided into 3 categories: native (developed using the
Native framework), web (designed using the Web framework)
and hybrid (developed combining both frameworks).

B. App Ecosystem

Tizen in fact supports 3 types of webapps: mobile website,
hosted application and packaged application. Mobile website
is a simple web application, which is opened in the Tizen web
browser. This type of applications has access only to the re-
sources available to an ordinary web page opened in a browser.
A hosted app is a client application, which provides access to
remote resources. A packaged web application contains all its
resources inside its package. The latter two types of apps can
be published in the Tizen store. The hosted applications do not
have access to the Device API. The standard webapp type on
Tizen is a packaged webapp. Only packaged apps can access
the Tizen Web Device API.

Native applications are divided into two categories: UI
applications and service applications. Both have the same
level of access to the API of a Tizen device. However, the
main difference between them is that the former has graphical
user interface, while the latter does not (it simply runs in the
background).

Similarly to Android, a developer may also declare in the
manifest the software or hardware features required by the
app in order to filter it in the Tizen store. This functionality
is missing on Firefox OS.

C. Sandboxing

In Tizen, all the processes are run with one of two UIDs,
which correspond to the root or app account. All application
processes run with the app UID. Sandboxing of applications in
Tizen is enabled by the SMACK (Simple Mandatory Access
Control Kernel) module of the Linux kernel. SMACK is a
Linux Security Module (LSM), which enforces MAC on the
Linux kernel level. In the model implemented by this LSM,
each process (subject) and resource (object) are tagged with
special labels. Access of processes to resources is controlled
through simple rules represented in the form {subject, object,
permission}.

To provide effective isolation of applications, each app
executable by default is assigned with its own unique 10
characters label (this label is stored in the SMACK64EXEC
extended file attribute property of the executable). All appli-
cation resources are assigned with the same label. These labels
are assigned to files during the app installation process by the
package manager. By default, SMACK rules are defined in a
way that the application has full access to its resources. The
package manager can also define new rules during the app
installation.

Some system objects are also SMACK-labeled. An appli-
cation may receive access to these protected system objects,
if corresponding rules are defined This access corresponds

to a privilege an application may request to gain access to
the additional functionality. During the installation time the
package manager may add these rules if the application has
passed some security checks.

The SMACK-driven sandbox is applied to all application
processes: web, native and hybrid. To provide sandboxing for
web applications during the installation of a webapp in its
bin/ folder a soft link to the Web Runtime client is created
and labeled with the AppId SMACK label. Thus, when the
webapp is started Tizen runs the soft link, which corresponds
to the called app, and the web application is executed in a
sandbox.

The sandboxing model implemented in Tizen differs from
the one implemented in Android and Firefox OS. The latter
ones use the Linux DAC to sandbox applications, while Tizen
exploits the SMACK LSM, which sandboxes processes using a
MAC mechanism. Recently, Android has been also hardened
with a mandatory access control module called SEAndorid
(based on SELinux) [9].

Native (and hybrid) applications may interact with each
other. The Native framework provides 3 main mechanisms for
inter-application operations. Apps can export functionality to
be available to other applications and query AppManager for
available functionality of other apps through the AppControl
mechanism. This mechanism is very similar to Intents pro-
vided by the Android OS. As on Android, there are two main
types of AppControl resolution: explicit, when an application
calls another app through a unique AppId (corresponds to
a package name in case of Android), and implicit, when
AppManager is responsible for providing suitable application,
which may process the request based on the operation ID and
the URI or MIME type of the data (similarly to the Android’s
implicit intent resolution). As on Android, by default, each
application has the main implicit AppControl, which is used
to start the application. Another way to communicate is
exporting/importing data via the data control mechanism (akin
to content providers on Android). Apps can also exchange
data through messaging ports. Bi-directional communication
is bootstrapped by exchanging the port references.

A developer can organize private communication among
her apps. Similarly to Android, this private communication
may be organized through app or data control mechanisms.
To perform this, the developer must give permission by
application certificate. In this case, an application, which is
signed with a different certificate, will have no access to
the exported functionality. This mechanism is similar to the
Android “signature” permission level protection. Having a lot
of in common, the Android mechanism is more fine-grained
because it provides possibility to limit the access only to
selected components. Additionally, trusted communications in
Tizen may be performed through a trusted messaging port
or a trusted shared directory. Both approaches require that
the communicating apps are granted permissions for trusted
communication and share the same signature.

D. Permissions
Similarly to Android and Firefox OS, the sensitive APIs

accessed by the app are to be specified in the manifest. On

4



Tizen the requests to access the sensitive API are defined in the
form of privileges. Privileges in Tizen are similar to permission
declarations in Firefox or Android OS. As mentioned in
Section III-C, some system objects are tagged with SMACK
labels. Thus, privileges specify the requested access type of
an application to the system resource. If an application is
granted with the privilege during installation, this privilege
is transformed into the corresponding SMACK rule.

Tizen privileges are categorized into three levels. Public
privileges are available to all apps (e.g., location or contact list
access). Partner privileges can only be requested by apps com-
ing from companies registered as trusted partners on the Tizen
store. Examples of such privileges are access to the device
app manager, secure element, system manager, etc. Finally,
platform privileges (e.g., to access the package manager or
settings manager) are available only to the developers working
for the Tizen consortium.

The pertinence of an application to the corresponding ac-
cessible privilege level is defined by the signatures that are
supplied with the app. Unlike to Android and Firefox OS, a
Tizen app may be signed with two signatures: the developer
(or author-signature) and the distributor signature (which may
be applied by the marketplace vetting applications, or by the
device manufacturer, who signs his own system apps). The
developer signature determines the authorship; it can also be
used to grant additional permissions to applications with the
same signature. The distributor signature is used to mark the
origin of the app provision (the Tizen store by default). Upon
app installation the package manager compares the signatures
bundled in the application with the ones stored in the system
for different levels. Based on the result of comparison it
defines the maximum privilege level available for the installed
app.

The access of applications to the device API with different
privilege levels is not hardcoded. Instead, it is defined in a
Tizen Policy configuration file. Thus, the device manufacturers
and telco operators may reconfigure it according to their needs.

E. Additional security features

Similarly to Firefox OS, Tizen allows webapps to express
their CSP and restrict the sources of loaded web content.
Furthermore, webapps navigation is limited to the list of
domains specified in the <tizen:allow-navigation>
tag of the manifest file.

Additionally, on Tizen a webapp can explicitly turn on
encryption, and all resources of the app stored by the device
will be encrypted. When this app is launched, the platform
will decrypt its resources in a transparent manner.

While on Android there is no standard way to check
easily whether a given package contains an invocation of a
sensitive device API, the Tizen Native IDE checks for potential
problems with missing permissions and API incompatibility.

IV. LESSONS LEARNED AND CONCLUSIONS

Although Firefox OS and Tizen are still in the beginning of
their way, some aspects of their security architectures are very
interesting and can be borrowed by more mature systems like

Android. Likewise, existing proposals for hardening Android
security can be used by Firefox OS and Tizen. For example,
starting from the version 4.2, Android fully supports the mem-
ory management security enhancements, such as ASLR (Ad-
dress Space Layout Randomization) and DEP (Data Execution
Prevention). At the same time, these protections at the time of
writing are not implemented in Firefox OS (implementation
of the ASLR feature seems to be in the active phase [10]). As
Tizen supports development of apps in native languages, it is
more vulnerable to buffer overflow attacks, which can be mit-
igated using the memory management security enhancements.
However, at the time of writing DEP does not work on Tizen,
and ASLR is implemented only partially [11].

One of the main differences is the sandboxing approaches
used in these systems. As Firefox OS is built on top of
Android, these two systems exploit the Linux DAC to sandbox
applications assigning each app a separate low-privileged UID.
This approach allows to provide app isolation separating the
address space of processes. At the same time, the Linux MAC
(through SMACK policies) is used to sandbox apps in Tizen,
while all apps have the same UID. Properly implemented,
the MAC approach is considered as more secure solution.
Not surprisingly, adoption of the SELinux MAC has been
recently proposed for Android [9], which helped to improve
Android security in different aspects (including prevention of
root exploits). Yet, SELinux is not used on Firefox OS, and
we believe that adoption of this framework can significantly
improve its security. For instance, currently b2g (the parent
process) is run with root privileges. Thus, if an adversary finds
a way to exploit this process, she will gain full access to
the system. At the same time, an exploit execution from the
application processes is quite hard on Firefox OS due to the
seccomp mode usage. This type of hardening can be also
implemented in Android and Tizen, accounting the fact that
the apps on these platforms may run native code. Considering
the Tizen’s sandboxing approach, it could be improved in the
direction of assigning diffent UIDs to the apps. This will lead
to the separation of address spaces of different apps. The
combination of DAC and MAC mechanisms in Android could
be considered as a reference implementation for Tizen and
Firefox OS.

The Firefox OS and Tizen mobile platforms take different
approaches to app isolation. While Firefox OS tries to isolate
apps completely (providing no direct interactions between
apps), Tizen apps have extensive means of interaction (fol-
lowing the Android approach). Both models have proved to
be acceptable by end-users, yet the system with interacting
apps can potentially expose more vulnerabilities, including the
privilege escalation attacks (very relevant for Android [12]);
this aspect of Tizen needs to be investigated further.

In the process of permission procurement Android exploits
the “all or nothing’ approach’, i.e., either all permissions
are granted during the installation of an app or it will not
be installed. However, it has been shown that this approach
introduces additional threats to user’s private data. We be-
lieve the solution used in Firefox OS (“prompt” permissions)
is more user-friendly. For Android several similar research
solutions have been proposed, e.g. [13], and in the recent

5



versions of Android a similar feature called Apps Ops has
appeared. Unfortunately, Google later claimed that this feature
was intended to be used only for testing purposes and removed
its support in Android 4.4.2 [14].

However, even prompting user for each individual permis-
sion may not solve issues with overprivileged apps or apps
that receive access to a combination of sensitive functionality.
Tools like Kirin [1] may prove useful for Tizen and Firefox
OS. One of big concerns for mature mobile platforms is the
sensory malware apps that exploit access to device sensors
to mine, e.g., password information or credit card numbers
[15]. Compared to Android, Tizen and Firefox OS have not
raised their guards against this type of malware because they
as well do not protect all device sensors with permissions.
We believe that more measures of protection are needed for
Android, Firefox OS and Tizen to protect users against this
type of malware.

Due to the openness of Android ecosystem, at first Google
did not distinguish any particular market. However, with the
proliferation of mobile malware a strong need for app vetting
has appeared. Recently the Google Bouncer tool, which per-
forms application security testing, has appeared. At the same
time, the Google’s approach does not allow them to distinguish
the vetted applications in any way except publishing them
in the Google Play store. In contrast, in Firefox OS and
Tizen the vetted applications can receive higher privileges
comparing to unchecked ones. The approach of Tizen of two
signatures used to sign an app is the most interesting: the
developer signature verifies the authenticity of the developer
and the integrity of the app, and the market signature shows
that the application has passed a vetting process and can
be considered benign. In Firefox OS, only approved apps
receive the market signature, all other apps are not signed.
The signature question for Android apps was recently explored
in the research community, and a possible solution, which
incorporates the benefits of multisigning without breaking
current app ecosystem, was proposed [16].

Another problem, where the market vetting process may
help, is overprivileged applications. On Android a developer
should assign necessary permissions by herself, the Android
tools do not help to select necessary permissions. Not sur-
prisingly, a lot of apps are overprivilged [17]. To help de-
velopers, the Tizen tools provide a possibility to check, what
permissions are required to run the written code. This helps
developers to choose only necessary permissions, however,
does not solve the problem of overprivileged applications.
The same problem is also valid for Firefox OS. To our point
of view, marketplace vetting with the tools, which analyse
permission usage [17] can help to solve this problem.

Our findings presented in this article can be summarized
that emerging mobile platforms indeed take into account some
lessons learned from insecurities in Android and other mobile
platforms. Yet there are many improvements that can be done.

REFERENCES

[1] W. Enck, M. Ongtang, and P. McDaniel, “On lightweight mobile
phone application certification,” in ACM Conference on Computer and
Communications Security (CCS’2009). ACM, 2009, pp. 235–245.

[2] Mozilla, “Firefox OS Security Overview,” At https://developer.mozilla.
org/en-US/docs/Mozilla/Firefox OS/Security/Security model Accessed
in December 2013.

[3] ——, “Firefox OS architecture,” https://developer.mozilla.org/en-US/
Firefox OS/Platform/Architecture, 2013.

[4] J. Corbet, “Seccomp and sandboxing,” http://lwn.net/Articles/332974/,
2009.

[5] Bugzilla, “Bug 823385,” https://bugzilla.mozilla.org/show bug.cgi?id=
823385.

[6] S. Stamm, B. Sterne, and G. Markham, “Reining in the web with content
security policy,” in Proceedings of the 19th international conference on
World wide web (WWW’2010). ACM, 2010, pp. 921–930.

[7] Mozilla, “Apps CSP,” https://developer.mozilla.org/en-US/Apps/CSP,
2013.

[8] Tizen, “Tizen Developer Guide,” At https://developer.tizen.org/
documentation/dev-guide. Accessed in December 2013.

[9] S. Smalley and R. Craig, “Security enhanced (SE) android: Bringing
flexible MAC to android,” in 20th Annual Network and Distributed
System Security Symposium (NDSS’13), 2013.

[10] Bugzilla, “Bug 777948,” https://bugzilla.mozilla.org/show bug.cgi?id=
777948.

[11] S. Suzuki, “Tizen security,” http://www.ffri.jp/assets/files/monthly
research/MR201305 Tizen Security ENG.pdf, 2013.

[12] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A.-R. Sadeghi, and
B. Shastry, “Towards taming privilege-escalation attacks on Android,”
in 19th Annual Network & Distributed System Security Symposium
(NDSS’12), Feb 2012.

[13] A. R. Beresford, A. Rice, N. Skehin, and R. Sohan, “Mockdroid: Trading
privacy for application functionality on smartphones,” in Proceedings
of the 12th Workshop on Mobile Computing Systems and Applications,
ser. HotMobile ’11. New York, NY, USA: ACM, 2011, pp. 49–54.
[Online]. Available: http://doi.acm.org/10.1145/2184489.2184500

[14] G. Sims, “App ops what you need to know,” http://www.
androidauthority.com/app-ops-need-know-324850/, December 2013.

[15] R. Schlegel, K. Zhang, X.-Y. Zhou, M. Intwala, A. Kapadia, and
X. Wang, “Soundcomber: A stealthy and context-aware sound trojan
for smartphones,” in NDSS, 2011.

[16] Y. Zhauniarovich, O. Gadyatskaya, and B. Crispo, “Demo: Enabling
trusted stores for Android,” in Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security. ACM, 2013, pp.
1345–1348.

[17] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “Pscout: analyzing
the android permission specification,” in Proceedings of the 2012 ACM
conference on Computer and communications security. ACM, 2012,
pp. 217–228.

6


