Preliminary Findings on FOSS Dependencies and Security

A Qualitative Study on Developers' Attitudes and Experience

Ivan Pashchenko, Duc-Ly Vu, Fabio Massacci University of Trento, Italy

Vulnerable Deps - Cause of Disaster

Disaster Rank	OWASP Top 10	# of Breaches Root Cause	% of Breaches Root Cause
1	Components with known vulns	12	24%
2	Security misconfiguration	10	18%
3	SQL-injection	4	8%
4	Weak Authentication	3	6%
4	Sensitive Data Exposure	3	6%
5	Function level Access control	2	4%
4-1			

Developers keep using vuln deps...

Derr et al. [1]:
Many dependencies are vulnerable, but could be easily updated

Kula et al. [3]:
Many Java libraries do not react on security updates

Huang et al. [2]:
`Easy' update would have broken around 50% of dependent projects

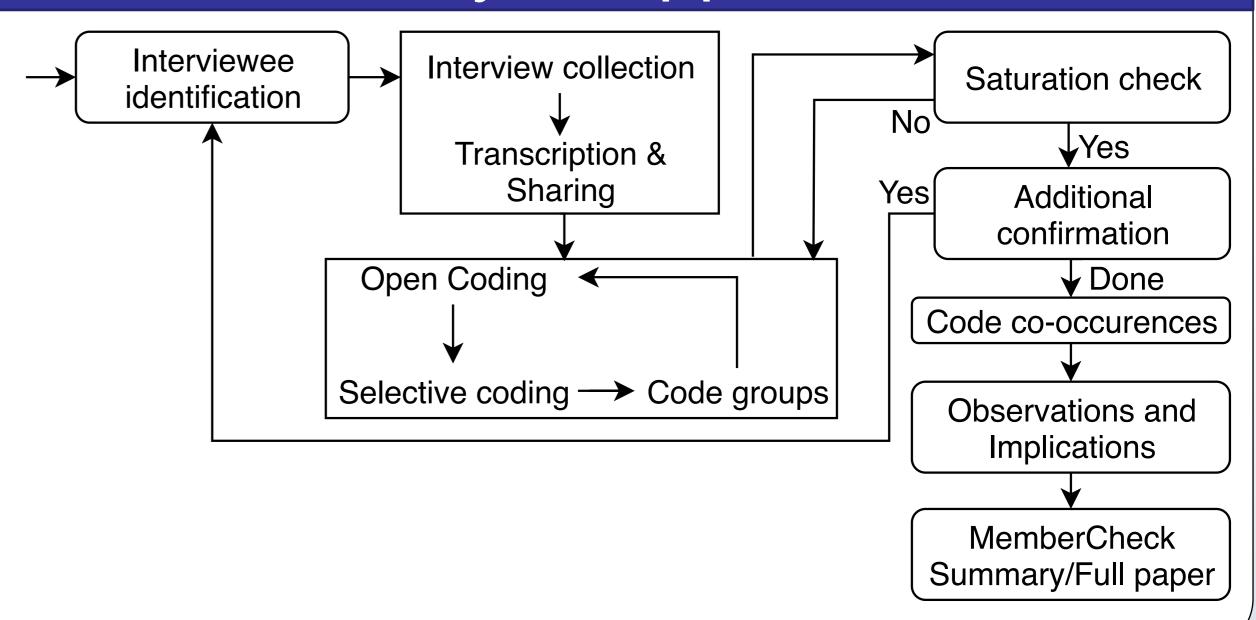
Pashchenko et al. [4]: Some vulnerabilities are in test/dev scopes, hence, not exploitable

- 1. E. Derr, S. Bugiel, S. Fahl, Y. Acar, and M. Backes. 2017. Keep me updated: An empirical study of third-party library updatability on Android. In *Proc. of CCS'17*.
- 2. J. Huang, N. Borges, S. Bugiel, and M. Backes. 2019. Up-To-Crash: Evaluating Third-Party Library Updatability on Android. In *Proc. of EuroS&P'19*.
- 3. R.G. Kula, D.M. German, A. O. Takashilshio, and K.Inoue. 2017. Do developers update their library dependencies? *Emp. Soft. Eng. Journ*.
- 4. I. Pashchenko, H. Plate, S.E. Ponta, A. Sabetta, and F. Massacci. 2018. Vulnerable Open Source Dependencies: Counting Those That Matter. In *Proc. of ESEM'18*.

Developers may not be entirely irrational in not always updating dependencies

Interviewees in our sample

https://snyk.io/blog/owasp-top-10-breaches/


#	Position	Comp. type	Country	Exper. (years)	Languages
1	СТО	SME	DE	3+	Python,JS
2	Moderator	UG	IT	10+	Java
3	Developer	LE	ΙΤ	10+	Java,JS
4	CEO	SME	SI	7+	Python,JS
5	Developer	SME	NL	3+	Python
6	Freelancer	SME	RU	3+	Python,JS
7	Developer	SME	DE	5+	Python,JS
8	Developer	LE	RU	4+	Python,JS
9	СТО	SME	IT	4+	JS
10	Developer	LE	DE	10+	C/C++
11	Developer	LE	VN	5+	C/C++
12	Developer	SME	DE	4+	Java,Python
13	Team Leader	LE	RU	10+	JS
14	Developer	SME	RU	4+	Java
15	Project Leader	FOSS	UK	10+	Python,C/C++
16	Developer	SME	IT	8+	Java
17	Developer	LE	VN	3+	Java
18	Sr Software Engineer	LE	IT	10+	Python,C/C++
19	Developer	SME	RU	3+	Java
20	Security Engineer	LE	DE	3+	JS
21	Developer	SME	HR	3+	JS
22	Developer	SME	IT	8+	JS
23	Developer	LE	IT	9+	Java
24	Full Stack Developer	SME	IT	3+	JS,Python
25	Developer	SME	ES	3+	C/C++

Interview topics

We interviewed developers of 25 companies from 9 countries:

- > Selecting new dependencies
- > Updating currently used dependencies
- > Using automatic dependency management tools
- ➤ Mitigating bugs and vulnerabilities, for which there is no fixed dependency version

Analysis approach

Preliminary findings*

Library selection:

- ➤ Developers pay attention to security only if it is required and enforced by the policy of their company.
- ➤ Rely on popularity and community support of libraries (e.g., number of stars, forks, project contributors).

Updating software dependencies:

- ➤ Avoid updating dependencies for any reason (afraid of breaking changes).
- Security motivate for updating only if vulnerabilities are severe, widely known, and adoption of the fixed dependency version does not require significant efforts.

Automation of dependency management:

- ➤ Sensitive tasks (e.g., updates) performed manually
- ➤ Current dependency analysis tools (if used) only facilitate the identification of vulnerabilities in the project dependencies
- > Dependency tools produce many false-positive and low-priority alerts

Unfixed vulnerabilities:

- > assess whether this vulnerability impacts their projects;
- > wait for the fix or a community workaround;
- > adapt own project: disable affected functionality or rollback to a safe version;
- maintain own fork of a dependency project (possibly fixing and making a pull request to the dependency project).

*For complete findings, please, refer to: I. Pashchenko, D.L. Vu, and F. Massacci. 2020. A qualitative study of dependency management and its security implications. To appear in *Proc. of CCS'20*. (https://bit.ly/pashchenko2020qualitative)

Future Work

- Broaden our study to more countries
- Find actionable implications of the analysis results
 - Correlate results with different type of companies

Contact information

E-mail: ivan.pashchenko@unitn.it

Skype: ivanpashchenko
Web-site: http://disi.unitn.it/~pashchenko

