Applying a Security Requirements Engineering
Process

Daniel Mellado!, Eduardo Ferndndez-Medina?, and Mario Piattini?

! Ministry of Labour and Social Affairs; Information Technology Center of the
National Social Security Institute; Madrid, Spain
Daniel.Mellado@alu.uclm.es
2 Alarcos Research Group, Information Systems and Technologies Department,
UCLM-Soluziona Research and Development Institute,

University of Castilla-La Mancha,

Paseo de la Universidad 4, 13071 Ciudad Real, Spain
{Eduardo.FdezMedina, Mario.Piattini}@uclm.es

Abstract. Nowadays, security solutions are mainly focused on provid-
ing security defences, instead of solving one of the main reasons for se-
curity problems that refers to an appropriate Information Systems (IS)
design. In fact, requirements engineering often neglects enough attention
to security concerns. In this paper it will be presented a case study of
our proposal, called SREP (Security Requirements Engineering Process),
which is a standard-centred process and a reuse-based approach which
deals with the security requirements at the earlier stages of software
development in a systematic and intuitive way by providing a security
resources repository and by integrating the Common Criteria into the
software development lifecycle. In brief, a case study is shown in this pa-
per demonstrating how the security requirements for a security critical
IS can be obtained in a guided and systematic way by applying SREP.

1 Introduction

Present-day information systems are vulnerable to a host of threats. What is
more, with increasing complexity of applications and services, there is a cor-
respondingly greater chance of suffering from breaches in security [20]. In our
contemporary Information Society, depending as it does on a huge number of
software systems which have a critical role, it is absolutely vital that IS are
ensured as being safe right from the very beginning [1, 13].

As we know, the principle which establishes that the building of security into
the early stages of the development process is cost-effective and also brings about
more robust designs is widely-accepted [9]. The biggest problem, however, is that
in the majority of software projects security is dealt with when the system has
already been designed and put into operation. Added to this, the actual security
requirements themselves are often not well understood. This being so, even when
there is an attempt to define security requirements, many developers tend to
describe design solutions in terms of protection mechanisms, instead of making
declarative propositions regarding the level of protection required [4].

D. Gollmann, J. Meier, and A. Sabelfeld (Eds.): ESORICS 2006, LNCS 4189, pp. 192-[206] 2006.
© Springer-Verlag Berlin Heidelberg 2006

Applying a Security Requirements Engineering Process 193

A very important part of the achieving of secure software systems in the soft-
ware development process is that known as Security Requirements Engineering,
which provides techniques, methods and norms for tackling this task in the IS
development cycle. It should involve the use of repeatable and systematic pro-
cedures in an effort to ensure that the set of requirements obtained is complete,
consistent and easy to understand and analyzable by the different actors involved
in the development of the system [10]. A good requirement specification docu-
ment should include both functional requirements and non-functional. As far as
security is concerned, it should be a consideration throughout the whole devel-
opment process, and it ought to be defined in conjunction with the requirements
specification [16].

After having performed a comparative analysis of several relevant proposals
of IS security requirements, as those of Yu 1997 [21], Toval et al. 2001 [19], Popp
et al. 2003 [17], Firesmith 2003 [5], Breu, et al. 2004 [3], etc. in [15], we concluded
that those proposals did not reach the desired level of integration into the devel-
opment of IS, nor are specific enough for a systematic and intuitive treatment
of IS security requirements at the early stages of software development. In addi-
tion, as yet, only few works (such as the article of Massacci et al. [12]) describes
complex case studies which really cope with the complexity required by secu-
rity standards, such as ISO/IEC 17799 [7] and ISO/IEC 15408 [8], compliance.
Therefore, in this paper we briefly present the Security Requirements Engineer-
ing Process (SREP) [14] along with a case study of this proposal, which describes
how to integrate security requirements into the software engineering process in a
systematic and intuitive way. In order to achieve this goal, our approach is based
on the integration of the Common Criteria (CC) [8] into the software lifecycle
model, because the CC helps us deal with the security requirements along all
the IS development lifecycle, together with the reuse of security requirements
which are compatible with the CC Framework subset. In addition this proposal
integrates other approaches such as UMLSec [17], security use cases [5] or misuse
cases [18]. The remainder of this paper is set out as follows: in section 2, we will
describe SREP. We will present the case study of SREP in section 3. Next, in
section 4 it is presented the lessons learned. Lastly, our conclusions will be set
out in section 5.

2 SREP: Security Requirements Engineering Process

To describe our proposal, we will rely on the process description patterns used in
the Unified Process (UP) [2], since it is a use-case and risk driven, architecture-
centric, iterative and incremental development process frame-work that leverages
the Object Management Group’s (OMG) UML and that is compliant with the
OMG?’s Software Process Engineering Metamodel (SPEM).

The Security Requirements Engineering Process (SREP) is an asset-based
and risk-driven method for the establishment of security requirements in the
development of secure Information Systems. Basically, this process describes
how to integrate the CC into the software lifecycle model together with the

194 D. Mellado, E. Fernandez-Medina, and M. Piattini

Integration of Common
Criteria Components

CC Functional
Reguirements

CC Protection
Profiles

¢ Evaluation

(Testing step)

Assurance Levels | [

Unified Process phases

Crensiton]9

[incepon 9.
| Elaboration 9
O/

SREP Activities

agree on Definitions

Tdentify Yulnerable
Rfor Critical Assets

4
Tdentify Security
Objectives &
Dependencies

Identify Threats &
Develop Artifacts

Risk #ssessment

Elicit Security
Requirements

Categorize & Prioritize

f—

Software Quality REEUiI’Er‘ﬂents

i
T H Feduirement

Assurance :

f ! Inspection

CC Assurance Repository
Improvement

Requirements

Fig.1. SREP Overview

use of a security resources repository to support reuse of security requirements,
assets, threats and countermeasures. The focus of this methodology seeks to
build security concepts at the early phases of the development lifecycle.

As it is described in Fig. 1, the UP lifecycle is divided into a sequence of phases,
and each phase may include many iterations. Each iteration is like a mini-project
and it may contain all the core workflows (requirements, analysis, design, im-
plementation, and test), but with different emphasis depending on where the
iteration is in the lifecycle. Moreover, the core of SREP is a micro-process, made
up of nine activities which are repeatedly performed at each iteration through-
out the iterative and incremental development, but also with different emphasis
depending on what phase of the lifecycle the iteration is in. Thus, the model
chosen for SREP is iterative and incremental, and the security requirements
and their associated security elements (threats, security objectives, etc.) evolve
along the lifecycle. At the same time, the CC Components are introduced into
the software lifecycle, so that SREP uses different CC Components according
to the phase of the lifecycle and the activity of SREP, although the Software
Quality Assurance (SQA) activities are per-formed along all the phases of the
software development lifecycle, and it is in these SQA activities where the most
of CC Assurance Requirements might be incorporated into.

2.1 The Security Resources Repository

The purpose of development with requirements reuse is to increase their quality:
inconsistency, errors, ambiguity and other problems can be detected and cor-
rected for an improved use in subsequent projects [19]. Thereby, it will guarantee

Applying a Security Requirements Engineering Process 195

Threat/Altack Plain Security

Misuse case Tree Text use case || UMLSec

JY ﬁ v ¥ v
Plain Security Requirement

Threat Text Cluster Specification
Specification Gttacneqto | Seeurity hg?ﬁnu" 1
Cbjective 1
_ Security | | security
A mitigate Reguirement Test
0.7 Cluster
. = [4
SERRI speciic el Security Counter
Threat | , .| Threat L : .
o.-| Requirement (1..7p -| measure

L

Generic
Security
Reguirement

Specific Security
1 0.t Requirement

Fig. 2. Meta-model for security resources repository

us the fastest possible development cycles based on proven solutions. Therefore,
we propose a Security Resources Repository (SRR), which stores all the security
reusable elements. A meta-model, which is an extension of the meta-model for
repository proposed by Sindre, G., D.G. Firesmith, and A.L. Opdahl [18], show-
ing the organization of the SRR is exposed in Fig. 2. The dark background in
the objects represents our contribution to the meta-model.

As presented in Fig. 2, it is an asset-driven as well as a threat-driven meta-
model, because the requirements can be retrieved via assets or threats. Next, we
will outline the most important and/or complex aspects of the meta-model:

— ’Generic Threat’ and ’Generic Security Requirement’ are described inde-
pendently of particular domains. And they can be represented as different
specifications, thanks to the elements 'Threat Specification’ and ’Security
Requirement Cluster Specification’.

— ’Security Requirement Cluster’ is a set of requirements that work together
in satisfying the same security objective and mitigating the same threat. We
agree with Sindre, G., D.G. Firesmith, and A.L. Opdahl [18] that, in many
cases, it is a bigger and more effective unit of reuse.

— The 'Reqg-Req’ relationship allows an inclusive or exclusive trace between
requirements. An exclusive trace between requirements means that they are
mutually alternative, as for example that they are in conflict or overlapping.
Whereas, an inclusive trace between requirements means that to satisfy one,
another/other/s is/are needed to be satisfied.

It is known that an important part of the security of an IS can be often
achieved through administrative measures, however the CC does not provide us
with methodological support, nor contain security evaluation criteria pertaining

196 D. Mellado, E. Fernandez-Medina, and M. Piattini

to administrative security measures not directly related to the IS security mea-
sures. Therefore, according to ISO/IEC 17799:2005 [7], we propose to include
legal, statutory, regulatory, and contractual requirements that the organization,
its trading partners, contractors, and service providers have to satisfy, and their
socio-cultural environment. After converting these require-ments into software
and system requirements format, these requirements along with the CC security
requirements would be the initial subset of security requirements of the SRR.

3 Case Study

The case study we presented here is a representative case of a security critical IS
in which security requirements have to be correctly treated in order to achieve a
robust IS. It will be analysed the case of an administrative unit of the National
Social Security Institute (of Spain), which has the porpoise of providing citizens
e-government services. Here it will be studied the case of an e-government service
which consists of an application (called Pension-App) that basically allows to
provide information about the pension/s of a concrete citizen. Taking into ac-
count the constraint of space, this case study is unrealistically simple to enable
points of SREP to be easily illustrated in this paper.

PensionApp is an application that allows citizens to obtain an official doc-
ument which reflects the current amount and the status of their pension/s
(whether it is being processed and the stage where it is at the moment of the
request, or whether it has been successfully granted or rejected), it also allows
citizens to update some personal data, such as their address and bank account
number. One of the main design goals was maximum ease of use. Thus, citizens
have online access to PensionApp through the Internet or they can go to an office
of the National Social Security Institute, where a civil servant will provide them
with an official paper document with the information requested about their pen-
sion or he/she will update the personal information of the citizens by interacting
with other application which has been al-ready developed. Thus, a citizen can
only obtain information about his/her own pension and update his/her personal
information whereas a civil servant can get pension information and update per-
sonal information for a specified social security number of a person by interacting
with the IS but through other application different from PensionApp. Thereby,
we assume that initial functional requirements have been elicited and that there
is only two functional requirements:

— Req 1: On request-1 from an EndUser, the system shall display in-formation
about his/her pension. This request shall include the social security number
of the EndUser.

— Req 2: On request-2 from an EndUser, the system shall update the personal
information of the pensioner. This request shall include the social security
number of the EndUser and changed personal data.

In addition we assume that the Organization has already introduced some
elements into the Security Resources Repository (SRR), such as legal, statutory,

Applying a Security Requirements Engineering Process 197

regulatory, and contractual requirements that the organization, its trading part-
ners, contractors, and service providers have to satisfy, and their socio-cultural
environment. After converting these requirements into software and system re-
quirements format, these requirements along with the CC security requirements
will be the initial subset of security requirements of the SRR, which together
with their associated security-elements (security objectives, assets, threats,...)
will be the initial subset of security elements of the SRR.

SREP defines nine activities to be carried out as well as several iterations
through the software development lifecycle, and each iteration will generate in-
ternal or external releases of various artefacts which altogether constitute a base-
line, although in the following subsection of this paper we will only describe one
iteration at the early stages of the software development lifecycle.

3.1 Activity 1: Agree on Definitions

In this activity we have to agree upon a common set of security definitions,
along with the definition of the organizational security policies and the security
vision of the IS. The following is a minute subset of the definitions that should
be agreed.

— Information security: preservation of confidentiality, integrity and availabil-
ity of information; in addition, other properties, such as authenticity, ac-
countability, non-repudiation and reliability can be also involved [ISO/IEC
17799:2005].

— Threat: a potential cause of an unwanted incident, which may result in harm
to a system or organization [ISO/TEC 13335-1:2004] [6].

— Availability: the property of being accessible and usable upon de-mand by
an authorized entity [ISO/IEC 13335-1:2004].

— Confidentiality: the property that information is not made available or dis-
closed to unauthorized individuals, entities, or processes [ISO/IEC 13335-
1:2004].

— Integrity: the property of safeguarding the accuracy and complete-ness of
assets [ISO/IEC 13335-1:2004].

— Asset: anything that has value to the organization [ISO/IEC 13335-1:2004].

Then, the Security Vision Document will be written, in which it will be out-
lined the security vision of the IS. In this case, it will state that the most impor-
tant asset is information, so from the security point of view it is important that
confidentiality, availability and integrity of information, as well as authenticity,
accountability, non-repudiation of the users and services are ensured.

3.2 Activity 2: Identify Vulnerable and/or Critical Assets

We have to perform an examination of functional requirements (Reql) (because
according to CC assurance requirement ADV_FSP.3.1D the developer shall pro-
vide a functional specification) and we have realized that there is only one rele-
vant asset type: Information. Other assets would need to be considered in a real

198 D. Mellado, E. Fernandez-Medina, and M. Piattini

case study, including tangible assets such as money or products and intangible
assets such as reputation. We can consider different types of Information:

— Personal information about the pensioner: name, social security number,
address.

— Personal information about the pension/s: kind of pension (old-age/disability
(type of disability)/widow’s pension), amount of money, bank account num-
ber.

3.3 Activity 3: Identify Security Objectives and Dependencies

In this activity the SRR can be used, so that if the type of assets identified in
the previous activity are in the SRR we will be able to retrieve their associated
security objectives (SO). Otherwise we will determine the security objectives for
each asset and we will take into account the security policy of the Organization
as well as legal requirements and constraints in Spain and in the National Social
Security Institute. We can identify the following security objectives:

— SO1: Prevent unauthorised disclosure of information. (Confidential-ity). Val-
uation - High.

— S02: Prevent unauthorised alteration of information. (Integrity). Valuation
- High.

— SO3: Ensure availability of information to the authorised users. Valuation -
Medium.

— SO4: Ensure authenticity of users. Valuation - High.

— SOb5: Ensure accountability. Valuation - Medium.

This is not a complete list, it should be refined in subsequent iterations (for
example by establishing probability and dependencies between the security ob-
jectives), but it will be enough for this discussion. These security objectives will
be written down in the Security Objectives Document with the help of the CC
assurance classes (CC class ASE).

3.4 Activity 4: Identify Threats and Develop Artefacts

If the assets identified in the previous activity are in the SRR we will be able
to retrieve their associated threats. Otherwise we will find all threats that can
prevent the security goal from being achieved by instantiating the business use
cases into misuse cases or by instantiating the threat-attack trees associated
with the business and application pattern. In addition, we will analyse prede-
fined threat lists for the type of assets selected and following the CC assurance
requirement AVA_VAN.5.2E we will search in public domain sources to identify
potential vulnerabilities in the IS. In Fig. 3 we present an example of misuse
case diagram along with the possible attackers (crackers, thieves, etc.).
Therefore we identify several possible types of threats to Information:

— Generic Threat 1: Unauthorised disclosure of information.
— Generic Threat 2: Unauthorised alteration of information.

Applying a Security Requirements Engineering Process 199

Spoof User

%—C_Request PensionlnfD fis= @trol Acc;:;\- -
. — —_— | —::_———

EndUser

-~
T —" Misuser

N | o - — =
<Manage Pensions‘-f)— 9@;ure Integrity)
g —— Zem

=S = Ensure nonre uda@ =
C_Update Personal Info > t,___ RHES '
Security Misuse
Use Case Case

Fig. 3. Security Use Cases and Misuse Cases

|

T ——
k= uses >> e 9<Ensure Privacy - — Invade Privacy
I

“Z -y

— Generic Threat 3: Unauthorised unavailability to information.
— Generic Threat 4: Spoof user.

Then, we will develop the Generic Threats together with the Specific Threats
(which are several paths of these Generic Threats) if there are no threats in the
SRR that match with the previous identified types of threats. So we will present
an example of a specification of a Generic Threat(Generic Threat 2) and a
Specific Threat using misuse cases as a method of specification in Tables 1 and 2.

Finally, with the former information we have achieved in this activity, we will
constitute the first version of the Security Problem Definition Document with
the help of the CC assurance classes (CC class ASE). As it is in this document
where the assumptions are written down, we would like to reflect the fact that
we do not take into consideration, because it is not the main object of this
specific work, possible attacks on the provider and consumer organizations, on
the network infrastructures or on the infrastructure in use, along with other
elements at an organizational level (and not only system-level elements).

3.5 Activity 5: Risk Assessment

Having identified the threats, we shall now go on to determine the probability
of each threat and to assess its impact and risk. In order to carry out this task,
we will use a technique proposed by the guide of techniques of MAGERIT [11]
and which is based on tables to analyse impact and risk of threats.

For the time being we are going to evaluate risk and impact with five possi-
ble values: Very Low, Low, Medium, High and Very High. The likelihood of a
threat could be: Very Frequent (daily event), Frequent (monthly event), Normal
Frequency (once a year), Rarely (once in several years). We have therefore to
produce a table of threats, attacks (misuse cases: MUC) and risks to register the
evaluation of impact and risk regarding the threats we have identified. In Table
3 we will present an example of the analysis of the risk of one threat previously
detailed in the former activity. All of this is captured in the Risk Assessment
Document which will be also refined in subsequence iterations.

200 D. Mellado, E. Fernandez-Medina, and M. Piattini

Table 1. Generic Threat Specification using misuse cases (GMUC)

Name of Misuse C

ID: GMUC-2-2-1-1 [GMUC-Security Objective-Generic Threat- [teration- GenericMisUseCase]
PROBABILITY; [Verv Frequent | Frequent | Normal Frequency | Rarelv]
Summary: The attacker tvpe [attacker tvpe] gains access to the message [message | interaction] [name]

exchanged by the [consumer | provider] agent [agent name] and the [consumer | provider] agent [agent name]
and [modifies | deletes | inserts [part’s]] of the message at the [transport | http J-level situated in the [header
body | attachment] with the object of [objective]

Preconditions:

1) The attacker has phvsical access to the message.

2) The attacker has clear knowledge of the structure and meaning of the message.

User Interactions Misuser Interactions Svstem Interactions

The User sends a message
[name of message]

The attacker [tvpe of attacker] [name
of attacker] intercepts it and identifies
the part of the message to modifv and
[deletes | replaces | add] information
and he'she forwards it on to the
Svstem Agent

The Svstem Agent receives the
corrupted message and processes
it wronglv due to the altered
semantic content

Postconditions:

1) The svstem will remain in a state of error with respect to the original intentions of the User agent [name of
user agent].

23 In the register of the system in which the Provider Agent [name of provider agent] was executed the
request received with an altered semantic content will be reflectad.

Table 2. Specific Threat specification

[SMUC-Secumity Objective-Generic Threat- Iteration-Genenchliz UseCase-
SpecificMisUseCase]
PROBABILITY: FREQLENT

Summmary: The extemal attacker type gains access to the UpdatePersonallnfo message exchanged between
the consumer agent (browser of the End-User) and PensionApp. and modifies the part of the HTTP
message that cortains the pensioner’s bank accowntt mumber with the intention of changing its meaning by
modifying the account mumnber to fit one ovned by the attacker

Preconditions:

1) The extemal attacker has physical access to the message.

2y The external attacker has clear Imowledge of where within the UpdatePersonallnfo message is located
the accoumt menber.

User Interactions Misuser Interactions System Interactions
The User Agent zends an
UpdatePersonalnfo message

The extemal attacker intercepts it and
identifies the pant of the meszage to
modify the bank account mmber and
he/she forwards it on to PensionApp

PanszionApp raceives the
cormupted UpdatePersonallnfo
message and processes it
wrongly dus to its altered
semantic content. That iz, it
establishes that the consumer
agent wishes as new bank
account mumber the accoumt
mumber modified by the
attacker.

Postconditions:

13 PensionApp willremaim in a state of ervor with regard to the original intentions of the End-User.

2} In the register of the system in which PensionApp was executed, the request received with an alterad
sernantic content will be reflected

Applying a Security Requirements Engineering Process 201

Table 3. Table of Threats, Attacks and Risks

Table of Threats, Attacks and Eisks - Tteration 1
Threat Impact Attacke Probability Eisle
1.2.1.1.1.1 Alteration | LOW, if there 18 not pension SMUC2-2-1-1-1 HIGH LR
of the information information modified
HIGH if the apposite is the case. | SMUL-2-3-2-1-1 HIGH HiGH |

3.6 Activity 6: Elicit Security Requirements

In order to derive security requirements, each security objective is analysed for
possible relevance together with its threats which imply more risk, so that the
suitable security requirements or the suitable cluster of security requirements
that mitigate the threats at the necessary levels with regard to the risk as-
sessment are selected. First of all, we will use domain knowledge to transform
the entities described in the security objectives into entities in the functional
requirement. In this case, it is straightforward, the security objectives refer to
information and we know that it is pension information or pensioner information
in the context of the functional requirements.

Then, we will transform the security objectives (Confidentiality, Integrity,
Availability, Authenticity, Accountability) into constraints on the operations
that are used in functional requirements. Additionally, we will search in the
CC security functional requirements catalogue (which has been previously in-
troduced together with the CC assurance requirements into the SRR) security
requirements which mitigate the threats that can prevent the security objective
from being achieved, therefore in this case, we will search for ensuring the in-
tegrity, availability, authenticity and accountability of PensionApp. Moreover,
we will search in the CC security assurance requirements catalogue to determine
the assurance requirements which ensure the secure development of the IS.

The security requirements (SR) that we identify are the following ones:

— SR1: The security functions of PensionApp shall use cryptography [assign-
ment: cryptographic algorithm and key sizes| to protect confidentiality of
pension information provided by PensionApp to an EndUser. (CC require-
ment FCO_CED.1.1)

— SR2: The security functions of PensionApp shall identify and authenticate
an EndUser by using credentials [assignment: challenge-response technique
based on exchange of encrypted random nonces, public key certificate] be-
fore an EndUser can bind to the shell of PensionApp. (CC requirements
FIA_UID.2.1 & FIA_UAU.1.1)

— SR3: When PensionApp transmits pension or pensioner’s information to
EndUser, the security functions of PensionApp shall provide that user with
the means [assignment: digital signature] to detect [selection: modification,
deletion, insertion, replay, other integrity] anomalies. (CC requirement
FCOIED.1.1)

— SR4: The security functions of PensionApp shall ensure the availability of
the information provided by PensionApp to an EndUser within [assignment:

202 D. Mellado, E. Fernandez-Medina, and M. Piattini

a defined availability metric] given the following conditions [assignment: con-
ditions to ensure availability]. (CC requirement FCO_AED.1.1)

— SR5: The security functions of PensionApp shall require evidence that Pen-
sionApp has pension information to an EndUser and he/she has received the
information. (CC requirement FCO_NRE.1.1)

— SR6: The security functions of PensionApp shall store an audit record of the
following events [selection: the request for pension information, the response
of PensionApp| and each audit record shall record the following information:
date and time of the event, [selection: success, failure] of the event, and
EndUser identity. (CC requirements FAU_GEN)

Due to the former security requirements the first functional requirements
(Reql and Req2) have to be updated, so that they will be as follows:

— Req 1’: On request from an EndUser, the system shall display information
about his/her pension. This request shall include the social se-curity number
of the EndUser and the EndUser’s Credentials.

— Req 2’: On request-2 from an EndUser, the system shall update the personal
information of the pensioner. This request shall include the social security
number of the EndUser and the EndUser’s Credentials and the changed
personal dates.

In Table 4 we will present an example of a Generic Security Requirement
specification using security use cases as a method of specification. Finally, the
Security Requirements Specification Document is written in this activity and it
will be refined in subsequence iterations because we try to avoid unnecessarily
and prematurely architectural/design mechanisms specification.

3.7 Activity 7: Categorize and Prioritize Requirements

According to the impact and the likelihood of the threats, that is according to
the risk, we will rank the security requirements as follows: 1- SR1; 2- SR2; 3-
SR3; 4- SR5 and SR6; 5- SR4.

3.8 Activity 8: Requirements Inspection

In this activity, we will generate the Validation Report, thereby we will review
the quality of the previous work with the help of the CC assurance requirements,
these assurance requirements will result from the determined EAL, which was
agreed with the stakeholders in the first activity, although it could be modified
in subsequent iterations. Supposing we agreed EAL1 (functionally tested) the
assurance components that we will use will be presented in the Table 5.

Then we will write the first version of the Security Requirements Rationale
Document with the help of the CC assurance classes (CC class ASE), show-
ing that if all security requirements are satisfied and all security objectives are
achieved, the security problem defined previously is solved: all the threats are
countered, the organizational security polices are enforced and all assumptions
are upheld.

Applying a Security Requirements Engineering Process

203

Table 4. Generic Security Requirement Specification

1c Threat- Tt=ration-

Alisuser Interactions

System Reguirements

System Interactions

System Actions

Interactions of the User| Action: of the User
Agent Agent

| The User Agent [name

ent] should wy to

Svstem Agent
23 the zltered

The Systm

detects thet the m
[name of messag
zlterad m tranait,
it =nd
[oparations]

Posteonditions:

tramsit.

1} The System Agent will have sxacutad [opstztions] [name of zzenf] with the 2im of detecting that the messzze was zlterad m

Table 5. EAL 1 Common Criteria Assurance classes and components

Assurance Class

Assurance ¢ Omponents

ADV: Development

ADV_FSP 1 Basic functional specification

AGD: Guidance documents

AGD_OPE.1 Operational user guidance

AGD_PRE.1 Preparative procedures

ALC: Life-cvcle support

ALC_CMC.1 Labelling of the TOE

ALC_CMS.1 TOE CM coverage

ASE: Securitv Target evaluation

ASE CCL.1 Conformance claims

ASE _ECD.1 Extended components definition

AFE INT.1 5T introduction

ASE OBJ 1

environment

Securitv

objectives for

the operational

ASE REQ.1 Stated securitv requirements

ASE TSS.1 TOE summary specification

ATE; Tests

ATE IND 1 Independent testing — conformance

AVA: Vulnerability assessment

AVA VAN 1 Vulnerabilitv survev

204 D. Mellado, E. Fernandez-Medina, and M. Piattini

3.9 Activity 9: Repository Improvement

We will store in the SRR the new elements, in this case in this iteration the
Generic and Specific Threats and Requirements which were developed in the
activities 4 and 6 will be stored. After all, we will write the Security Target doc-
ument of the CC. This activity will be performed coinciding with the milestone
at the end of each phase of the UP.

4 Lessons Learned

Among the most important lessons learned we may stand out from the case
study presented above we can highlight the following ones:

— The application of this case study has allowed us to improve and refine the
following activities of SREP: identification of security objectives, identifica-
tion of threats and elicitation of requirements.

— Tool support is critical for the practical application of this process in large-
scale software systems due to the number of handled artefacts and the several
iterations that have to be carried out.

— As it is an iterative and incremental security requirements engineering pro-
cess, we have realized that this philosophy lets us take into account changing
requirements, facilitates reuse and correct errors over several iterations, risks
are discovered and mitigated earlier, and the process itself can be improved
and refined along the way.

— Regarding to the experience with the Common Criteria, we have realized
that it is sometimes difficult to find the right meaning of the CC require-
ments, it would be easier if the CC provides examples for each security
requirement. However the CC provide us with an important help in order
to treat security requirements in a systematic way, in spite of the fact that
CC requirements have complex dependencies and the CC does not provide
us with any method/guide to include them into the software development
process, so that a modification in one document often leads to modify several
other documents.

5 Conclusions

In our present so-called Information Society the development of more and more
sophisticated approaches to ensuring the security of information is becoming a
need. In this paper we demonstrate how the security requirements for a security
critical IS can be obtained in a guided and systematic way by applying SREP.
Starting from the concept of iterative software construction, we propose a mi-
croprocess for the security requirements analysis, made up of nine activities,
which are repeatedly performed at each iteration throughout the iterative and
incremental development, but with different emphasis depending on where the
iteration is in the lifecycle. Therefore the contribution of this work is that of

Applying a Security Requirements Engineering Process 205

providing a standard-based process that deals with the security requirements
at the early stages of software development in a systematic and intuitive way,
which is based on the reuse of security requirements, by providing a Security Re-
sources Repository (SRR), together with the integration of the Common Criteria
(ISO/IEC 15408) into software development lifecycle. Moreover, it also conforms
to ISO/IEC 17799:2005 with regard to security requirements (sections: 0.3, 0.4,
0.6 and 12.1). Hence, it is a very helpful process for security critical Information
Systems. Further work is also needed to provide a CARE (Computer-Aided Re-
quirements Engineering) tool which supports the process, as well as a refinement
of the theoretical approach by proving it with more real case studies in order to
complete and detail more SREP.

Acknowledgements

This paper has been produced in the context of the DIMENSIONS (PBC-05-012-
2) Project of the Consejeria de Ciencia y Tecnologia de la Junta de Comunidades
de Castilla-La Mancha along with the FEDER and the CALIPO (TIC2003-
07804-C0O5-03) and the RETISTIC (TIC2002-12487-E) projects of the Direccién
General de Investigacion del Ministerio de Ciencia y Tecnologia.

References

1. Baskeville, R. “The development duality of information systems security”. Journal
of Management Systems, 1992, 4(1): p. 1-12.

2. Booch, G., Rumbaugh, J., and Jacobson, I. “The Unified Software Development
Process”. ed. Addison-Wesley, 1999.

3. Breu, R., Burger, K., Hafner, M., and Popp, G. “Towards a Systematic Development
of Secure Systems”. Proceedings WOSIS 2004, 2004: p. 1-12.

4. Firesmith, D.G.“Engineering Security Requirements”. Journal of Object Technol-

ogy, 2003. 2(1): p. 53-68.

Firesmith, D.G.“Security Use Cases”. Journal of Object Technology, 2003. p. 53-64.

6. ISO/IEC_JTC1/SC27.“Information technology - Security techniques - Manage-
ment of information and communications technology security - Part 1: Concepts
and models for information and communications technology security management”.
ISO/IEC 15335, 2004.

7. ISO/IEC_JTC1/SC27.“Information technology - Security techniques - Code of
practice for information security management”. ISO/IEC 17799, 2005.

8. ISO/IEC_JTC1/SC27.“Information technology - Security techniques - Evaluation
criteria for IT security”. ISO/IEC 15408:2005 (Common Criteria v3.0), 2005.

9. Kim., H.-K.“Automatic Translation Form Requirements Model into Use Cases
Modeling on UML”. ICCSA 2005, LNCS, 2005: p. 769-777.

10. Kotonya, G. and Sommerville, I.“Requirements Engineering Process and Tech-
niques”. Hardcover ed, 1998. 294.

11. MAP.“Metodologia de Anélisis y Gestién de Riesgos de los Sistemas de Informacién
(MAGERIT - v 2)”. Ministry for Public Administration of Spain, 2005.

12. Massacci, F., Prest, M., and Zannone, N.“Using a security requirements engineering
methodology in practice: The compliance with the Italian data protection legisla-
tion”. Computers Standards and Interfaces, 27, 2005, p.445-455.

ot

206

13.

14.

15.

16.

17.

18.

19.

20.

21.

D. Mellado, E. Fernandez-Medina, and M. Piattini

Dermott, J. and Fox, C.“Using Abuse Case Models for Security Requirements
Analysis”. Annual Computer Security Applications Conference, Phoenix (AZ),
1999.

Mellado, D., Ferndndez-Medina, E., and Piattini, M.“A Common Criteria Based
Security Requirements Engineering Process for the Development of Secure Infor-
mation Systems”. Computer Standards and Interfaces , 2006.

Mellado, D., Ferndndez-Medina, E., and Piattini, M. “A Comparative Study of Pro-
posals for Establishing Security Requirements for the Development of Secure Infor-
mation Systems”. The 2006 International Conference on Computational Science
and its Applications (ICCSA 2006), Springer LNCS 3982 , 2006. 3: p. 1044-1053.
Mouratidis, H., Giorgini, P., Manson, G., and Philp, I.“A Natural Extension of Tro-
pos Methodology for Modelling Security”. Workshop on Agent-oriented method-
ologies, at OOPSLA 2002 ,Seattle (WA), 2003.

Popp, G., Jirjens, J., Wimmel, G., and Breu, R.“Security-Critical System De-
velopment with Extended Use Cases”. 10th Asia-Pacific Software Engineering
Conference , 2003, p. 478-487.

Sindre, G., Firesmith, D.G., and Opdahl, A.L.“A Reuse-Based Approach to De-
termining Security Requirements”. 9th International Workshop on Requirements
Engineering: Foundation for Software Quality (REFSQ’03) , Austria, 2003.
Toval, A., Nicolés, J., Moros, B., and Garcia, F.“Requirements Reuse for Improv-
ing Information Systems Security: A Practitioner’s Approach”. Requirements En-
gineering Journal , 2001, p. 205-219.

Walton, J.P.“Developing a Enterprise Information Security Policy”. ACM Press:
Proceedings of the 30th annual ACM SIGUCCS conference on User services. , 2002.
Yu, E.“Towards Modelling and Reasoning Support for Early-Phase Requirements
Engineering”. AS8rd IEEE International Symposium on Requirements Engineering
(RE’97) , 1997, p. 226-235.

	Introduction
	SREP: Security Requirements Engineering Process
	The Security Resources Repository

	Case Study
	Activity 1: Agree on Definitions
	Activity 2: Identify Vulnerable and/or Critical Assets
	Activity 3: Identify Security Objectives and Dependencies
	Activity 4: Identify Threats and Develop Artefacts
	Activity 5: Risk Assessment
	Activity 6: Elicit Security Requirements
	Activity 7: Categorize and Prioritize Requirements
	Activity 8: Requirements Inspection
	Activity 9: Repository Improvement

	Lessons Learned
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

