

Haralambos Mouratidis, Jan Jurjens1

Abstract— Security of intelligent software systems is an important area of research. Although security is traditionally

considered a technical issue; security is in fact a two dimensional problem, which involves technical as well as social

challenges. Goal-Driven Requirements Engineering (GDRE) has been proposed in the literature as a suitable paradigm for

the analysis of security issues and elicitation of security requirements at both the social and technical level. Nevertheless,

there is lack of approaches, which would support the successful transformation of the elicited, using GDRE approaches,

security requirements to design. This paper presents work that fills this gap. The presented approach, which is based on

the integration of a Goal-Driven Security Requirements Engineering (GDSRE) methodology and a Model-Based Security

Engineering (MBSE) method, has some important features: (1) It provides a structured process to translate the results of

the GDSRE method to a design, which satisfies these requirements; (2) it allows the simultaneous elicitation and analysis

of the security requirements and the functional requirements of the system; (3) it allows consideration of both the social

and the technical dimensions of the system’s security; (4) it guides software engineers towards a design that is amenable to

formal verification with the aid of automated tools. We demonstrate the applicability of the proposed approach at the hand

of an application to the electronic purse standard Common Electronic Purse Specifications (released by Visa International

and others).

1 INTRODUCTION

Security is traditionally approached as a technical issue that requires a technical solution. This
treatment of security has led to the development of a number of security mechanisms and
protocols that on one hand are successfully used in modern software systems but on the other
hand, they have failed to ensure an acceptable degree of security. Recent research [1] has argued
that one of the reasons for this situation is the wide-spread of software systems and their usage in
almost every part of the human society. As a result, security of such systems has been
transformed from a mono-dimensional technical issue to a two-dimensional issue that includes a
technical dimension (related to challenges and problems associated to the available technology
and the infrastructure of software systems) and a social dimension (which includes issues and
problems related to the involvement of humans in securing software systems). To effectively
consider both dimensions, the research literature [1,6,9,10,11] argues that it is essential for
security to be considered from the early stages and throughout the software development life-
cycle and a sound software engineering methodology needs to be developed that supports the
simultaneous analysis of both dimensions of security.

However, it has remained true over the last 30 years (since the seminal paper [2]) that no
coherent and complete methodology to ensure security in the construction of large general-
purpose systems exists yet, in spite of very active research and many useful results addressing
particular sub-goals, as well as a large body of security engineering knowledge [3].

In this paper2, we integrate a Goal-Driven Security Requirements Engineering (GDSRE)
methodology (called Secure Tropos) with a Model-Based Security Engineering (MBSE)

1 The first author is with the School of Computing, Information Technology and Engineering, University of East London, Docklands

Campus, 4-6 University Way, E16 2RD, London, England, email: haris@uel.ac.uk
 The Second Author is with the Computing Department, Open University, Walton Hall, Milton Keynes, Buckinnghamshire, MK7 6AA,

England, email: j.jurjens@open.ac.uk
2 Which is an extended and revised version of [4]

From Goal-Driven Security Requirements
Engineering to Secure Design

approach (called UMLsec) to create a structured methodology for secure software systems
development. In particular, the presented approach takes the high-level concepts and modelling
activities of the Secure Tropos methodology [5] and enriches them with a low level security-
engineering ontology and models derived from the UMLsec approach [6]. Moreover, an
enhanced goal-driven development process is defined that considers security from the early
stages of the development process. By integrating the two approaches, we manage to take
advantage of the strong parts of each approach and at the same time minimize their limitations.
This achieves several goals. First of all, it allows software engineers to consider both dimensions
of security in a structured and well defined way. Initially, by employing a goal oriented
requirements engineering analysis, the social dimension of security is considered by analysing the
environment of the system-to-be and by facilitating understanding of the security needs of the
stakeholders and the security issues imposed to the system by its environment. Then, the
technical dimension of security is considered, by supporting the transformation of the security
requirements to a design that is amenable to formal verification with the aid of automatic tools
[7]. Secondly, the approach allows the definition of security requirements early in the process
and in different levels and as a result it provides a security–aware environment where security
and functional requirements are analysed simultaneously.

This paper is structured as follows. Section 2 provides some background information about
security aware software engineering and Section 3 introduces Secure Tropos and UMLsec.
Section 4 discusses the suitability of the two approaches for the integration and Section 5
presents the integration of the two approaches. Section 6 demonstrates the integrated approach at
the hand of an application to the electronic purse standard Common Electronic Purse
Specifications (CEPS) and Section 7 discusses related work. Finally Section 8 concludes the
paper and presents directions for future work.

2 SECURITY-AWARE SOFTWARE ENGINEERING

It is well known that perfect security is seldom possible to achieve and thus the goal is to
provide an acceptable security level, usually by trading security requirements with other
functional and non-functional requirements of the system-to-be [8]. To effectively make such
trade-offs, software system developers need to have a clear understanding of both the technical
issues surrounding the security of a software system as well as the social issues influencing the
software system’s security. In other words, it is not enough just to consider security mechanisms
and protocols, but an understanding of the human factor and the environment of the software
system is also required. The human factor has a significant impact on security [8] and the
effectiveness of a system depends on the forces of its environment [9].

As such, it has been widely argued in the literature that in order to obtain such understanding,
software engineers need to consider security as part of the software system’s development
process. Devanbu and Stubblebine [10] argued that “security concerns should inform every phase
of software development, from requirements engineering to design, implementation, testing and
deployment”. In addition, Mouratidis [5] indicated that “From the viewpoint of the traditional
security paradigm, it should be possible to eliminate some [security related] problems through
better integration of security and software engineering”. Such arguments are consistent with
previous research outputs that indicated that security mechanisms cannot be “blindly” inserted

into a security-critical system, but the overall system development must take security aspects into
account in a coherent way [2].

A large number of researchers [1,11,12,13,14] also argue for the need not only to consider
security as part of the development process but in fact to consider it as early as possible. There is
general agreement that integration starting from the earliest stages is essential. It is well known
that mistakes early in the software process can have far reaching consequences in subsequent
stages that are difficult and costly to remedy.

However, this is far from what happens in current practice, where in some cases security
requirements are not elicited and reasoned by the software developers and the design does not
provide a security infrastructure according to the needed security requirements. In contrast,
security requirements are mostly copied from a generic set of security requirements and specific
system security design is replaced by a set of standard security mechanisms which are introduced
in the system. This is problematic, since very little consideration is given on the implications of
inserting such mechanisms into the system’s architecture. As a result, security may conflict with
the system’s requirements, which most of the times translate into security vulnerabilities [3,15].
In other cases where security requirements are considered, they are often developed
independently of the rest of the requirements engineering activity and hence are not integrated
into the mainstream of the requirements activities. As a result, security requirements that are
specific to the system and that provide for protection of essential services and assets are often
neglected [16].

In this paper, we present a methodology based on a goal-driven requirements engineering
process. In particular, our work provides support to:

1. elicit security requirements, based on a goal-driven security requirements analysis;
2. develop a design, based on the identified security requirements;
3. validate the security properties of the design according to the security requirements of

the system.
To achieve the above, we employ the Secure Tropos and the UMLsec approaches. The next

section provides an overview of these two approaches.

3 SECURE TROPOS AND UMLSEC

3.1 Secure Tropos: A Goal-Driven Security Requirements Engineering Methodology

Secure Tropos [5,17] is a security-oriented extension of the widely known requirements
engineering methodology Tropos. The Tropos (and as a result the Secure Tropos) methodology is
mainly based on four phases [18]:

• Early Requirements Analysis, aimed at defining and understanding a problem by studying
its existing organizational setting;

• Late Requirements Analysis, conceived to define and describe the system-to-be, in the
context of its operational environment;

• Architectural Design, that deals with the definition of the system global architecture in
terms of subsystems; and the

• Detailed Design phase, aimed at specifying each architectural component in further
detail, in terms of inputs, outputs, control and other relevant information.

The main differences of Secure Tropos in relation to other security oriented approaches are:
1. social issues of security are analysed during the early requirements stage;
2. security is considered simultaneously with the other requirements of the system-to-be;
3. the methodology supports not only requirements stages but also design stages.

Secure Tropos introduces a number of security related concepts to the Tropos methodology. A
security constraint is defined as a restriction related to security issues, such as privacy, integrity,
and availability, which can influence the analysis and design of the information system under
development by restricting some alternative design solutions, by conflicting with some of the
requirements of the system, or by refining some of the system’s objectives [5]. Graphically, a
security constraint is depicted as a hexagon and it is positioned in the side of the actor who has to
satisfy it (see for instance Figure 6). Additionally, Secure Tropos defines secure dependencies. A

secure dependency introduces security constraint(s) that must be fulfilled for the dependency to
be satisfied [5]. Secure Tropos uses the term secure entity to describe any goals and tasks related
to the security of the system. A secure goal represents the strategic interests of an actor with
respect to security. Secure goals are mainly introduced in order to achieve possible security
constraints that are imposed to an actor or exist in the system. However, a secure goal does not
particularly define how the security constraints can be achieved, since alternatives can be
considered. The precise definition of how the secure goal can be achieved is given by a secure
task. A secure task is defined as a task that represents a particular way for satisfying a secure
goal.

The security oriented process of Secure Tropos is mainly divided into four sub-activities: (1)
The identification of security requirements of an information system, in which the security needs
of the stakeholders and the system are analysed in terms of security constraints imposed to the
system and the stakeholders, and secure goals and entities are identified that guarantee the
satisfaction of the security constraints; (2) the selection amongst alternative architectural styles
for the system-to-be according to the identified security requirements, which allows developers to
reason about alternative design solutions according to the security requirements of a system; (3)
the development of a design that satisfies the security requirements of the system, which allows
developers to employ a security pattern language to satisfy the security requirements of the
system; (4) the attack testing of the system under development, which allows developers to test
how the system under development copes with any possible attacks.

A detailed description of Secure Tropos concepts and process can be found in [5].

 3.2 Model-based Security Engineering using UMLsec

In Model-based Security Engineering [6,19,20], recurring security requirements (such as secrecy,
integrity, authenticity and others) and security assumptions on the system environment, can be
specified either within a UML specification, or within the source code (Java or C) as annotations.

One can use MBSE within model-based development (see Figure 1). Here one first constructs a
model of the system. Then, the implementation is derived from the model: either automatically
using code generation, or manually, in which case one can generate test sequences from the
model to establish conformance of the code regarding the model. The goal is to increase the
quality of the software while keeping the implementation cost and the time-to-market bounded.

Figure 1: Model Based Security Engineering

In UMLsec, recurring security requirements, such as secrecy, integrity, and authenticity are
offered as specification elements by the UMLsec extension. These properties and its associated
semantics are used to evaluate UML diagrams of various kinds and indicate possible security
vulnerabilities. One can thus verify that the desired security requirements, if fulfilled, enforce a
given security policy. One can also ensure that the requirements are actually met by the given
UML specification of the system. UMLsec encapsulates knowledge on prudent security
engineering and thereby makes it available to developers who may not be experts in security. The
extension is given in form of a UML profile using the standard UML extension mechanisms.
Stereotypes are used together with tags to formulate security requirements and assumptions on
the system environment. Constraints give criteria that determine whether the requirements are
met by the system design, by referring to a precise semantics mentioned below.

The tags defined in UMLsec represent a set of desired properties. For instance, “freshness” of a
value means that an attacker can not guess what its value was. Moreover, to represent a profile of
rules that formalise the security requirements, the following are some of the stereotypes that are

used: «critical», «high», «integrity», «internet», «encrypted», «LAN», «secrecy», and «secure

links». If relevant, their profile also contains the possible attackers associated to them as shown

in Table 1.

Stereotype Threats default() Threats insider()

Internet {delete, read, insert} {delete, read, insert}

Encrypted {delete} {delete, read, insert}

LAN Ø {delete, read, insert}

Table 1: Attackers and threats per stereotype in the UMLsec

The definition of the stereotypes allows for model checking and tool support. As an example

consider «secure links». This stereotype is used to ensure that security requirements on the

communication are met by the physical layer. More precisely, when attached to a UML
subsystem, the constraint enforces that for each dependency d with stereotype

{ }()>>high<<>>integrity<<>>secrecy<< ,,s ∈ between subsystems or objects on different

nodes, according to each of the above stereotypes, there shall be no possibilities of an attacker
reading, or having any kind of access to the communication, respectively. A detailed explanation
of the tags and stereotypes defined in UMLsec can be found in [6].

4 INTEGRATION SUITABILITY OF SECURE TROPOS AND UMLSEC

There are various reasons for selecting secure Tropos and UMLsec from the large number of
different existing methodologies and modelling languages. Secure Tropos considers the social
dimension of security as well as the high-level technical dimension of it. Firstly, an analysis
regarding social aspects of security takes place in which the security requirements of the
stakeholders, users and the environment of the system are analysed, with the aid of goal analysis
techniques, and identified. Then, the methodology continues with a more technical dimension by
considering the system and identifying its secure requirements, and allowing developers to
identify the architecture of their systems with respect to the identified requirements. On the other
hand, UMLsec covers also the later stages of the development, such as the detailed design stage
(detailed definition of security components), the implementation stage (model-based testing and
code verification against UMLsec specification) and the deployment phase (through analysis of
user configurations against UMLsec models).

We have identified the relative strengths of these two approaches, which indicate what makes
each of these approaches suitable for our purpose, as well as combinational strengths, which
indicate why these two approaches are suitable for integration. Individually, Secure Tropos
considers security issues throughout the development stage, from the early requirements analysis
down to implementation. Moreover, it allows developers not only to identify security issues but
also to reason about them, and it provides a security pattern language to assist developers without
much security knowledge to specify the architecture of the system according to its security
requirements. On the other hand, UMLsec encapsulates established rules of prudent security
engineering in the context of widely known notations, and thus makes them available to
developers without extensive training in security. In addition, UMLsec supports automated
verification of design models against security properties. Combinational, both of the approaches
are extensions of well-known approaches (Tropos and especially UML) and this makes the
approach easily accessible to a large number of researchers and practitioners. Also, the strength
of Secure Tropos (requirements analysis) is complementary to the strengths of UMLsec (security
design analysis) and vice versa, therefore providing a complete solution. In addition, the use of
UML models during the design stage of the Tropos methodology makes the integration of Secure
Tropos and UMLsec more natural.

However, and despite the above advantages the two approaches demonstrate some limitations.
The existing Secure Tropos language is mainly focused on the early and late requirements stages
and fails to provide constructs and notation to define in detail the security components of the
system. In particular, for the Detailed Designed stage the methodology is mainly based on UML
diagrams with minor extensions to indicate some security issues [5]. These models are limited
with respect to the security specification of each component of the system. On the other hand, the
UMLsec approach does not consider the social dimension, since the only analysis that it offers at
the early stages of the development (stages at which the social issues are introduced) is use case
diagrams, which do not consider the social security requirements of the system’s stakeholders.
Moreover, it provides constructs mainly for the definition and validation of the security
components of a system. Therefore, the UMLsec approach lacks a process to identify the security
requirements of the system. We believe that integrating these two approaches will lead us to a
complementary approach for secure software systems development. In fact, the integration of
UMLsec to the secure Tropos methodology provides a framework of particular strength

throughout all the development stages as shown in Figure 2 .

Early

Requirements

Late

Requirements

Architectural

Design

Detailed

Design

Implement

ation

Deploymen

t

Secure Tropos

UMLsec

Integration

Figure 2: The complementary nature of the two approaches

5 INTEGRATION THROUGH TRANSLATION

In this project we integrate the two approaches using functional integration [21]. In this type of
integration given models of each approach stay intact and guidelines to translate the models from
one approach to another and indicate the inputs and the outputs of these models are defined. In
translating between Secure Tropos and UMLsec two main challenges must be addressed: firstly,
how to define a uniform and easy to follow development process building on the strengths of the
two approaches and minimizing their weaknesses and secondly, how to represent the concepts
and models of Secure Tropos to the concepts and models of UMLsec.

To overcome the first challenge we have defined a new goal-driven security-aware process that
is based on the Secure Tropos process but it enhances it by adding support for the development
of the UMLsec models. To overcome the second challenge we have developed a well defined set
of mapping guidelines and steps to assist developers in moving from the Secure Tropos models
to the UMLsec models.

5.1 The Security-Aware Process

The new security aware process includes four main stages3:
• Security Analysis of System Environment,
• Security Analysis of System,
• Secure System Design, and
• Secure Components Definition.

In each of these stages, a number of activities have been identified and each of the activities
results in a number of different analysis and/or design models as shown in Figure 3. Although for
reasons of simplicity we describe the stages in a sequential order, it is worth pointing out that we

3 In this paper we focus on the integration of the two approaches. As such, we do not cover the deployment and implementation stages of

the development process for which our integration does not provide anything new, i.e. these two stages receive inputs in UMLsec concepts from
the secure components definition stage.

Strength

Weakness

Not supported

expect developers to follow an iterative approach.

5.1.1 Security Analysis of System Environment

The main aim of this stage is to understand the social dimension of security by considering the
social issues, of the system environment, which might affect its security. In doing so, the
environment in which the system will be operational is analysed with respect to security. In
particular, in line with the Secure Tropos methodology, the stakeholders of the system along with
their strategic goals are analysed in terms of actors (Stakeholders Analysis Activity) who have
strategic goals and dependencies for achieving some of those goals. Goal analysis techniques
[18] such as means-end analysis and decomposition are widely used during this activity. Then the
security needs of those actors are analysed (Security Constraints Analysis Activity) in terms of
security-related constraints that are imposed to those actors. Moreover, security goals and entities
are identified (Secure Entities Analysis Activity), for each of the participating actors, to satisfy the
imposed security constraints. In particular, developers examine the security constraints imposed
on individual actors, and documented in the security-enhanced goal diagram, and identify any
related secure goals that assist in satisfying those security constraints. The process of identifying
secure goals is similar to the process used in goal oriented-oriented approaches and involves
techniques such as means-end analysis [18]. However, such techniques are combined with a
number of security-related techniques such as attack trees [42] and security reference diagrams
[5]. The Secure Goal Introduction [1] analysis enables developers to refine the goals of an actor
to allow the satisfaction of a security constraint. In some cases it is necessary to decompose
security constraints into more detailed security constraints. In doing so, the AND decomposition
technique is employed. The decomposed constraint is called the “root” constraint, and its
satisfaction is implied if and only if all the security sub-constraints are satisfied. Identified secure
goals are documented in a security-enhanced goal diagram. The above analysis activities are
modelled in terms of different diagrammatic notations as shown in Figure 3 . With respect to
security, a security-enhanced actor diagram is used to analyse the actors of the environment of
the system along with their secure dependencies and security constraints. On the other hand, a
security-enhanced goal diagram allows a deeper understanding of how the actors, modelled in the
security-enhanced actor diagram, reason about goals to be fulfilled, plans to be performed and
availability of resources [5]. The security-enhanced goal diagram complements the security-
enhanced actor diagram with the reasoning that each actor requires about its internal security
goals, secure plans and secure resources. In other words, the security-enhanced goal diagram
presents a more focus analysis on each one of the actors identified during the security-enhanced
actor diagram.

Figure 3: The stages of the process

5.1.2 Security Analysis of System

The main aim of this stage is to understand the technical dimension of security. For this stage,
activities similar to the previous stage are employed but now the focus is on the system rather
than its environment. In particular, the security requirements of the system are identified taking
into account the security needs of the stakeholders as well as their security constraints. The
output of this stage is the definition of the system’s security requirements together with a set of
security constraints, along with the system’s security goals and entities that allow the satisfaction
of the security requirements of the system.

5.1.3 Secure System Design

The main aim of this stage is to define the architecture of the system with respect to its security
requirements. To achieve this, a combination of Secure Tropos and UMLsec models are
employed. Actor, Goal and secure architectural style models of Secure Tropos together with a set
of security patterns [5] are used to determine the general architecture and the components of the
system, whereas UMLsec Class and Deployment diagrams are used to model the security
properties of the data structures and architecture. It is at this stage of the development process
that the translation from the Secure Tropos to UMLsec models takes place according to the
guidelines and steps defined below. It is also worth mentioning that the functionality of the
SecTro tool, which supports the development of the Secure Tropos models, to automatically
derive XML code from the corresponding Secure Tropos models together with the functionality

of the UMLSec tool to accept XML input, enables us to speed up the process of translating the
Secure Tropos models to UMLSec models.

5.1.4 Secure Components Definition

During this stage UMLsec is used to specify in detail the components of the system identified in
the previous stage. To achieve this, UMLsec activity diagrams are used to define explicitly the
security of the components and UMLsec sequence diagrams are used to model the secure
interactions of the system’s components (for example, to determine if cryptographic session keys
exchanged in a key exchange protocol remain confidential in view of possible adversaries).
UMLsec statechart diagrams are used to specify the security issues on the resulting sequences of
states and the interaction with the component’s environment. Moreover, the constraints
associated with UMLsec stereotypes are checked mechanically, based on an XMI representation
of the UML models and using sophisticated analysis engines such as model-checkers and
automated theorem provers. The results of the analysis are given back to the developer, together
with a modified model, where the weaknesses that were found are highlighted.

5.2 Translation Guidelines and Steps

Our work towards the solution of the second challenge involved the definition of a set of
translation guidelines to map the Secure Tropos analysis and early design models to UMLsec
models. The following guidelines and steps were identified towards this direction.

Guideline 1: Translation of the Secure Tropos analysis models to UMLsec class diagrams

Step 1. Actor mapping to UMLsec classes: To map Secure Tropos actors to UMLsec models,
the following translation rules are followed:

• Every actor on the Secure Tropos security enhanced actor diagram is mapped as a class
on the corresponding UMLsec class diagram.

• In case of sub-actors (described in the corresponding security-enhanced goal diagrams),
these are mapped into the UMLsec class diagram as an inheritance relationship pointing
from the sub-actor class to the main actor class.

Consider for instance an example where a security-enhanced actor diagram defines a set of
actors (along with the appropriate relationships) such as Lecturer, Administrator, Student,
Registration System, Student Records System and so on. For each one of these actors a security-
enhanced goal diagram is constructed to represent the internal functionalities (goals, tasks,
security constraints etc) of these actors. Consider for example the Student Records System, its
security-enhanced goal diagram will represent its functionalities and any sub-actors used to
satisfy some of these functionalities. Examples of such sub-actors are Qualifications Analysis
actor –which has functionalities to analyse the qualifications of a student- and Module

Confirmation actor – which has functionalities to confirm the modules a student needs to attend
according to their selected programme. Following the above mapping the Student Records

System will be represented as a class in the UMLsec class model and the Qualifications Analysis
and Module Confirmation actors will be represented as sub-classes.

Step 2. Map actor capabilities to UMLsec classes: To map actor capabilities on the
corresponding UMLsec classes, the following translation rule is followed:

• Each capability of every actor defined in the Secure Tropos models, i.e. the security
enhanced actor and security-enhanced goal diagrams, is mapped as an operation on the
corresponding UMLsec class.

For instance, in the example above the capabilities identified for the Records System, the
Qualifications Analysis and Module Confirmation actors will be mapped as operations to the
corresponding classes of these actors to the UMLsec model.

Step 3. Map actor resources to UMLsec classes: To map actor resources to corresponding
UMLsec classes, the following translation rule is followed:

• Each resource allocated or used by every actor defined in the Secure Tropos models is
mapped as an attribute on the corresponding UMLsec class diagram.

It is worth stating that in some cases this is not a 1-to-1 mapping, meaning that a UMLsec class
will not have exact the same number of attributes as the Secure Tropos model counterpart. The
reason for this is that Secure Tropos models are mainly analysis models, whereas the UMLsec
model is a design model. Therefore, it is up to the developers to identify additional attributes
according to the identified operations, by following the same process followed when identifying
attributes for a class on any UMLsec class diagram. For instance, in the above example the
Qualifications Analysis actor will require access to resources such as students’ qualifications and
the universitity’s acceptable qualifications information. These two, amongst others, represent
resources for the actor as modelled in the security-enhanced goal diagram. These will be
translated to attributes in the UMLsec diagram.

Step 4. Map actor dependencies to associations: The following translation rule is followed:

• Every dependency, between two actors, defined in the secure Tropos models is mapped
into one association between the corresponding UMLsec classes.

 It is worth stating however, that in some cases developers will identify one association for a
number of dependencies. This is due to the fact that Secure Tropos models hold analysis
information whereas UMLsec models hold design information. Looking at the above example,
the security-enhanced actor diagram might represent a dependency between the Records System
and the Qualifications Analysis actors. This is the case, since the Records System actor depends
on the Qualifications Analysis actor to provide information about a student’s qualifications
before the student is allowed to register. Such dependency is modelled as an association in the
UMLsec model.

Step 5. Map critical actors to UMLsec classes. As described in previous sections, in secure
Tropos diagrams a secure dependency is defined between two actors and it indicates that one
actor needs to satisfy a security constraint for the dependency to be valid. Therefore, by analysing
each secure dependency we can identify the critical actors of the system (the ones that need to
satisfy security constraints). In Secure Tropos, the type of a secure dependency indicates whether
an actor is critical for the security of the system or not. Actors are considered critical when a
security constraint is imposed to them. To map critical actors from Secure Tropos to UMLsec,
the following translation rules are followed:

• Every actor, in a secure Tropos model, that is imposed a security constraint as part of a
secure dependency is considered critical.

• For every identified critical actor, the UMLsec class, corresponding to that actor, is
assigned the <critical>> stereotype.

Looking at the above example, if a secure dependency exists between the Records System and

the Qualifications Analysis actors with a security constraint imposed to the Qualifications

Analysis actor, then that actor will be modelled as <<critical>> in the UMLsec model.

Guideline 2: Translate the Secure Tropos analysis model to UMLsec deployment diagram

Step 1. Map actors to UMLsec nodes and components: Secure Tropos recognises two types
of actors, internal and external. An internal actor represents a core actor of the system, while an
external actor represents an actor that interacts with the system. Therefore, the following
translation rules are followed:

• Every external actor defined in the Secure Tropos analysis is modelled as a “user” node
in UMLsec.

• Every internal actor defined in the secure Tropos analysis models is modelled as a
“system” node in UMLsec.

At least one “user” and one “system” nodes need to be defined. Going back to the above
example, a Student actor represents an external actor of the system (interacts with the system)
while the Records System represents an internal actor of the system.

Step 2. Map Dependencies to modes of Communication. The following translation rule is
followed:

• For every dependency defined in the secure Tropos models, a mode of communication is
modelled in the corresponding UMLsec model.

To denote the appropriate mode of communication, UMLsec stereotypes are used, such as
those described in section 3. In the above example, if the communication between the Student
actor and the Records System actor takes place over the Internet, then the communication mode
between the user node “Student” and the system node “Records System” should be denoted using
the <<Internet>> UMLsec stereotype.

Step 3. Map Secure Tropos security constraints to UMLsec security stereotypes:

• For every security constraint identified in the secure Tropos models, at least one
UMLsec security stereotype should be modelled in the corresponding UMLsec model.

It should be noted that the mapping is not one-to-one, meaning that more than one stereotypes
will, usually, result from one security constraint. Using the above example, assuming a security
constraint is imposed to the Records System actor to only allow access to authorised student
actors, a security stereotype must be used to denote that security constraints in the UMLsec
model.

5.3 Semi-Automatic Support

The proposed methodology is supported in a semi-automatic way by a set of tools. In
particular, the secTro tool is employed to support developers during the security analysis of
System Environment; Security Analysis of System and the initial steps of the Secure System
Design stages, while the UMLsec tool is mainly used to assist developers during the later stages
of the Secure System Design and Secure Components Definition stages.

secTro (Figure 4) is a platform independent analysis and modelling tool that supports the
security related concepts and notations provided by the Secure Tropos methodology. The tool has
been developed following an iterative approach and it is based on JAVA. The tool allows
developers to model the system under development and its environment and it supports the
capture of properties of the various models, such as security enhanced actor diagram and security
enhanced goal diagram, and of their components. These are represented as XML type
specifications. Once developers are satisfied with the developed models, the represented XML
specifications are fed – manually- to appropriate tools, such as tefkat4, along with the

4 http://tefkat.sourceforge.net/

transformation rules to derive the UMLsec models. These are then fed into the UMLsec tools for
the analysis of the security properties of the system under development and the components
definition.

Figure 4: SecTro Screen

The UMLsec set of tools [7] (see Figure 5) generate logical formulas formalizing the execution
semantics and the annotated security requirements. Automated theorem provers and model
checkers automatically establish whether the security requirements hold. If not, a Prolog-based
tool automatically generates an attack sequence violating the security requirement, which can be
examined to determine and remove the weakness. This way we encapsulate knowledge on
prudent security engineering as annotations in models or code and make it available to
developers who may not be security experts. Since the analysis that is performed is too
sophisticated to be done manually, it is also valuable to security experts.

Figure 5: UMLsec Tools

6 CASE STUDY

To demonstrate the validity of our approach, we present an application to the electronic purse
standard Common Electronic Purse Specification (CEPS) [22] developed by Visa International
and other companies. CEPS proposes the use of stored value smart cards, called electronic purses
or CEP cards, to allow cash-free point-of-sale (POS) transactions offering more fraud protection
than credit cards5. Amongst others, the following participants are defined in a CEP transaction
[22]: the Scheme Provider, the authority responsible for establishing an infrastructure for the
overall functionality and security of the CEP system and enforcing the operating rules and
regulations of the scheme; the Card Issuer, the organisation responsible for the provision and
distribution of smart cards containing a CEP application (electronic purses), and the management
of the funds pool; the Cardholder, the person who uses the card for making purchases; the Load

Acquirer, the entity responsible for establishing business relationships with one or more scheme
providers to process load and currency exchange transactions, and settle unlinked transactions;
the Merchant, who is responsible for the use of a POS device to accept CEP cards for payment
of goods and services; the Merchant Acquirer, the entity responsible for establishing a business
relationship with one or more scheme providers to process POS transactions, and settle POS
transactions. Moreover, the merchant acquirer is responsible for the provision and distribution of
Purchase Secure Application Modules (PSAMs) that interact with terminals for conducting
transactions at the point of sale.

5 Credit card numbers are valid until the card is stopped, enabling misuse. In contrast, electronic purses can perform cryptographic

operations which allow transaction-bound authentication.

6.1 Security Analysis of System Environment

Initially, the main actors of the system are identified together with their dependencies and their
security constraints. In particular, a CEP based transaction, although it provides many
advantages, over a cash transaction, for both the buyer and the merchant; it is much more
complex. In a normal operating scenario of the CEPS scheme, the Cardholder loads his/her card
with money. During the post-transaction settlement, the Load Acquirer sends the money to the
relevant Card Issuer. The Cardholder buys a product from a Merchant using his/her card. In the
settlement, the Merchant receives the corresponding amount of money from the Card Issuer. It is
worth mentioning that card issuers can take on the roles of load acquirers. As shown in Figure 6,
the Merchant depends on the Buyer (known as the cardholder on the CEP scheme) to pay using
the CEP Card, on the CEP Scheme Provider to provide the cash free transaction infrastructure
and on the Card Issuer to collect the money.

Figure 6: Actor Diagram of the CEP System

On the other hand, the Buyer depends on the Card Issuer to obtain a CEP enabled card, on the

Load Acquirer to load the card and on the CEP Scheme Provider for convenient cash free
shopping. As part of these dependencies, security related constraints are introduced, imposed by
the different actors and the environment [5]. For instance, the Buyer imposes to the Card Issuer
the Allow use only from authorised cardholder security constraint as part of the Obtain CEP Card
dependency. In turn, and in order to satisfy this constraint, the Card Issuer imposes two security
constraints, one to the Buyer (sign receipt of card) and one to the Merchant (Display evidence of

transaction). On the other hand, the Merchant, to satisfy the security constraint imposed by the

Card Issuer, imposes two security constraints to the Buyer (sign proof of purchase) and the CEP

Scheme Provider (Keep infrastructure secure). Apart from defining the dependencies and the
security constraints of these dependencies, Secure Tropos allows developers to analyse each actor
internally6. Figure 7 below illustrates part of the XML code generated by the SecTro tool, which
represents the model shown in Figure 6.

<plays-link name="Plays Link">
<source name="Card Issuer" type="actor" />
<destination name="Load Acquirer" type="role" />
</plays-link>

<dependency-link name="Collect Money">
<type="hard-goal" />
<source name="Merchant" type="actor"
<destination name="Card Issuer" type="actor" />
<security-constraint name="Display Evidence of Transaction" />
<security-constraint restricts="Merchant" />
</dependency-link>

Figure 7: Partial XML Representation of the Actor Diagrams for the CEP System

6.2 Security Analysis of System

During this stage, the system is introduced as another actor who has a number of dependencies
with the existing actors, and it accepts a number of responsibilities delegated to it by the other
actors. For instance, for the CEP case study, the CEP Scheme Provider delegates the
responsibility for administering the CEP transactions to the CEP System, whereas the Merchant
delegates the CEP transaction resource to the CEP System (cf. Figure 8). With respect to security,
since dependencies are delegated from the actors to the CEP System, possible security constraints
regarding those dependencies are also delegated. In our case study, the CEP Scheme Provider
actor together with the administer CEP transactions goal, delegates the Keep transactions secure
security constraint on the CEP system actor. This means, that the CEP System is responsible now
for satisfying that security constraint.

On the other hand, the introduction of the CEP system introduces new dependencies between
the system and the existing actors. For example, the CEP System depends on the Merchant to get
information regarding the transactions, such as the product information, the amount and so on.
The CEP System also depends on the Buyer to get payment details such as the Buyer’s card and
account number. Moreover, these new dependencies impose extra security constraints on the
CEP System. For instance, the Buyer wants their payment details to remain private so a security
constraint is imposed to the CEP System from the Buyer as part of the Get Payment Details
secure dependency. Similarly, the Merchant imposes a security constraint on the CEP System for
the Get Transaction Information secure dependency.

6 Due to lack of space we do not illustrate in this paper the internal analysis of the actors. The modelling activities used for this can be

found in [5].

Figure 8: Actor Diagram including the CEP System

However, at this stage, the security constraints are defined at a high level which makes it hardly
possible to truly understand the security implications of the imposed security constraints to the
CEP System. Moreover, the system itself has not been defined in such a detail that it would allow
developers to further analyse the security constraints. Therefore, the next step involves the
internal analysis of the CEP system actors following the same analysis techniques used during
the early requirements stage.

Due to lack of space, we focus our analysis for the rest of the case study to a central part of the
CEP System, the purchase transaction. This is an off-line protocol that allows cardholders to use
their electronic CEP card to pay for products. The internal analysis of the system for the
purchase transaction results in the identification of the following main goals of the system:
process transaction data, store transaction data, adjust credit balance, display transaction

details and provide proof of transaction.
From the security point of view, secure goals are identified to satisfy the security constraints

imposed initially from the other actors to the system. Moreover, the internal analysis of the
system helps to identify security constraints that were not identified during the previous analysis
or define in more details some existing security constraints. For instance, the Keep transactions

secure security constraint imposed by the CEP Scheme Provider to the CEP System can now
(that the system’s goals have been identified) further defined. For example, related to the

purchase transaction, the Keep transaction secure security constraint can be further refined to
constraints such as keep transaction private, keep transaction available and keep integrity of the

transaction. These security constraints introduce more security constraints on the system such as
obtain user’s authorisation details, authenticate all transactions and so on. When all the goals,
secure goals, entities and secure entities have been identified, the next stage of the process is the
architectural design.

6.3 Secure System Design

The architecture of the system is defined with respect to its security requirements, and potential
sub-actors are identified and the responsibility for the satisfaction of the system’s goals and
secure goals is delegated to these actors. Furthermore, the interactions of the newly identified
sub-actors and the existing actors of the system are specified. In our case study, the sub-actors of
the system, related to the purchase transaction, are the Point-Of-Sale (POS) Device, the Purchase

Security Application Module (PSAM), and the Display. Therefore, these actors are delegated
responsibility for the system’s goals (such as Adjust Credit Balance, Process Transaction Data
and Display Transaction Details) and secure goals (such as Perform Integrity Checks, Ensure

Data Availability and Perform Cryptographic Procedures). Moreover, this process allows
developers to identify security constraints that could not be identified earlier in the development
process. For instance, the Merchant and the Buyer now depend on the POS Device to deliver the
resource Proof of Transaction. However, both these actors impose, as part of the Proof

Transaction dependency, the security constraint tamper resistant to the POS Device. The Buyer
imposes that constraint because he/she does not want to be charged more than the transaction
amount, and the Merchant because he/she wants to make sure they will get the money displayed
on the transaction. On the other hand, the POS Device actor, in turn, imposes that security
constraint to the other actors involved with the resource proof of transaction, i.e. the PSAM and
the Display. Therefore, security goals are introduced to the PSAM and the Display to satisfy the
tamper resistant security constraint.

Moreover, a new actor is identified that interacts with the system, the CEP Card. In particular,
the Buyer depends on the CEP Card actor to pay for goods. However, the Buyer imposes two
security constraints to the CEP Card actor, to verify the transaction and to be tamper-resistant.
Therefore, secure goals are identified for the CEP Card actor to satisfy these two security
constraints. When all the security constraints and secure goals have been identified the next step
in the development process involves the use of UMLsec to define more precisely some of the
security related attributes of the identified actors. As indicated in the previous section the
translation of Secure Tropos models to UMLsec models follows a set of guidelines and rules. In
particular, the first step on this process is to translate the Secure Tropos analysis model to the
UMLsec class diagram. Following the translation rules described in the previous section the
UMLsec classes are identified. For example, the CEPS and PSAM actors have been translated to
corresponding classes in the UMLsec model. Moreover, capabilities, dependencies and criticality
of these actors have also been translated to the corresponding UMLsec model. A partial
representation of the translated UMLsec class diagram is shown in Figure 9.

In particular, as our analysis7 has shown, the participants involved in the off-line purchase
transaction protocol are the customer's card and the merchant's POS device. The POS device
contains a Purchase Security Application Module (PSAM) that is used to store new
and processed data. As indicated in our analysis, the PSAM is required to be tamper-resistant.
Moreover, following step 5 of our guidelines, UMLsec stereotypes are identified. For example,
the sessions keys SK on the PSAM object are required to be fresh, therefore this is indicated using
the {fresh} tag of UMLsec (see section 3 for {fresh}).

Figure 9: Partial UMLsec diagram for the CEP case study

Moreover, at this point in the case study, it is important, from the security point of view, to

understand the physical distribution of the actors of the system, in order to specify in more detail
the security attributes of the system’s communication links. Following the steps of the second set
of guidelines provided in the previous section, the deployment diagram of Figure 10 is
constructed. To satisfy the security constraint tamper resistant, identified during the previous
stage, for the PSAM, the Display and the POS device, the communication link between the PSAM
and the Display is secured.

As shown in Figure 10, this is achieved by using a smart card with an integrated display as the
PSAM. Furthermore, to satisfy the rest of the security constraints of our analysis, our design
makes sure that the PSAM cannot be replaced without being noticed.

7 It is worth stating that we focus our UMLsec analysis only on the security requirements

without detailed explanation on how UMLsec supports the simultaneous analysis of security and
functional requirement since this process has been extensively published in the literature [6][19].

Figure 10: Partial Deployment diagram for the CEP case study

6.4 Secure components definition

The next step on the development involves the detailed design of each of the system
components. During this stage each of the components identified in the previous stages is further
specified by means of Statechart Diagrams, Activity Diagrams, and Sequence Diagrams

8.
Moreover, the UMLsec stereotypes allow us to specify the security constraints linked to the
information flow and the processes carried out by the components.

UMLsec sequence diagrams are used to specify the security issues on the resulting sequences of
states and the interaction with the component’s environment. As an example, consider the
sequence diagram depicted in Figure 11 for the purchase protocol:

At the beginning of its execution in the POS device, the PSAM creates a transaction number NT
with value 0. Before each protocol run, NT is incremented. If a certain limit is exceeded, the
PSAM stops functioning, to avoid rolling over of NT to 0. Note that here we assume an
additional operation, the +, to build up expressions. The protocol between the Card C, the PSAM
P, and the Display D starts after the Card C is inserted into a POS device containing P and D and
after the amount M is communicated to the PSAM by typing it into a terminal assumed to be
secure. Each protocol run consists of the parallel execution of the card's and the PSAM's part of
the protocol. Both check the validity of the received certificate. If all the verifications succeed,
the protocol finishes, otherwise the execution of the protocol stops at the failed verification.

8 To keep the paper length to a reasonable size, we illustrate only sequence diagrams.

Figure 11: UMLsec Sequence Diagram for the Purchase Protocol

6.5 Verification

As mentioned above, it is important that an automated security analysis is performed to verify
whether the security properties hold in the proposed design. We use the UMLsec tool framework
to perform an automated security analysis of the above case-study. According to the assumptions
of the CEPS, we need to consider a threat scenario where the attacker is able to access the POS
device links, and can access other PSAMs over the Internet, but is not able to tamper with the
smart cards. That is, we need to consider the insider attacker. Given this threat scenario, the tool
needs to analyse the design for potential weaknesses for example with regards to the goal of
merchant security, taking into account the fact that the CEPS may also be used over the Internet.
The attacker could for example be an employee, which is a realistic scenario.

When invoking the tool with the UML diagrams including the threat scenario as an input, it
generates the input for the automated theorem prover. For illustration purposes, the following is a
small fragment of that input which specifies the assumptions on the initial knowledge of the
adversary and the attack conjecture, in first-order logic (although this is not shown to the user
and we do not have the space here to explain it in the technical details):

%-------- Attackers Initial Knowledge -----------

input_formula(previous_knowledge,axiom,(

 knows(conc(k_ca, conc(conc(id_a, conc(k_a, eol)), conc(inv(k_a),

conc(sign(conc(id_a, conc(k_a, eol)), inv(k_ca)), eol)))))

)).

%------------------------ Conjecture -------------------------

input_formula(attack,conjecture,(

 knows(sign(conc(id_p, conc(id_a, conc(m_nt, conc(nt, eol)))), inv(k_p)))

)).

The automated theorem prover that is called by the UMLsec tool framework then investigates
whether the attack conjecture can be derived from the logical formulae formalizing the
assumptions on the system and the adversary. The output from the automated theorem prover is

then interpreted by the UMLsec tool, and its interpretation regarding the security requirements
under analysis are output to the user. In our application, the result is that the design is secure
regarding the security requirements and the threat scenario explained above.
It is also important to mention that the employment of our approach to the presented case study,
identified a number of security requirements that were missing from the original specifications of
the CEPS system. In particular, the original CEPS specification requires the CEP card and the
PSAM to be tamper-proof but not the POS device. This leads to the following weakness with
respect to security. The POS device is not secure against a potential attacker who may try to
betray the Merchant, for example some of his/her employees, by replacing the PSAM and
manipulating the Display. The idea of the attack is that the attacker redirects the messages
between the Card C and the PSAM P to another PSAM P’, for example with the goal of buying
electronic content and let the card-holder pay for it. We assume that the attacker manages to have
the amount payable to P’ equal the amount payable to P. The attacker also sends the required
message to the display which will then reassure the merchant that he has received the required
amount.

Our goal oriented analysis identified a security constraint (and consequently a security
requirement) indicating that the communication link between the PSAM and the Display needs to
be secure. This security requirement was later on realized by the design, presented above, by
making sure that the PSAM cannot be replaced without being noticed. This guarantees that the
Display cannot anymore be manipulated, which means that if the PSAM received less money
than expected, it would be noticed immediately.

7 SOFTWARE ENGINEERING FOR SECURE SYSTEMS DEVELOPMENT: RELATED WORK

We are not the first to argue for the need to consider security as part of the development process,
and there is already a number of approaches towards this goal. In fact, there is a diversity of
efforts ranging from the definition of security models, to the development of security pattern
languages. Initial efforts to consider security in the development of software systems focused on
the definition of security models. Various models [23,24,25] have been proposed based on
mandatory access control (MAC), discretionary access control (DAC) and role base access
control (RBCA).

Initial work on eliciting security requirements based on Goal-Driven Requirements Engineering
(GDRE) produced a number of methods [26,27] and processes for reasoning about non-
functional requirements, including security. Anton et al. [28], proposed a set of general
taxonomies for security and privacy, to be used as a general knowledge repository for a (security)
goal refinement process. A number of researchers use goal-oriented approaches to analyse and
model the behaviour of potential attackers. Van Lamsweerde and Letier [11] use the concept of
security goals and anti-goals. Similarly, Crook et al. [30] introduce the notion of anti-
requirements to represent the requirements of malicious attackers. Anti-requirements are
expressed in terms of the problem domain phenomena and are satisfied when the security threats
imposed by the attacker are realised in any one instance of the problem. Lin et al. [31],
incorporate anti-requirements into abuse frames. The purpose of abuse frames is to represent
security threats and to facilitate the analysis of the conditions in the system in which a security
violation occurs.

The development of methods to analyse and reason about security based on goals and the
relationships between actors (such as users, stakeholders and attackers) and the system is also an
important area of research. Liu et al. [33] have presented work to identify security requirements
during the development of multi-agent systems. Mouratidis [5] has proposed Secure Tropos to
deal with the modelling and reasoning of security requirements and their transformation to a
design that satisfies them. Giorgini at al. [14] have introduced an enhancement of Tropos that is
based on the clear separation of roles in a dependency relation between those offering a service,
those requesting the service, and those owning the very same data.

Moreover, a number of security requirements frameworks have been proposed. Mead [16]
proposed the Security Quality Requirements (SQUARE) Method for documenting security
requirements whereas Haley et al [29], provide an approach for security requirements elicitation,
specification and analysis.

Works have also been presented that extended use cases with respect to security analysis. In
particular, McDermott and Fox [12] adapt use cases to capture and analyse security requirements,
and they call the adaption an abuse case model. Similarly, Sindre and Opdahl [13] define the
concept of misuse case, the inverse of use case, which describes a function that the system should
not allow. Alexander [32] adds Threatens, Mitigates, Aggravates links to the use case diagram. In
addition, a large number of efforts in the area of secure design engineering is focused on
extending existing methods and languages for software systems development. Hermann and
Pernul [34] extend Entity-Relationship Diagrams and Data Flow Diagrams to include security
related concepts and methods. Whitmore [35] presents a secure systems design method based on
extensions to the Common Criteria. Viega and McGraw [36] proposed ten (10) principles for
building secure software.

Another direction of work is based on the extension of the Unified Modelling Language
(UML). Jürjens proposes UMLsec [6][19], an extension of the Unified Modelling Language
(UML), to include the modelling of security related features, such as confidentiality and access
control. Lodderstedt et al. [37] extend UML to model role-based access control. In their work,
they present a security modelling language called SecureUML. Epstein and Sandhu [38]
introduce a UML-based notion for RBAC. Koch et al. [39] describe an approach to the
specification of Access Control policies in UML by means of UML class and object diagrams
that can be modelled with existing UML tools. The methodology, along with the graph-based
formal semantics for the UML access control specification, allows to reason about the coherence
of the access control specification. [43] presents a model-based approach for the specification of
user rights in the context of an object oriented use case driven development process.

A number of researchers have focused their efforts on applying the pattern approach to the
security problem. For a current overview see [40]. A set of agent security patterns has also been
defined by Mouratidis et al. [41]. On the other hand, Schneier [42] describes attack trees as a
useful way to identify and organise different attacks in an information system.

Although important and useful the above approaches illustrate a number of important
limitations. For instance, the Non Functional Requirement frameworks consider security as a
vague goal to be satisfied whereas a precise description and enumeration of specific security
properties is still missing. An important limitation of the use-case related approaches and some
of the security requirements efforts is that they do not support the modelling and analysis of
security requirements at a social level but they treat security in system-oriented terms. In other
words, they lack models that focus on high-level security requirements, meaning models that do

not force the designer to immediately go down to security requirements. On the other hand, other
approaches to security requirements, such as the i* based approaches and the security
requirement framework approaches, only guide the way security can be handled within a certain
stage of the software development process and they fail to provide a structure process to assist
software engineers throughout the development.

Moreover, the secure systems design methods, such as the UML-based and the security pattern
approaches, are mainly solutions focused on the later stages of the software development process.
Such approaches are useful for recording the results of decisions, but do not offer support for
arriving at those decisions [9]. Moreover, they only focus on the technical dimension of security
and neglect the social aspects of it.

8 CONCLUSIONS

A large number of Goal-Oriented Requirements Engineering approaches have been proposed in
the literature, which focus on eliciting security requirements. However, most of these approaches
provide little help as to how security requirements, once elicited, can be realized in the design
stage and how the developed design can be verified against the security requirements of the
system. To overcome these limitations, in this paper, we have presented the integration of two
prominent approaches, a Goal-Oriented Security Requirements Engineering approach called
Secure Tropos and a Model-Based Security Engineering approach called UMLsec. For security-
critical systems, the proposed approach allows one to elicit and reason about security
requirements from early on in the development process, within the development context, and in a
seamless way through the development cycle. Then, one can check that the system fulfills the
relevant security requirements on the design level by analyzing the model. Moreover, one can
also use our analysis techniques and tools within a traditional software engineering context, or
where one has to incorporate legacy systems that were not developed in a model-based way.
Here, one starts out with the source code. Our tools extract models from the source code, which
can then again be analyzed against the security requirements. Moreover, the integration of the
two approaches allows software engineers to incorporate the configuration data (such as user
permissions) in the analysis, which is very important for security but often neglected.

Although the results from the integration of the two approaches are promising, there are a
number of areas that need further work. Currently, the translation from the secure Tropos models
to the UMLsec models is not entirely automated. It is important however, that fully automated
support is provided to assist developers and save time especially in large-scale projects.
Moreover, although the case study used for the evaluation of the approach is appropriate for this
type of evaluation, it is important that we employ the methodology to larger scale projects to
understand its scalability limitations. It is also important to allow developers, without any
previous experience in the methodology, to use the methodology and report back. This will allow
us to understand any limitations of our work from an external point of view.

 References

[1] H. Mouratidis, P. Giorgini, Integrating Security and Software Engineering: Advances and Future Visions, Idea Group
Publishing, 2006.

[2] J. Saltzer and M. Schroeder. The protection of information in computer systems. Proceedings of the IEEE, 63(9):1278–
1308, September 1975.

[3] R. Anderson. Security Engineering: A Guide to Building Dependable Distributed Systems. John Wiley & Sons, New York,
2001.

[4] H. Mouratidis, J. Jürjens, J. Fox, Towards a Comprehensive Framework for Secure Systems Development, CAiSE 2006,
Lecture Notes in Computer Science 4001, pp. 48-62, Springer-Verlag, 2006

[5] H. Mouratidis. A Security Oriented Approach in the Development of Multiagent Systems: Applied to the Management of
the Health and Social Care Needs of Older People in England. PhD thesis, University of Sheffield, U.K., 2004

[6] J. Jürjens, Secure Systems Development with UML, Springer-Verlag, 2004
[7] J. Jürjens, P. Shabalin, Tools for Secure Systems Development with UML. International Journal on Software Tools for

Technology Transfer, Springer, Volume 9, Numbers 5-6 / October, 2007, pp. 527-544.
[8] H. Mouratidis, P. Giorgini, Integrating Security and Software Engineering: An Introduction, in Integrating Security and

Software Engineering: Advances and Future Actions, pp. 1-14, Idea Publishing Group, 2006.
[9] E. Yu, L. Liu, J. Mylopoulos, A social Ontology for Integrating Security and Software Engineering, in Integrating Security

and Software Engineering: Advances and Future Actions, pp. 70-105, Idea Group Publishing, 2006
[10] P. Devanbu, S. Stubblebine. Software Engineering for Security: a Roadmap. In Proceedings of ICSE 2000 (“the conference

of The future of Software engineering”), 2000.
[11] A. van Lamsweerde, E. Letier, Handling Obstacles in Goal-Oriented Requirements Engineering, IEEE Transactions on Software

Engineering, Special Issue on Exception Handling, Vol 26, n° 10, October 2000, pp. 978-1005
[12] J. McDermott, C. Fox. Using Abuse Care Models for Security Requirements Analysis. In Proceedings of the 15th Annual

Computer Security Applications Conference, December 1999.
[13] G. Sindre, A. L. Opdahl, Eliciting Security Requirements with Misuse Cases, Requirements Engineering, 10(1):34-44,

January 2005
[14] P. Giorgini, F. Massacci, J. Mylopoulos and N. Zannone. Modeling Security Requirements Through Ownership, Permission

and Delegation. In Proceedings of the 13th IEEE International Requirements Engineering Conference (RE’05), IEEE
Computer Society Press, 29 August - 2 September 2005

[15] W. Stallings, Cryptography and Network Security: Principles and Practice, Prentice Hall, 2nd ed. 1999.
[16] N.R. Mead, Identifying Security Requirements Using the Security Quality Requirements Engineering (SQUARE) Method,

in Integrating Security and Software Engineering, pp. 44-69, Idea Publishing Group, 2006.
[17] H. Mouratidis, P. Giorgini, and G. Manson. When Security Meets Software Engineering: A Case of Modeling Secure

Information Systems. In Information Systems, Elsevier, Vol. 30, Issue 8, pp. 609-629, Elsevier,2005
[18] P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, A Perini. TROPOS: An Agent Oriented Software Development

Methodology. In Journal of Autonomous Agents and Multi-Agent Systems, Kluwer Academic Publishers Volume 8, Issue
3, Pages 203-236, 2004

[19] Jan Jürjens: Sound methods and effective tools for model-based security engineering with UML. ICSE 2005, ACM, pp.
322-331, 2005

[20] Jan Jürjens: Security Analysis of Crypto-based Java Programs using Automated Theorem Provers. ASE 2006, IEEE
Computer Security, pp. 167-176, 2006

[21] W. Muhanna, W., An Object-Oriented Framework for Model Management and DSS Development, Decision Support

Systems, 9:2, pp. 217-229, 1993
[22] CEPSCO, Common Electronic Purse Specifications, Business Requirements ver. 7, Functional Requirements ver. 6.3,

Technical Specification ver. 2.2. Available from http://www.cepsco.com, 2000.
[23] E. D. Bell, L. J. LaPadula,, Secure Computer Systems: Mathematical Foundations, MITRE Corporation, 1973
[24] D. F. C. Brewer, M. J. Nash, The Chinese Wall Security Policy, IEEE SYMPOSIUM ON RESEARCH IN SECURITY

AND PRIVACY, May, Oakland, California, pp 206-214, 1989
[25] K. J. Biba, Integrity Considerations for Secure Computer Systems, MTR-3153, The MITRE Corporation, 1977.
[26] L. Chung, B. Nixon, “Dealing with Non-Functional Requirements: Three Experimental Studies of a Process-Oriented

Approach”, Proceedings of the 17th International Conference on Software Engineering, Seattle- USA, 1995
[27] E. Yu, L. Cysneiros, Designing for Privacy and Other Competing Requirements, 2nd Symposium on Requirements

Engineering for Information Security (SREIS’ 02), Raleigh, North Carolina, 15-16 November, 2002.
[28] A. I. Antón, J. B. Earp, A Requirements Taxonomy to Reduce Website Privacy Vulnerabilities, Requirements Engineering

Journal, Springer Verlag, 9(3), pp. 169-185, August 2004.
[29] C. B. Haley, R. Laney, J. D. Moffett, B. Nuseibeh, Arguing Satisfaction of Security Requirements, in Integrating Security

and Software Engineering: Advances and Future Visions, pp. 16-43, Idea Publishing Group, 2006
[30] R. Crook, D. Ince, B. Nuseibeh, Modelling Access Policies Using Roles in Requirements Engineering , Information and Software

Technology, 45(14):979-991, Elsevier, November 2003
[31] L. Lin, B. Nuseibeh, D. Ince, M. Jackson, and J. Moffett, Introducing Abuse Frames for Analysing Security Requirements , Poster

Paper, Proceedings of 11th IEEE International Requirements Engineering Conference (RE'03), 371-372, Monterey, USA, 8-
12 September 2003.

[32] I. Alexander, Misuse Cases: Use Cases with Hostile Intent , IEEE Software, Vol 20, No 1, pp. 58-66, 2003
[33] L. Liu, E. Yu, J. Mylopoulos, Analyzing Security Requirements as Relationships Among Strategic Actors, in the

Proceedings of the 2nd Symposium on Requirements Engineering for Information Security (SREIS’02), Raleigh, North
Carolina, October 2002.

[34] G. Hermann, G. Pernul. Viewing business-process security from different perspectives. International Journal of electronic
Commence 3:89-103, 1999

[35] J. J. Whitmore, A method for designing secure solutions, IBM Systems Journal, 40(3), pp. 747-768, 2001
[36] J. Viega and G. McGraw. Building a Secure Software. Addison-Wesley, Reading, MA, 2002.
[37] T. Lodderstedt, D. A. Basin, J. Doser, SecureUML: A UML-Based Modeling Language for Model-Driven Security,

Proceedings of the 5th International Conference on the unified Modelling Language, Lecture Notes in Computer Science,
2460, pp. 426-441, 2002.

[38] P. Epstein, R. Sandhu, Towards a UML based approach to role engineering, Proceedings of the 4th ACM workshop on role-
based access control, Virginia, USA, pp. 135-143, 1999.

[39] M. Koch, F. Parisi-Presicce, Access Control Policy Specification in UML, Proceedings of the Critical Systems Development
with UML, Satellite Workshop of UML, pp. 63-78, 2002

[40] M. Schumacher, E. Fernandez-Buglioni, D. Hybertson, F. Buschmann, P. Sommerlad, Security Patterns: Integrating
Security and Systems Engineering, Willey, 2005

[41] H. Mouratidis, M. Weiss, P. Giorgini, Modelling Secure Systems Using an Agent-Oriented Approach and Security Patterns,
International Journal on Software Engineering and Knowledge Engineering, 16(3), 471-498, 2006

[42] B. Schneier. Secrets & Lies: Digital Security in a Networked World, John Wiley & Sons, 2000
[43] Ruth Breu, Gerhard Popp, Muhammad Alam: Model based development of access policies. STTT 9(5-6): 457-470 (2007)

