
Secure Software Systems Engineering: The

Secure Tropos Approach

Haralambos Mouratidis
School of Computing, IT and Engineering, University of East London, U.K.

Email: haris@uel.ac.uk

Abstract— This paper discusses the secure Tropos

methodology. This is the first paper in the literature that

discusses all the aspects of the methodology as it has evolved

over the last 10 years. In particular, the paper discusses the

Secure Tropos modeling language, the security aware

process of the methodology, and it also introduces the

secTro, an automated tool to support the methodology.

Index Terms—Secure Tropos, Secure Software Systems

Engineering, Security Requirements, Secure Design

I. INTRODUCTION

It is widely recognized that security is an important

aspect of any software system that stores and/or handles

sensitive and confidential information. It is therefore

expected that software system developers are able to

develop and deploy very secure systems. However, this is

not always the case. In fact, current surveys have

indicated that we are far from developing acceptable

secure software systems. One of the main reasons for this

situation is that many software system developers do not

always have a strong background in computer security

and lack expertise in secure software systems

development. Nevertheless, in practice, they are asked to

develop software systems that require security features.

Without appropriate modelling languages and

methodologies to guide them during the development

process, security is usually considered as an afterthought,

meaning that security enforcement mechanisms have to

be fitted into a pre-existing design, leading to serious

design challenges and conflicts that usually translate into

the emergence of information systems afflicted with

security vulnerabilities. These vulnerabilities are often the

major cause of system security disasters, and adjustments

that are usually very expensive.

Research has shown that such vulnerabilities can be

reduced and in many cases eliminated if the overall

system development considers security aspects in a

coherent way. Considering security throughout the

development stages of a software system helps to limit

the cases of security related conflicts by avoiding them

and/or isolating them very early in the development

process, saving therefore considerable time and money.

The security analysis and implementation process should

be similar to what happens when discussing functional

software system requirements; where one does not get

immediately trapped into discussions about programming

languages and /or coding techniques.

It is therefore essential for security to be considered

from the early stages and throughout the software

development life-cycle. Nevertheless, to follow such

paradigm, sound software engineering methodologies and

practices need to be developed that support the

simultaneous analysis of both security and software

requirements; their transformation to an appropriate

design and the implementation of that design.

This paper presents an effort to develop a methodology

that incorporates security concerns in a structured and

coherent way at all the stages of software systems design

and development. The paper is structured as follows.

Section II discusses and compares related work, while

Section III presents the Secure Tropos methodology.

Section IV discusses areas of future work and it

concludes the paper.

II. RELATED WORK

The last few years a considerable number of works

aiming to introduce security considerations during the

various stages of the software systems development

process have been presented in the literature. Anton et al.

[1] propose a set of general taxonomies for security and

privacy, to be used as a general knowledge repository for

a (security) goal refinement process. Schumacher and

Roedig [2] apply the pattern approach to the security

problem by proposing a set of patterns, called security

patterns, which contribute to the overall process of

security engineering. Although useful, these approaches

lack the definition of a structured process for considering

security. A well defined and structured process is of

paramount importance when considering security during

the development stages of software systems.

On the other hand, a number of researchers model

security by taking into account the behaviour of potential

attackers. Van Lamsweerde and Letier [3] use the concept

of security goals and anti-goals. Anti goals represent

malicious obstacles set up by attackers to threaten the

security goals of a system. Crook et al. [4], introduce the

notion of anti-requirements to represent the requirements

of malicious attackers. Anti-requirements are expressed

in terms of the problem domain phenomena and are

satisfied when the security threats imposed by the

attacker are realised in any one instance of the problem.

Similarly, Lin et al. [5], incorporate anti-requirements

into abuse frames. The purpose of abuse frames is to

represent security threats and to facilitate the analysis of

the conditions in the system in which a security violation

occurs. An important limitation of all these approaches is

that security is considered as a vague goal to be satisfied

whereas a precise description and enumeration of specific

security properties is still missing.

Differently, another “school of thinking” indicates the

development of methods to analyse and reason about

security based on the relationships between actors (such

as users, stakeholders and attackers) and the system. Liu

et al. [6] analyse security requirements as relationships

amongst strategic actors by proposing different kinds of

analysis techniques to model potential threats and

security measures. Although a relationship based analysis

is suitable for reasoning about security, an important

limitation of existing approaches is that each of them only

guides the way security can be handled within a certain

stage of the software development process.

Another direction of work is based on the extension of

use cases and the Unified Modelling Language (UML). In

particular, McDermott and Fox [7] adapt use cases to

capture and analyse security requirements, and they call

the adaption an abuse case model. An abuse case is

defined as a specification of a type of complete

interaction between a system and one or more actors,

where the results of the interaction are harmful to the

system, one of the actors, or one of the stakeholders of

the system. Similarly, Sindre and Opdahl [8] define the

concept of misuse case, the inverse of use case, which

describes a function that the system should not allow.

They also define the concept of mis-actor as someone

who intentionally or accidentally initiates a misuse case

and whom the system should not support in doing so.

Jurgens proposes UMLsec [9], an extension of the

Unified Modelling Language (UML), to include

modelling of security related features, such as

confidentiality and access control. Lodderstedt et al. [10]

also extend UML to model security. In their work, they

present a security modelling language called SecureUML.

They describe how UML can be used to specify

information related to access control in the overall design

of an application and how this information can be used to

automatically generate complete access control

infrastructures. An important limitation of all the use-case

and/or UML related approaches is that they do not

support the modelling and analysis of security

requirements at a social level but they treat security in

system-oriented terms. In other words, they lack models

that focus on high-level security requirements, meaning

models that do not force the designer to immediately go

down to security requirements.

III. SECURE TROPOS

A. History and Motivation

The creation and development of the Secure Tropos

methodology was initiated in 2000 as a PhD project [11].

Since then, the methodology has undergone a number of

developments. These include the development of a

modelling language, the development of a security-aware

process, and the development of an automated tool to

support it. The main motivation behind the creation of

Secure Tropos was the lack of a methodology to support

the capturing, analysis and reasoning of security

requirements from the early stages of the development

process. One of the first main dilemmas faced was

whether a new methodology should be developed from

scratch or an existing methodology should be extended.

Following a detailed analysis of that issue [11] it was

decided to extend the Tropos methodology [12].

A number of important limitations of the Tropos

methodology were identified, with respect to security

modelling and analysis. Although a detailed discussion of

these limitations is outside the scope of this paper and can

be found in the literature [11], we outline them below to

enable readers of this paper to understand the context of

the extensions provided by Secure Tropos:

• The Tropos methodology uses the concept of

soft-goal to model security requirements,

similarly to the way that it handles any non-

functional requirements. The concept of soft-

goal is “used to model quality attributes for

which there are no a priori, clear criteria for

satisfaction, but are judged by actors as being

sufficiently met” [13]. However, as it becomes

evident in an increasing number of research

works, security requirements are better defined

in terms of constraints on a system’s functions

[14] [15]. Differently than quality properties,

which represent characteristics of the system

that its stakeholders care about, security

requirements represent rules or conditions

imposed to the system that are (theoretically)

non negotiable. This is problematic because the

concept of a soft-goal captures qualities but it

fails to capture constraints.

• The usage of soft-goals to model general non-

functional requirements, although it allows

developers to define together security and other

functional and non-functional requirements, it

does not help to clearly identify security

requirements. Such a distinction is made even

harder by the lack of definition of the Tropos

concepts, such as goals, tasks, and dependencies,

with security in mind. This is problematic since

it does not allow a clear understanding of the

security requirements of the system and how

these might conflict with functional and non-

functional requirements.

• There are limitations regarding the process of

modelling, analysing and reasoning about

security requirements. In fact the Tropos

methodology process for dealing with security

requirements is quite ad hoc. Developers are

allowed to capture security requirements with

the aid of soft-goals, and then propagate them

throughout the development stages. However

this process is neither clear nor well guided. It is

unclear how developers can systematically

capture security requirements (expressed as soft-

goals) and how they can develop a design that

successfully meets those requirements in a

systematic way.

• The methodology does not provide any process

to allow developers to reason about the

consequences of the application of a particular

design to their system and also fails to provide a

process that allows developers to evaluate the

developed security solution.

• The methodology fails to integrate security

modelling during the early requirements analysis

stage. However, all the actors play an important

role with respect to the security of the system

and all of them should be analysed with security

in mind.

Therefore, the Secure Tropos methodology was

developed to fulfil these limitations. Secure Tropos

initially extended the Tropos methodology into two

directions: concepts/language and process. Later a

number of new models were also added to support the

further analysis and design of security requirements. The

rest of this section discusses the modeling language and

the security aware process of Secure Tropos and it

introduces secTro, a tool that supports the methodology.

B. Secure Tropos Modelling Language

Secure Tropos, as an extension of the Tropos

methodology, uses a number of concepts found in

Tropos:

• An actor [13] represents an entity that has

intentionality and strategic goals within the

multiagent system or within its organisational

setting. An actor can be a (social) agent, a

position, or a role.

• A (hard) goal [13] represents a condition in the

world that an actor would like to achieve. In

other words, goals represent actor’s strategic

interests. In Tropos, the concept of a hard-goal

(simply goal hereafter) is differentiated from the

concept of soft-goal. A soft-goal is used to

capture non-functional requirements of the

system, and unlike a (hard) goal, it does not have

clear criteria for deciding whether it is satisfied

or not and therefore it is subject to interpretation

[13]. For instance, an example of a soft-goal is

“the system should be scalable”. According to

Chung et al. [16], the difference between a goal

and a soft-goal is underlined by saying that goals

are satisfied whereas soft-goals are satisficed .

• A plan represents, at an abstract level, a way of

doing something [12]. The fulfilment of a task

can be a means for satisfying a goal, or for

contributing towards the satisficing of a soft-

goal. In Tropos different (alternative) tasks, that

actors might employ to achieve their goals, are

modelled. Therefore developers can reason

about the different ways that actors can achieve

their goals and decide for the best possible way.

• A resource [12] presents a physical or

informational entity that one of the actors

requires. The main concern when dealing with

resources is whether the resource is available

and who is responsible for its delivery.

• A dependency [13] between two actors

represents that one actor depends on the other to

attain some goal, execute a task, or deliver a

resource. The depending actor is called the

depender and the actor who is depended upon is

called the dependee. The type of the dependency

describes the nature of an agreement (called

dependum) between dependee and depender.

Goal dependencies represent delegation of

responsibility for fulfilling a goal. Soft-goal

dependencies are similar to goal dependencies,

but their fulfilment cannot be defined precisely

whereas task dependencies are used in situations

where the dependee is required to perform a

given activity. Resource dependencies require

the dependee to provide a resource to the

depender. By depending on the dependee for the

dependum, the depender is able to achieve goals

that it is otherwise unable to achieve on their

own, or not as easily or not as well [13]. On the

other hand, the depender becomes vulnerable,

since if the dependee fails to deliver the

dependum, the depender is affected in their aim

to achieve their goals.

The Secure Tropos modeling language enhances the

above concepts by defining extensions with security in

mind and by adding a number of new concepts. In

particular, the following concepts are introduced by

Secure Tropos:

• Security Constraint. The main concept

introduced by Secure Tropos is the concept of

Security Constraint. Security Constraints are

used, in the Secure Tropos methodology, to

represent security requirements. A Security

Constraint is a specialisation of the concept of

Constraint. In the context of software

engineering, a constraint is usually defined as a

restriction that can influence the analysis and

design of a software system under development

by restricting some alternative design solutions,

by conflicting with some of the requirements of

the system, or by refining some of the system’s

objectives. In other words, constraints can

represent a set of restrictions that do not permit

specific actions to be taken or prevent certain

objectives from being achieved. Often

constraints are integrated in the specification of

existing textual descriptions. However, this

approach can often lead to misunderstandings

and an unclear definition of a constraint and its

role in the development process. Consequently,

this results in errors in the very early

development stages that propagate to the later

stages of the development process causing many

problems when discovered; if they are

discovered. Therefore, in the Secure Tropos

modelling language we define security

constraints, as a separate concept. To this end,

the concept of security constraint has been

defined within the context of Secure Tropos as:

A security condition imposed to an actor that

restricts achievement of an actor’s goals,

execution of plans or availability of resources.

Security constraints are outside the control of an

actor. This means that, differently than goals,

security constraints are not conditions that an

actor wishes to introduce but it is forced to

introduce.

• Secure Dependency. A Secure Dependency

introduces one or more Security Constraint(s)

that must be fulfilled for the dependency to be

valid. In the Secure Tropos methodology we

distinguish among three types of secure

dependencies: dependee secure dependency,

depender secure dependency, and double secure

dependency. In terms of the modeling language,

different Secure Dependency types are defined

using Depender and Dependee attributes of

Security Constraints.

• Secure Goal. A secure goal represents a strategic

interest of an Actor with respect to security. In

the Secure Tropos context, strategic interest

means a course of action that an actor needs to

follow to satisfy one or more security

constraints. The satisfaction of one or more

security constraints by a secure goal is defined

through a Satisfies relationship. It is worth

stating that a secure goal does not define

operational details of how a security constraint

can be satisfied, since operational alternatives

can be considered.

• Secure Plan. A secure plan represents a

particular way for satisfying a secure goal. In the

context of Secure Tropos, this means a specific

and defined action that an actor executes to

operationalise a secure goal.

• Secure resource. A secure resource is defined as

an entity that is security critical for the system

under development.

• Attack. In secure Tropos an attack is an action

that might cause a potential violation of security

in the system (this definition has been adopted

by Matt Bishop’s definition of a computer

attack).

• Attacker. An attacker represents a malicious

actor that has an interest to attack the system.

As defined in Tropos, an actor has intentionality

and strategic goals within the system. In the case

of an attacker, the intentionality and strategic

goals are related to breaking the security of the

system.

• Secure Capability. A secure capability

represents the ability of an actor to achieve a

secure goal, carry out a secure plan and/or

deliver a secure resource.

• Threat. Threats represent circumstances that

have the potential to cause loss; or problems that

can put in danger the security features of the

system.

• Security features represented security related

features that the system-to-be must have.

Examples of security features are privacy,

availability, and integrity.

• Protection objectives represent a set of

principles or rules that contribute towards the

achievement of the security features. These

principles identify possible solutions to the

security problems and usually they can be found

in the form of the security policy of the

organisation. Examples of protection objectives

are authorisation, cryptography and

accountability.

• Security mechanisms represent standard security

methods for helping towards the satisfaction of

the protection objectives. Some of these methods

are able to prevent security attacks, whereas

others are able only to detect security breaches.

It must be noted that furthered analysis of some

security mechanisms is required to allow

developers to identify possible security sub-

mechanisms. A security sub-mechanism

represents a specific way of achieving a security

mechanism. For instance, authentication denotes

a security mechanism for the fulfilment of a

protection objective such as authorisation.

However, authentication can be achieved by

sub-mechanisms such as passwords, digital

signatures and biometrics.

D. Modelling Diagrams

The above concepts support the construction of five

different diagrams: Security Enhanced Actor Diagram

(SEAD), Security Enhanced Goal Diagram (SEGD),

Architectural Style Selection Diagram (ASSD), Security

Attack Scenarios Diagram (SASD), Security Reference

Diagram (SRD). The rest of this section describes these

diagrams.

1) Security Enhanced Actor Diagram

A Security Enhanced Actor Diagram (SEAD)

identifies and analyses actors of the environment, actors

of the system and dependency relationships between

them. The diagram enables software system developers to

understand the security concerns of each actor and model

these concerns with appropriate security constraints.

Figure 1 illustrates a simple Security Enhanced Actor

Diagram.

Fig.1 : Security Enhanced Actor Diagram

2) Security Enhanced Goal Diagram

SEGD allows a deeper understanding of how the actors

reason about goals to be fulfilled, security constraints to

be operationalised, plans to be performed and availability

of resources. It completes the actor model with the

reasoning that each actor makes about its internal (secure)

goals, security constraints, (secure) plans and (secure)

resources.

In the goal model, elements are linked by the means-

ends, decomposition and contribution relationships. The

means-ends relationship permits to link a means

(plan/goal/resource) with an end (goal). The

decomposition relationship permits to define a structure

for a plan. A contribution relationship describes a positive

or negative impact that one element has on another.

Restricts relationships are used to model the connection

between security constraints and the entities restricted.

Figure 2 illustrates a simple Security Enhanced Goal

Diagram (SEGD).

Fig.2: Security Enhanced Goal Diagram

3) Architectural Style Selection Diagram (ASSD)

This diagram is used to model architectural styles,

security properties and security requirements of the

system under development and the different contributions

that each architectural style has on the security properties

and the security requirements of the system [17]. In this

diagram, a hexagon represents a security solution, while

an emboldened cloud represents a non-functional

requirement of the system. Links represent contributions

and weights represent the degree of satisfiability [18] of

the architectural style (for example Client/Server –

Mobile Agents) to the various nodes. The diagram is used

to perform an analysis based on an independent

probabilistic model, which uses the measure of

satisfiability proposed by Giorgini et al. [18].

Satisfiability represents the probability that a non-

functional requirement will be satisfied. Therefore, the

analysis involves the identification of specific non-

functional requirements and the evaluation of different

architectural styles against these requirements. Figure 3

illustrates a simple Architectural Style Selection

Diagram.

Fig.3: Architectural Style Selection Diagram

4) Security Attack Scenarios Diagram

This diagram models possible attackers, the resources

of the system that are attacked and the actors of the

system related to the attack (Figure 16). In particular, an

attacker is modelled as an actor and its intentions are

modelled as goals and tasks. Attacks are depicted as

dash-lined links, called attack links, which contain the

“attacks” tag, starting from one of the attackers’ goals

and ending on the attacked resource. Moreover, the

system’s actor secure capabilities are modelled and links

are employed to indicate which of these capabilities help

towards the prevention of the attackers’ goals. Figure 4

illustrates a simple SASD.

Fig.4: Security Attack Scenarios Diagram

5) Security Reference Diagram

The security reference diagram represents relationships

between security features, threats, protection objectives,

and security mechanisms. A security reference diagram is

constructed after analysing the security requirements of

the system-to-be and its environment. The main purpose

of the security reference diagram is to allow flexibility

during the development stages of a software system and

also to save time and effort. Many systems under

development are similar to systems already in existence.

Therefore the security reference diagram can be used as a

reference point that can be modified or extended

according to specific needs of particular systems.

The security reference diagram is a graph that consists

of a set of labelled nodes and a set of labelled directed

edges, each of which connects a pair of nodes (Figure 5).

Formally, this is represented as a special case of a

labelled directed diagram. To control the non-

deterministic derivation process during the construction

of the security reference diagram, priority rules have been

defined [11] and should be used by the developer. Figure

5 illustrates a security reference diagram.

Fig.5: Security Reference Diagram

The analysis done during the construction of the

security reference diagram can be used later in the

development process to identify security constraints that

must be introduced to the system-to-be (by taking into

account the security needs of the system) and also by

identifying possible means (security mechanisms) that

contribute towards the satisfaction of the security

constraints that are introduced to the system.

It is also worth mentioning, that the notation of the

security reference diagram can be adapted to reflect the

notation of the methodology that the diagram is

integrated. This is very useful since it allows developers

to work with well-known concepts and allows them to

use the same concepts throughout the development

process.

E. Security aware process

There are three main aims when considering security

issues throughout the development stages of a software

system: (i) identify the security requirements of the

system; (ii) develop a design that meets the specified

security requirements; and (iii) validate the developed

system with respect to security. With the above in mind,

the security-oriented process in Secure Tropos is one of

identifying the security requirements of the software

system, transforming these requirements to a design that

satisfies them and validating the developed system with

respect to security.

To achieve the above, the secure Tropos process

consists of four main stages: Security Analysis of the

System Environment; Security Analysis of the System;

Secure System Design; Secure Components Definition. In

each of these stages, a number of activities have been

identified and each of the activities results in a number of

different analysis and/or design models as shown in

Figure 6. Although for reasons of simplicity we describe

the stages in a sequential order, it is worth pointing out

that we expect developers to follow an iterative approach.

5.1.1 Security Analysis of System Environment

The main aim of this stage is to understand the social

dimension of security by considering the social issues, of

the system environment, which might affect its security.

In doing so, the environment in which the system will be

operational is analysed with respect to security. In

particular, in line with the Secure Tropos methodology,

the stakeholders of the system along with their strategic

goals are analysed in terms of actors (Stakeholders

Analysis Activity) who have strategic goals and

dependencies for achieving some of those goals. Goal

analysis techniques [12] such as means-end analysis and

decomposition are widely used during this activity. Then

the security needs of those actors are analysed (Security

Constraints Analysis Activity) in terms of security-related

constraints that are imposed to those actors. Moreover,

security goals and entities are identified (Secure Entities

Analysis Activity), for each of the participating actors, to

satisfy the imposed security constraints. In particular,

developers examine the security constraints imposed on

individual actors, and documented in the security-

enhanced goal diagram, and identify any related secure

goals that assist in satisfying those security constraints.

The process of identifying secure goals is similar to the

process used in goal-oriented approaches and involves

techniques such as means-end analysis [12]. However,

such techniques are combined with a number of security-

related techniques such as attack trees [19] and security

reference diagrams [11]. The Secure Goal Introduction

analysis enables developers to refine the goals of an actor

to allow the satisfaction of a security constraint. In some

cases it is necessary to decompose security constraints

into more detailed security constraints. In doing so, the

AND decomposition technique is employed. The

decomposed constraint is called the “root” constraint, and

its satisfaction is implied if and only if all the security

sub-constraints are satisfied. Identified secure goals are

documented in a security-enhanced goal diagram. The

above analysis activities are modelled in terms of

different diagrammatic notations as shown in Figure 6.

With respect to security, a security-enhanced actor

diagram is used to analyse the actors of the environment

of the system along with their secure dependencies and

security constraints. A security-enhanced goal diagram

allows a deeper understanding of how the actors,

modelled in the security-enhanced actor diagram, reason

about goals to be fulfilled, security constraints to be

operationalised, plans to be performed and availability of

resources. The security-enhanced goal diagram

complements the security-enhanced actor diagram with

the reasoning that each actor requires about its internal

security goals, secure plans and secure resources. In other

words, the security-enhanced goal diagram presents a

more focus analysis on each one of the actors identified

during the security-enhanced actor diagram.

Fig.6: Secure Tropos security aware process

5.1.2 Security Analysis of System

The main aim of this stage is to understand the

technical dimension of security. For this stage, activities

similar to the previous stage are employed but now the

focus is on the system rather than its environment. In

particular, the security requirements of the system are

identified taking into account the security needs of the

stakeholders as well as their security constraints. The

output of this stage is the definition of the system’s

security requirements together with a set of security

constraints, along with the system’s security goals and

entities that allow the satisfaction of the security

requirements of the system.

5.1.3 Secure System Design

The main aim of this stage is to define the architecture

of the system with respect to its security requirements. To

achieve this, a combination of Secure Tropos and

UMLsec models are employed. Actor, Goal and secure

architectural style models of Secure Tropos together with

a set of security patterns are used to determine the general

architecture and the components of the system, whereas

UMLsec Class and Deployment diagrams are used to

model the security properties of the data structures and

architecture. It is at this stage of the development process

that the translation from the Secure Tropos to UMLsec

models takes place according to the guidelines and steps

defined below. It is also worth mentioning that the

functionality of the SecTro tool, which supports the

development of the Secure Tropos models, to

automatically derive XML code from the corresponding

Secure Tropos models together with the functionality of

the UMLSec tool to accept XML input, enables us to

speed up the process of translating the Secure Tropos

models to UMLSec models.

5.1.4 Secure Components Definition

During this stage UMLsec is used to specify in detail

the components of the system identified in the previous

stage. To achieve this, UMLsec activity diagrams are

used to define explicitly the security of the components

and UMLsec sequence diagrams are used to model the

secure interactions of the system’s components (for

example, to determine if cryptographic session keys

exchanged in a key exchange protocol remain

confidential in view of possible adversaries). UMLsec

statechart diagrams are used to specify the security issues

on the resulting sequences of states and the interaction

with the component’s environment. Moreover, the

constraints associated with UMLsec stereotypes are

checked mechanically, based on an XMI representation

of the UML models and using sophisticated analysis

engines such as model-checkers and automated theorem

provers. The results of the analysis are given back to the

developer, together with a modified model, where the

weaknesses that were found are highlighted.

E. Automated Tool Support: SecTro

Initial limited computer-aided support for the Secure

Tropos methodology was provided by the OME tool

(http://www.cs.toronto.edu/km/ome/). One of the main

problems of that support was the lack of notation to

support the Secure Tropos concepts such as security

constraints and the various new diagrams required by

Secure Tropos. Therefore, an ad-hoc development was

supported were Tropos models were developed and later

they were enhanced using other software tools.

In order to overcome such limited support, secTro was

developed to supports Secure Tropos. secTro is a

platform independent analysis and modelling tool that

supports the security related concepts and notations

provided by the Secure Tropos methodology. The tool

has been developed following an iterative approach and it

is based on JAVA. The tool allows developers to model

the system under development and its environment and it

supports the capture of properties of the various models,

such as security enhanced actor diagram and security

enhanced goal diagram, and of their components. These

are represented as XML type specifications. Moreover,

the tool enables users to export created diagrams as PNG

images. Figure 7 illustrates the main workspace of the

tool.

Fig.7: SecTro workspace

Apart from allowing users to create Secure Tropos

diagrams, the tool also supports automatic generation of a

number of templates and diagram components required

by the methodology, such as Security Attack Scenarios

and Capability diagrams (see Figure 8). This reduces the

development time and restricts user errors.

Fig.8: SecTro tools

IV. CONCLUSIONS / FUTURE WORK

Secure Tropos demonstrates a number of novel features,

such as (1) allowing developers not only to model but

also to reason about the technical as well as the social

issues of security; (2) allowing developers to represent

security concerns at different levels of software

description; and (3) allowing developers to verify at the

design stage, whether the developed solution satisfies the

security requirements of the system.

Nevertheless, more work is required and the following

areas have been identified as important for the further

development of the methodology.

• Further evaluation of the methodology in large

commercial projects. It is important that the

methodology is used to support the analysis and

development of large software systems within

industrial environments. This would enable us to

test the usability of the methodology and how

easily the methodology’s modeling language and

processes can be understood and successfully

employed by software engineers.

• secTro tool. It is important that further

enhancements take place in the secTro tool to

support the integration with other relevant tools

(such as better integration with UMLsec tools)

as well as introduce new automated processes

that support the further automation of secure

Tropos procedures. Currently, the development

of the models at the later stages of the

development process mostly takes place

manually but it is envisaged that the tool will be

able to automate the construction of such of

these models based on the information provided

and models constructed by the users in the early

stages of the development process.

ACKNOWLEDGMENT

The author wishes to thank everyone that has been

involved in the development of any parts of the Secure

Tropos methodology.

REFERENCES

[1] A. I. Anton, J. B. Earp, A requirements taxonomy for

reducing web site privacy vulnerabilities, Requirements

Engineering, 9(3):169-185, 2004.

[2] M. Schumacher, U. Roedig, Security Engineering with

Patterns, in the Proceedings of the 8th Conference on

Pattern Languages for Programs (PLoP), Illinois – USA,

2001.

[3] A. van Lamsweerde, E. Letier, Handling Obstacles in

Goal-Oriented Requirements Engineering, Transactions of

Software Engineering, 26 (10): 978-1005, 2000.

[4] R. Crook, D. Ince, L. Lin, B. Nuseibeh, Security

Requirements Engineering: When Anti-requirements Hit

the Fan, In Proceedings of the 10th International

Requirements Engineering Conference, pp. 203-205, IEEE

Press, 2002.

[5] L.C. Lin, B. Nuseibeh, D. Ince, M. Jackson, J. Moffett,

Analysing Security Threats and Vulnerabilities Using

Abuse Frames, Technical Report 2003/10, The Open

University, 2003.

[6] L. Liu, E. Yu, J. Mylopoulos, Security and Privacy

Requirements Analysis within a Social Setting, In

Proceedings of the 11th International Requirements

Engineering Conference, pp. 151-161, IEEE Press, 2003.

[7] J. McDermott C. Fox, Using Abuse Care Models for

Security Requirements Analysis, Proceedings of the 15th

Annual Computer Security Applications Conference,

December 1999.

[8] G. Sindre, A.L. Opdahl, Eliciting security requirements

with misuse cases, Requirements Engineering, 10(1):34-

44, 2005.

[9] J. Jurjens. Secure Systems Development with UML,

Springer Verlag, 2004.

[10] T. Lodderstedt, D. Basin, J. Doser, SecureUML: A UML-

Based Modelling Language for Model-Driven Security, in

Proceedings of the UML’02, LNCS 2460, pp. 426-441,

Springer-Verlag, 2002.

[11] H. Mouratidis “A Security Oriented Approach in the

Development of Multiagent Systems: Applied to the

Management of the Health and Social Care Needs of Older

People in England”, 2004, PhD Thesis, University of

Sheffield.

[12] P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, A.

Perini, TROPOS: An Agent-Oriented Software

Development Methodology, in Journal of Autonomous

Agents and Multiagent Systems, 8(3):203-236, 2004.

[13] E. Yu, Modelling Strategic Relationships for Process

Reengineering, Ph.D. thesis, Department of Computer

Science, University of Toronto, Canada, 1995.

[14] H. Mouratidis and P. Giorgini (eds), “Integrating Security

and Software Engineering: Advances and Future Vision”

Idea group, IGI Publishing Group, 2006.

[15] C. Haley, R. Laney, J. Moffett, and B. Nuseibeh, Security

Requirements Engineering: A Framework for

Representation and Analysis, IEEE Transactions on

Software Engineering, 34(1): 133-153, January 2008

[16] L. Chung, B. Nixon, “Dealing with Non-Functional

Requirements: Three Experimental Studies of a Process-

Oriented Approach”, Proceedings of the 17th International

Conference on Software Engineering, Seattle- USA, 1995

[17] H. Mouratidis, P. Giorgini, and G. Manson, “When

Security meets Software Engineering: A case of modelling

secure information systems” Information Systems 30(8)

pp. 609-629, Elsevier, 2005.

[18] P. Giorgini, J. Mylopoulos, E. Nicchiarelli, R. Sebastiani.

“Reasoning with Goal Models”, in the Proceedings of the

21st International Conference on Conceptual Modeling

(ER2002), Tampere, Finland, October 2002.

[19] B. Schneier, Secrets & Lies: Digital Security in a

Networked World, John Wiley & Sons, 2000.

Haralambos Mouratidis is a Principal Lecturer in the School

of Computing, IT and Engineering (CITE) at the University of

East London, where he also leads the Computer Science Field.

Haralambos is co-director of the Distributed Software

Engineering Research Group at CITE and his research interests

are related to secure software systems engineering and

information systems development. He has published more than

80 refereed papers in relevant journals and conferences and he

has received national and international funding for projects

related to the above research areas.

