Interactive Access Control for Autonomic Systems:
Theory and Implementation

HRISTO KOSHUTANSKI! and FABIO MASSACCI
University of Trento, Italy

Autonomic communication and computing is a new paradigm for dynamic service integration
over a network. An autonomic network crosses organizational and management boundaries and is
provided by entities that see each other just as partners. For many services no autonomic partner
may guess a priori what will be sent by clients nor clients know a priori what credentials are
required to access a service.

To address this problem we propose a new interactive access control: servers should interact
with clients asking for missing credentials necessary to grant access, whereas clients may supply
or decline the requested credentials. Servers evaluate their policies and interact with clients until
a decision of grant or deny is taken.

This proposal is grounded in a formal model on policy-based access control. It identifies the
formal reasoning services of deduction, abduction and consistency checking. Based on them, the
work proposes a comprehensive access control framework for autonomic systems.

An implementation of the interactive model is given followed by system performance evaluation
outlining its practical relevance.

Categories and Subject Descriptors: D.4.6 [Operating Systems]: Security and Protection—
Access controls, Information flow controls

General Terms:

Additional Key Words and Phrases:

1. INTRODUCTION

Controlling access to services is a key aspect of networking and the last few years
have seen the domination of policy-based access control. Indeed, the paradigm
is broader than simple access control and one may speak of policy-based self-
management networks (see [Sloman and Lupu 1999; Lymberopoulos et al. 2003]
or the IEEE Policy Workshop series!). The intuition is that actions of nodes con-
trolling access to services are automatically derived from policies. The nodes look
at events, requested actions and credentials presented to them, evaluate the policy
rules according to those new facts and derive the actions [Sloman and Lupu 1999;
Smirnov 2003]. Policies can be “simple” iptables configuration rules for Linux
firewalls? or complex logical policies expressed in languages such as Ponder [Dami-
anou et al. 2001] or a combination of policies across heterogeneous systems as in
OASIS XACML? framework.

Dynamic coalitions and autonomic communication add new challenges: an auto-

Thttp:/ /www.policy-workshop.org
2See http://www.netfilter.org
3http://www.oasis-open.org/committees/xacml

t Corresponding author: University of Malaga, Spain. E-mail: hristo@lcc.uma.es

Manuscript submitted to ACM TAAS. July 2007, Pages 1-28.

nomic network comprises nodes that are no longer within the boundary of a single
enterprise, which could deploy its policies on each and every node and guaran-
tee interoperability. An autonomic network is characterized by properties of self-
awareness, self-management and self-configuration of its constituent nodes. In an
autonomic network, nodes are like partners that offer services and lightly integrate
their efforts into one (hopefully coherent) network.

Since access to network services is offered by autonomic nodes on their own
and to potentially unknown clients, the decision to grant or deny access can only
be made on the basis of credentials sent by a client. Credentials could be issued
by certificate authorities belonging to distinct domains and could be located on
distributed repositories. This aspect has emerged as the notion of distributed access
control, also referred as trust management [Weeks 2001], and has become a major
issue for any existing information system.

Credentials themselves convey sensitive information and often become subject
of unauthorized misused and disclosure. Recent several years have seen the emer-
gence of a new concept called trust negotiation [Seamons and Winsborough 2002;
Winslett et al. 2002]. It is a policy-based technique that provides clients with the
right to protect their own credentials and to negotiate with servers access to those
credentials. Thus trust negotiation allows two network entities (nodes) to mutu-
ally establish requirements to access a resource by requesting each other sensitive
credentials until a sufficient trust is established.

Although several efficient and powerful systems have been developed so far [Bon-
atti and Samarati 2002; Yu et al. 2003; Bertino et al. 2004; Nejdl et al. 2004;
Constandache et al. 2007] none of them provides a clear execution framework for
access control, the key missing component presented in our paper. The logical
model presented in this paper fills an important gap between policy specification
and policy evaluation and enforcement.

In an autonomic communication scenario a client might have all the necessary
credentials to access a service but may simply not know it. Equally, it is unrealistic
to assume that servers will publish their security policies on the web so that clients
can do policy evaluations themselves. So, it should be possible for a server to ask a
client on the fly for additional credentials whereas the client may disclose or decline
to provide them. Next, the server re-evaluates the client’s request, considering the
newly submitted credentials, and computes an access decision. The process iterates
between the server and the client until a final decision of grant or deny is taken.
We call this modality interactive access control.

Part of these challenges can be solved by using policy-based self-management of
networks but not all of them. Indeed, if we abstract away the details of the policy
implementation, one can observe that the only reasoning service that is actually
used by policy-based approaches is deduction: given a policy and a set of additional
facts find out all consequences (actions or obligations) from the policy according
to the facts. We simply look whether granting the request can be deduced from
the policy and the current facts. Policies could be different [Bertino et al. 2001; Li
et al. 2003; Bonatti and Samarati 2002; Winslett et al. 2005; Li et al. 2005] but the
kernel reasoning is the same.

Access control for autonomic communications needs another reasoning service:

abduction [Shanahan 1989]. Loosely speaking, we could say that abduction is de-
duction in reverse: given a policy and a request to access a network service we
want to know what are the credentials (facts) that would grant access. Logically,
we want to know whether there is a (possibly minimal) set of facts that added to
the policy would entail (deduce) the request.

If we look again at our intuitive description of the interactive access control, it is
immediate to realize that abduction is the core service needed by the policy-based
autonomic servers to reason for missing credentials.

1.1 Paper Contribution

We present a model for reasoning about access control for autonomic communica-
tion. The model abstracts from a specific policy language and provides an algorithm
based on deduction and abduction reasoning services for policy evaluation and en-
forcement. The key aspect of the algorithm is that if a client does not have enough
access rights the algorithm computes on the fly missing credentials necessary for
the client to get access. Thus a server interacts with a client asking for possible
solutions that unlock a service.

Further the paper explores the interactive access control model from theoret-
ical and practical aspects. It analyzes the behavior of the model when applied
on monotonic and non-monotonic policies and against cooperative and malicious
clients. Technical guarantees of correctness and completeness are proven against
monotonic and a set of non-monotonic policies, called well-behaved policies.

An implementation of the model is given together with its performance evalua-
tion.

The paper follows by introducing the starting point of interactive access control
and comparing it with existing approaches. Section 3 presents semantics of the log-
ical model and identifies the different reasoning services used in the model. Section
4 introduces the interactive access control algorithm followed by a comprehensive
example of how the algorithm works (Section 5). Section 6 formally defines and
proves the model’s guarantees of correctness and completeness. Section 7 describes
in details the interactive access control prototype, called iAccess. Next, Section 8
presents the prototype performance evaluation. Section 9 concludes the paper.

Appendix A shows proofs of theorems stated in the paper.

2. FROM ACCESS CONTROL TO INTERACTION

We will introduce the concept of interactive access control by evolving existing
access control frameworks.

Let us start with the traditional access control. A server has a security policy for
access control P4 that is used when taking decisions about the usage of services
offered by a service provider. A user submits a set of credentials C, and a service
request r in order to execute a service. We say that policy P4 and credentials
Cp entail r meaning that request r should be granted by the policy P4 and the
presented credentials C,.

Figure 1 shows the ”traditional” access control decision process [De Capitani
di Vimercati and Samarati 2001]. Whether the decision process uses Role-Based
Access Control [Sandhu et al. 1996], Simple Public Key Infrastructure [SPKI 1999],
RT framework [Li and Mitchell 2003] or other trust management framework it is

immaterial at this stage: they can be captured by suitably defining P4, C, and the
entailment operator.

(1) check whether P4 and C, entail r,
(2) if the check succeeds then grant access
(3) else deny access.

Fig. 1. Traditional Access Control

A number of works has deemed such blunt denials unsatisfactory. Bonatti and
Samarati [2002] and Yu et al. [2003] proposed to send back to clients some of
the policy rules that are necessary to gain additional access. Subsequent promising
approaches [Bertino et al. 2004; Nejdl et al. 2004; Kapadia et al. 2004; Constandache
et al. 2007] have developed their own polices and mechanisms for deriving and
negotiating policy rules. Figure 2 shows the essence of the approaches.

(1) check whether P4 and C, entail r,

(2) if the check succeeds then grant access else
(a) find a rule r + p € P4 UCp, where p is a partial policy protecting r,
(b) if such a rule exists then send it back to the client else deny access.

Fig. 2. Disclosable Access Control

If we look at the underlying policy models one can find that either of the ap-
proaches requires policies to be flat, i.e. a policy protecting a resource must con-
tain all credentials needed to allow access to that resource. As a result, it calls for
structuring of policy rules counter-intuitive from access control point of view. For
instance, a policy rule may say that for access to the full text of an on-line journal
article a requester must satisfy the requirements for browsing the journal’s table of
contents plus some additional credentials. A rule detailing access to the table of
contents could then specify another set of credentials. Even this simple scenario is
not intuitive in either formalisms.

Further, constraints that would make policy reasoning non-monotone (such as
separation of duties) require to look at more than one rule at a time. So, if the
policy is not flat, it has constraints on the credentials that can be presented at the
same time or a more complex role hierarchy is used, these systems would not be
complete.

If we abstract the above approaches, the only reasoning service used for access
control is deduction — check whether the request follows from the resource’s policy
and the presented credentials.

2.1 Intuition 1: Advanced Reasoning Service Abduction

We need another, less known, reasoning service, called abduction — check what
missing credentials are necessary so that the request can follow from the policy
and the presented credentials. Thereupon, we present the basic idea of interactive
access control shown in Figure 3.

(1) check whether P4 and C, entail r,
(2) if the check succeeds then grant access else
(a) compute a set Caq such that:
— P4 together with C, and Caq entail r, and
— P4 together with C, and Caq preserve consistency.
(b) if Caq exists then ask the client for Co4 and iterate
(c) else deny access.

Fig. 3. Basic Idea of Interactive Access Control

The ” compute a set Caq such that ...” (step 2a) is exactly the operation of abduc-
tion. Section 3 formally defines the basic reasoning services used in the algorithm.
An essential part of the abduction reasoning is the computation of a set of missing
credentials that is a solution for the request and, at the same time, is consistent
with the policy state. The consistency property give us strong guarantees for the
missing set of credentials when applying the algorithm on non-monotonic policies.
Section 6 examines in details algorithm’s properties.

CHALLENGE: Having abduction as a tool for finding missing credentials we face
a new challenge: how do we decide the potential set of missing credentials?

It is clearly undesirable to disclose all credentials occurring in P4 and, therefore,
we need a way to define how to control the disclosure of such a set.

Bonatti and Samarati’s approach defines that governing access to services is
composed in two parts: prerequisite rules and requisite rules. Prerequisite rules
specify the requirements that a client should satisfy before being considered for the
requirements stated by the requisite rules, which in turn grant access to services.
Their approach does not decouple policy disclosure from policy satisfaction, as
noted in [Yu and Winslett 2003].

Yu and Winslett [2003] overcome this limitation and propose to treat policies
as first class resources, i.e., each policy protecting a resource is considered as a
sensitive resource itself whose disclosure is recursively protected by another policy,
called meta-policy.

The meta-policy approach is also evidenced in [Bertino et al. 2004]. In this
work, each resource is protected by one or more disclosure policies. Each disclosure
policy has its policy preconditions and the policy content is revealed if one of the
preconditions is satisfied. Each policy precondition has its own policy preconditions
that at least one of them must be satisfied before the policy content is released.

The work by [Kapadia et al. 2004] proposes to infer possible alternatives from
failed requests (sets of missing credentials) based on the policy scheme of Yu and
Winslett. The work uses ordered binary decision diagrams (OBDDs) to represent
a resource’s policy and its meta-policies. Root of the diagram is the resource itself

and its successors are the policy requirements protecting the resource. The policy
requirements have further successors which are the meta-policy requirements and
so on. On failure of a request the approach traverses the diagram from the root
to its true state (representing grant status) and finds all alternatives that would
satisfy the request.

However, the work inherits the monotonicity limitations of Yu and Winslett’s
settings. The scheme reasons on a single rule specifying a resource’s policy and
its relevant meta-policies rules in order to find missing credentials satisfying the
request. As so, the approach cannot scale to non-monotonic access policies because
they require to look at more than one rule (often the entire policy) at any time.

Protecting resources’ policies with meta-policies in the access policy itself allows
a system to have control on when a policy can be disclosed from when a policy is
satisfied.

However, this is not really satisfactory as it does not decouple the decision about
access from the decision about disclosure. Resource access is decided by the business
logic whereas policy disclosure is due to security and privacy considerations.

2.2 Intuition 2: Disclosure Control Policy

We need two policies: one for granting access to one’s own resources and one for
disclosing the need of foreign (someone else’s) credentials. Therefore, we introduce a
security policy for disclosure control Pp. The policy for disclosure control identifies
the credentials whose need can be potentially disclosed to a client. In other words,
P4 protects partner’s resources by stipulating what credentials a requestor must
satisfy to be authorized for a particular resource while, in contrast, Pp defines
which credentials among those occurring in P4 are disclosable (i.e. can be asked)
to the requestor.

Figure 4 shows the refined algorithm for interactive access control with controlled
disclosure.

(1) check whether P4 and C, entail r,
(2) if the check succeeds then grant access else
(a) compute a set of disclosable credentials Cp entailed by Pp and Cp,
(b) compute a set of missing credentials Caq out of the disclosable ones (Caq C
Cp) such that
— P4 together with C, and Caq entail 7, and
— P4 together with C, and Capq preserve consistency.
(c) if Caq exists then ask the client for Coq and iterate
(d) else deny access.

Fig. 4. Interactive Access Control with Controlled Disclosure

Yu and Winslett’s policy scheme determines whether a client is authorized to be
informed of the need to satisfy a given policy. While, in our case, having a separate
disclosure control policy allows us to determine whether a client is authorized to
see the need of single credentials. Thus we approach a fine-grained disclosure con-
trol by defining credentials as single units of disclosure. We can control not only

the disclosure of (entire) policies as a single unit but also the disclosure of single
credentials composing those policies.
Let us look at Yu and Winslett’s own example [Yu and Winslett 2003, page 4].

EXAMPLE 2.1. (McKinley Clinic)

[Access Scenario] McKinley clinic makes its patient records available for online
access. Let r be Alice’s record. To gain access to r a requester must either present
Alice’s patient ID for McKinley clinic (Capicerp), or present a California social
worker license (Coswyr) and a release-of-information credential (Cror) issued to
the requester by Alice.

[Disclosure Scenario] Alice wants to keep the latter constraint inaccessible to
strangers as it may help them to infer that Alice has mental or emotional problem.
However, employees of McKinley clinic (CumckinteyEmployee) should be allowed to
see the contents of this policy.

[Security Policy]

P:|r:P
P+ PV EP; and P : true
P« CAlz'ceID and Py : true
Py, & Coswr N Cror and Py : true
P2 . P3
P < CMcKinleyE'mployee and P; : true
P, P, P> and Ps are policy identifiers. r and P> are protected sensitive resources.

[l
EXAMPLE 2.2. (Example 2.1 formalized as two logic programs)
Pa: | v Caliceln- Pp: | CaticelD-
r < Ccswr,Cror- Coswi < CMcKinleyEmployee-

CRoI <~ CMcKinleyEmployee-

P4 states that access to r is granted either to Alice or to California social workers
that have o release-of-information credential issued by Alice.

Pp states that the disclosure of Alice’s ID is not protected and potentially released
to anybody. The need for credentials California social worker license Coswr and
release-of-information Cgror is disclosed only to users who have already presented
their McKinley employee certificate CarekinieyEmployee -

We point out that having CrrcKinieyEmployee d0€s not allow access to v but rather
unlocks more information on how to access r. O

A question that would come up is whether the disclosure policy is resource aware, i.e.
whether we could have an association between resources and credentials protecting
resources within Pp. For example, let us have a second resource r; protected
by credential Coswr the disclosure of which does not depend on the presence of
CMcKinleyEmployee, but which is the case for r.

To make the interactive algorithm behave as expected we have to include the
service request as a fact when computing the disclosable credentials. Thus, step 2a
becomes ”compute a set of disclosable credentials Cp entailed by Pp, r and Cp.”

In the rest of the paper, without lost of generality, we assume that the disclosure
policy is resource aware and whenever Pp is involved it implies Pp U {r}.

To control the disclosure of resources’ policies as single units one can also accom-
modate the notion of policy identifiers as in [Yu and Winslett 2003] (refer also to

Example 2.1). Thus, taking a full advantage of that, one can transform the unified
policy schemes of Yu and Winslett or Bertino et al. [2004] to the two-policy model.

2.2.1 Stepwise Disclosure Control. Having a separate disclosure policy allows us
to have an additional reasoning on the policy that helps us to disclose credentials
in a stepwise fashion. The basic intuition is that the logical policy structure itself
tells us which credentials must be disclosed to obtain the information that other
credentials are missing. The model presented in [Koshutanski and Massacci 2007]
extends the interactive access control algorithm with an additional functionality of
computing stepwise sets of missing credentials (by observing Pp) and requesting
them gradually until a solution is agreed that grants a resource.

The example below summarizes the policy disclosure functionalities we have pre-
sented so far.

EXAMPLE 2.3. (Stepwise disclosure control)

Pa: | v CasicelD- Pp: | Caticeln < T.
T4 CCSWL; CROI' CMcKinleyEmployee —r.
To CC’SWL- Pl — CMcKinleyEmployeea r.
CRror <+ P;.

Coswr < Pr.

Coswr + 2.
Pp states that the disclosure of Alice’s ID is potentially released to anybody having
requested resource r. The need for credential CrrekinieyEmployee 15 Teleased to any-
body requested r. Py is a policy identifier encapsulating disclosure of Coswr and
Cror- The need for credentials Coswr and Cgror is disclosed only to those who
have already presented ChurekinleyEmployee 0Nd requested resource r. Alternatively,
the need for Coswy is released to those clients requested rs. O

Now, using the stepwise approach the interactive algorithm will return the need of
either Cagicerp O CrMcKinleyEmployee When 1 is requested. The algorithm would
further disclose the need for Cogswr and Cgey only if the client has presented
CMcKinleyEmpioyee- As already discussed, this holds for the policy settings in [Yu
and Winslett 2003].

However, if we add the two rules {Cror + r. Coswr < CRror,r.} to Pp then we
are able to provide another solution to the example problem that is not intuitive
in the policy scheme [Yu and Winslett 2003]. We allow a client to know for the
need of release-of-information credential issued by Alice without revealing the need
of Coswy (inferring Alice has a mental problem). On the other side, Coswy is
disclosed only if a client has Cr,; presented to the system. Thus ensuring only
clients evidenced by Alice will know the need for Cogw . required to get access to
r.

EXAMPLE 2.4. (Rental car service [Bertino et al. 2004] page 832)
P: pOIl - ({} Rental Car + Ccormer_employeea CID card)
p012 = ({} Rental Car + Cdrzmng_lwense)
pols = ({pol2}, Rental Car < Ceregit_card)-
poly = ({pols,poly}, Rental Car < DELIV).
Policy poly says that either pols or pol; must be satisfied before granting (delivering)
the service Rental_Car. pols states that the release of the need for a credential for

a credit card will be shown to those who satisfy pola. pols has no preconditions
and releases its content to anybody, i.e. the need for a driving license credential.
poly has also no preconditions and discloses the need for an employee certificate at
Corrier company and credential for an ID card potentially to any client.

Below we show how the rental car service can be formalized as two logic programs
so that using the stepwise approach one can achieve the same policy protection
functionality.

EXAMPLE 2.5.
PA-' Rental Car + Cdriving_licensea Ccredz't_card-

Rental Car + Ccorrier_employeey CID_card-

Pp: Ccorrier_employee + Rental Car.

CrIp_card +— Rental_Car.

Cdriving_license < Rental Car.

Ccred'it_card — Cdriving_lz'cense; Rental_Car.

If we consider dynamic environments where the network (privacy) settings are
continuously changing one can even define a set of disclosure policies each corre-
sponding to a particular network/system state. For example a disclosure policy
may consider a set of environment factors like time, work loads or other system
conditions that could enforce additional disclosure control. These dynamic condi-
tions are likely to be the case in autonomic communication networks. Once the
access control algorithm is run it could dynamically select a disclosure policy best
suited current system state. Having multiple disclosure policies for particular ac-
cess control requirements is not scalable in the scheme of [Yu and Winslett 2003;
Bertino et al. 2004] because they tie access and disclosure requirements in one
security policy setting.

2.3 Intuition 3: Extension to Automated Trust Negotiation

A question that would come up when introducing the interactive access control is
what happens on the client side once the computed missing credentials are requested
by a server. The work in [Koshutanski and Massacci 2007] extends the interactive
model to function on client and server sides. The intuition is that by mirroring the
access control algorithm on the client side, the client is also able to abduce what
missing credentials are needed (to be requested to a server) in order to disclose its
own credentials.

The work proposes a negotiation scheme that builds on top of the interactive
algorithm a negotiation protocol. The negotiation protocol allows two entities in
a network to mutually establish sufficient access rights needed to grant a resource.
The protocol runs on two sides so that entities understand each other and auto-
matically interoperate.

This paper examines in details the guarantees the interactive model provides
when applied to monotonic and non-monotonic access policies. So one could run
a trust negotiation over a non-monotonic policy domain and still guarantee com-
pleteness and correctness of the negotiation process.

Since the negotiation protocol is driven by abduction and deduction reasonings
one can accommodate negotiation strategies on top of it so that missing sets of

10

requirements are released (negotiated) according to some high-level goals. The
work by [Baselice et al. 2007] proposes a general framework for specifying high-
level negotiation strategies abstracting from a specific policy language.

3. POLICY SYNTAX AND SEMANTICS

Policies are written as normal logic programs [Apt 1990]. These are sets of rules of
the form:

A Bl,---aBn; notC’l,..., ’flOtCm (1)

where A, B; and C; are (possibly ground) predicates. A is called the head of the
rule, each B; is called a positive literal and each not C; is a negative literal, whereas
the conjunction of the B; and not C; is called the body of the rule. If the body is
empty the rule is called a fact. A normal logic program is a set of rules.

In our framework, we also need constraints that are rules with an empty head.

«~ Biy,...,B,, notCy,..., notCp (2)

One of the most prominent semantics for normal logic programs is the stable
model semantics proposed by Gelfond and Lifschitz [1988]. The intuition is to
interpret the rules of a program P as constraints on a solution set S (a set of
ground atoms) for the program itself. So, if S is a set of atoms, rule (1) is a
constraint on S stating that if all B; are in .S and none of C; are in it, then A must
be in S. A constraint (2) is used to rule out from the set of acceptable models
situations in which all B; are true and all C; are false.

Below we give the formal definitions for the basic reasoning services.

DEFINITION 3.1 LOGICAL CONSEQUENCE AND CONSISTENCY. Let P be a logic
program and L be a positive ground literal. L is a logical consequence of P, sym-
bolically P \= L, if L is true in every stable model of P. P is consistent, P & L,
if there is a stable model for P.

DEFINITION 3.2 SECURITY CONSEQUENCE. A requestr is a security consequence
of a policy P if (i) P is logically consistent and (i) r is a logical consequence of P.

DEFINITION 3.3 ABDUCTION. Let P be a logic program, H a set of ground atoms
(called hypotheses or abducibles), L a ground literal (called observation), and < a
partial order over subsets of H. A solution of the abduction problem (L,H,P) is a
set of ground atoms E such that:

(i) ECH,

(ii)) PUE E L,

(i) PUE £ L,

(iv) any set E' < E does not satisfy all conditions above.
Traditional partial orders are subset containment or set cardinality.

DEFINITION 3.4 SOLUTION SET FOR A RESOURCE. Let P is an access policy
and r be a resource. A set of credentials Cs is a solution set for r according to
P if r is a security consequence of P and Cs, i.e. PUCs |=r and PUCs |~ L.

11

DEFINITION 3.5 MONOTONIC AND NON-MONOTONIC PoOLICY. A policy P is mono-
tonic if whenever a set of statements C is a solution set for r according to P
(PUC |= r) then any superset C' D C is also a solution set for r according to
P (PUl Er).

In contrast, a non-monotonic policy is a logic program in which if C is a solution
for r it may exists C' D C that is not a solution for r, i.e. PUC' [Er

DEFINITION 3.6 RESOURCE r ADDITIVE PoLICY. A policy P is a resource 7
additive if for any two solution sets Cs and Cs' for r where Cs ¢ Cs' and Cs' ¢ Cs
then also Cs UCs' is a solution set for v according to P.

DEFINITION 3.7 RESOURCE r SUBSET CONSISTENT PoLICY. A policy P is a
resource r subset consistent if for every solution set Cs for r it holds that any
C C Cs preserves consistency in P, i.e. PUC £ L.

DEFINITION 3.8 WELL-BEHAVED PoOLICY. A policy P is well-behaved if for all
resources r € P

(i) P is resource r additive and
(i) P is resource r subset consistent.

Section 6 shows how the interactive access control model guarantees completeness
and correctness when applied on well-behaved policies.

4. INTERACTIVE ACCESS CONTROL ALGORITHM

Below we summarize all the information we needed to state the interactive access
control algorithm, shown in Figure 5.

‘P4 — security policy governing access to resources,
Pp — security policy controlling the disclosure of foreign (missing) credentials,
C, — set of credentials presented by a client in a single interaction,

Cp — set of active credentials presented by a client during an interactive access
control process,

Cy - set of credentials that a client has declined to present during an interactive
process.

When a client initially requests a service the server creates a client’s profile
corresponding to a new session. The client’s profile consists of Cp and Cxr set
up to empty sets initially. A client requests for a service by submitting a request r
and a set of presented credentials C,,. C, is optional and could be an empty set.

Steps 1 and 2 update client’s profile with newly presented credentials as follows.
Active credentials Cp are updated with Cp,. Declined credentials Cyr are updated
with the the missing credentials (Caq) the client was asked in the last interaction
set difference with the newly presented ones. Ca4 is set up to an empty set initially.

Once the profile is updated, the algorithm checks whether the request r is granted
by P4 according to Cp (step 3). If the the client does not have enough access rights
then the algorithm computes all credentials disclosable from Pp according to Cp
and from the resulting set removes all already declined and presented credentials
(step 4a). The latter step is used to avoid dead loops of asking something already
declined or presented.

12

Input: r, Cp;
Output: grant/deny/ask(Ca);

(1) update Cp = Cp UCy,
(2) update Cxr = Cn U (Cam \ Cp), where Caq is from the last interaction,
(3) verify whether the request r is a security consequence of P4 and Cp, namely
PaUCp Erand PoUCH £ L,
(4) if the check succeeds then return grant else
(a) compute a set of disclosable credentials Cp as
Cp = {c | ¢ credential that Pp UCp = c} \ (C~x UCp) ,
(b) compute a minimal set of missing credentials Ca« C Cp such that
—PaUCpUCpm |=r and
—PAUCPUCMm %J_,
(c) if Cam exists then return ask(Caq) and iterate,
(d) else return deny.

Fig. 5. Interactive Access Control Algorithm

Next, the algorithm computes all subsets of Cp that are consistent with P4 and
satisfy 7. Out of all these sets (if any) the algorithm selects the minimal one (step
4c) to be asked to a client.

REMARK 4.1. Using declined credentials is essential to avoid dead loops in the
process and to guarantee successful interactions in presence of disjunctive informa-
tion.

We point out that minimality criteria play an important role when selecting a
missing set of credentials as we shall see in the example below. Set cardinality cri-
terion does not fully apply mainly because credential sensitiveness plays the more
important role than the cardinality. The role minimality criterion is more adequate
when dealing with role-based access control models. If we have attribute-based ac-
cess control one can associate values to attributes (e.g. level of sensitiveness) so that
can perform minimality reasoning on them. Additionally, one can accommodate
sequences of criteria depending on particular access control settings.

In cases of more than one equally minimal solutions computed the algorithm
picks one of them as a solution to be asked to a client. However, one can slightly
modify the algorithm so that it returns all equally minimal solutions as disjunctive
information. Then, on next interaction the declined credentials are computed as the
union of all missing sets asked in the last interaction set difference with presented
ones in the current step.

5. A COMPREHENSIVE EXAMPLE

Let us consider a shared overlay network Planet-Lab between Italian universities
and German research institutions. For the sake of simplicity assume that there
are three main access types to resources: disk — read access to data residing on
Planet-Lab machines; run — read access to data and run processes on the machines;
and conf — configure access to data including the previous two types of access plus
the possibility of configuring network services on machines.

13

University = Research Institute
fullProf boardOfDirectors
assProf seniorScientist

assistant JjuniorScientist
researcher employee
memberPlanetLab

Fig. 6. Planet-Lab hierarchy model

Figure 6 shows the hierarchy and granularity of roles considered for universities
and research institutions, respectively. The partial order of roles is indicated by
arcs, where higher the role in the hierarchy, more powerful it is. A role dominates
another role if it is higher in the hierarchy and there is a direct path between them.

The access policy of the Planet-Lab network specifies that:

— disk access is allowed to any role of the Planet-Lab hierarchy,

— run access is allowed to any employee or higher roles at a German research
institute, or to any researcher or higher roles at an Italian university,

— conf access is allowed to junior scientists or higher roles at a German research
institute, or to any assistant or higher roles at an Italian university.

There is a preprocessing step that validates and transforms certificates to predi-
cates suitable for the formal model: credential (HolderID, Attr Name, IssuerID) if
attribute certificate; certificate (SubjectI D, IssuerID) if identity certificate. There
is a mapping from the trusted public keys of SOAs (Source of Authorities) or CAs
(Certificate Authorities) to their internal policy identifiers represented by IssuerID
value. Using a second predicate IssuerType (IssuerID) one can classify what SOAs
and CAs are considered trusted to issue particular type of attributes and identity
certificates.

We represent variables staring with a capital letter (e.g. Holder, Attr, Issuer)
while constants starting with a small case letter (e.g., planetLab_Class1SOA, ac-
credited, juniorScientist). A variable indicates any value in its field and is valid
within the rule it appears.

Figure 7 shows the formalization of Planet-Lab access and disclosure policies.
Following is the functional explanation of the policies.

Access policy:

—Rule (1) defines the trusted SOA issuing Planet-Lab membership certificates.
Rule (2) defines the trusted SOA accrediting German research institutes, rule (3)
defines the trusted SOA accrediting Italian universities. Rules (4) and (5) spec-
ify trusted CAs certifying identities of Italian universities and German research
institutions, respectively.

—Rule (6) grants disk access to the shared network to any entity (holder Hol) pre-
sented memberPlanetLab role credential issued by the trusted Planet-Lab SOA.

—Rule (7) grants disk access to anybody who has run access permission.

14

Access Policy:
(1) issuerPlanetLab (planetLab-Class1SOA).
(2) issuerAccredInstDE (deutsch Akkred_Class1SOA).
(3) issuerAccredUnivIT (crui_class1SOA).
(4) issuerUnivIT (govitaliane_class1CA).
(5) issuerlnstDE (govdeutsch_class1CA).
(6) assign (disk) < credential (Hol, memberPlanetLab, Iss), issuerPlanetLab (Iss).
(7) assign (disk) < assign (run).
(8) assign (run) < credential (Hol, Attr, Univ), Attr > researcher, certificate (Univ, IssUniv),
issuerUnivIT (I'ssUniv), credential (Univ, accredited, [ssAcc), issuerAccredUnivIT (IssAcc).
(9) assign (run) < credential (Hol, Attr, Inst), Attr = employee, certificate (Inst, IssInst),
issuerlnstDE (IssInst), credential (Inst, accredited, IssAcc), issuerAccredInstDE (IssAcc).
(10) assign (run) < assign (conf).
(11) assign (conf) <« credential (Hol, Attr, Univ), Attr > assistant, certificate (Univ, IssUniv),
issuerUnivIT (I'ssUniv), credential (Univ, accredited, [ssAcc), issuerAccredUnivIT (IssAcc).
(12) assign (conf) < credential (Hol, Attr, Inst), Attr > juniorScientist, certificate (Inst, IssInst),
issuerlnstDE (IssInst), credential (Inst, accredited, IssAcc), issuerAccredInstDE (IssAcc).

Disclosure Policy:
(1) credential (Hol, member PlanetLab, planetLab_Class1SOA).
(2) credential (Hol, Attr,Inst) <+ Attr = employee.
(3) credential (Hol, Attr,Univ) < Attr > researcher.
(4) certificate (Univ, govitaliane_class1CA).
(5) certificate (Inst, govdeutsch_class1CA).
(6) credential (Univ, accredited, crui_class1SOA).
(7) credential (Inst, accredited, deutschAkkred_class1SOA).

Fig. 7. Planet-Lab Access and Disclosure Control Policies

—Rule (8) grants run access to any holder of an attribute higher or equal to a
researcher position issued by an Italian university. To validate an italian uni-
versity, Planet-Lab policy requires two additional certificates: an identity cer-
tificate identifying the university entity as a legal key holder and an attribute
certificate attesting the university entity as accredited Italian university. The
former case is validated by the two predicates certificate (Univ, [ssUniv) and
issuerUnivlT (IssUniv) while the latter case by the two predicates
credential (Univ, accredited, IssAcc) and issuerAccredUnivlT (IssAcc). Together
all the predicates in the body of rule (8) validate an Italian university and im-
plicitly delegate the right to it to state who has what position at the university.

—TRule (9) grants run access to any holder of a credential certificate with an at-
tribute role higher or equal to an employee position at any German research
institute. Planet-Lab policy requires two additional certificates to validate a re-
search institution: an identity certificate identifying the institution as a legal key
holder and an attribute certificate attesting the institution as accredited one.

—Rule (10) grants run access to anybody who has conf access permission.

—Rule (11) grants conf access to any holder of a credential with a position equal
or higher to assistant and issued by an Italian university. University validation
follows analogously of rule (8).

—Rule (12) grants conf access to any holder of a credential certificate with a
role higher or equal to a junior scientist position issued by a German research

15

institute. Institute validation follows analogously of rule (9).
Disclosure policy:

—Rule (1) discloses the need for a Planet-Lab membership credential and specifies
the intended credential issuer. Rule (2) discloses the need for credentials attesting
employee, junior scientist, senior scientist and board of directors, respectively.
Rule (3) discloses the need for credentials attesting roles researcher, assistant,
associate and full professor, respectively.

—Rule (4) discloses the need for a certificate identifying Italian university enti-
ties and specifies the intended certificate issuer. Rule (5) discloses the need for
a certificate identifying German research institutes and specifies the intended
certificate issuer.

—Rule (6) discloses the need for a credential certifying Italian universities as accred-
ited institutions and specifies the intended credential issuer. Rule (7) discloses
the need for a credential certifying German institutions as accredited and specifies
the intended credential issuer.

Access Control Scenario 1. Alice is a senior scientist at Fraunhofer institute in
Berlin. She has been issued two certificates one for an employee at the research
institute and another one attesting her as a senior scientist, either of them issued
by a Fraunhofer certificate authority.

Now, Alice wants to run a service located at the Planet-Lab network. For doing
so she presents her employee certificate at access time

credential (alice_milburk, employee, fraunhofer_Inst_Berlin)

presuming it is enough as she knows that Planet-Lab is a joint network between
German and Italian institutions.

According to the access policy (rule 9) any employee at a German research insti-
tute is allowed run access to the network but additionally there must be presented
certificates identifying Fraunhofer as a legal key holder and a attesting Fraunhofer
as a legal (accredited) German research institute.

Alice’s credentials are not enough to get run access and the request would be
denied. Then, the interactive algorithm (step 4a) computes the set of disclosable
credentials as all credentials disclosed from rules (1) to (7) of the disclosure policy
set difference with Alice’s presented credentials, i.e. credential for an employee.

Next, abduction computation (subset minimal) finds the following missing set
that satisfies the request:

{certificate (Inst, govdeutsch_class1CA),
credential (Inst, accredited, deutschAkkred_class1SOA)}

There is a post processing step that maps the internal policy identifiers of SOAs
and CAs (like govdeutsch_class1CA) to their high level description that is to be
returned back to the client.

Alice receives the missing set of credentials, then she consults the Fraunhofer
authority that issued her employee certificate in order to obtain the missing cre-
dentials. Next interaction, she requests the service presenting the missing set of
credentials and the system grants her access.

16

Access Control Scenario 2. Alice wants to configure an online system for paper
submissions of a workshop. She submits her employee certificate together with
the two certificates identifying Fraunhofer institute as legitimate key holder and as
accredited institution. Formally speaking, the initial set of credentials is:

{credential (alice_milburk, employee, fraunhofer Inst_Berlin),
certificate (fraunhofer_Inst_Berlin, govdeutsch_class1CA),
credential (fraunhofer_Inst_Berlin, accredited, deutschAkkred_class1SOA)}

Looking at the access policy rule (12), configure access is allowed to junior scientists

or higher role positions. The algorithm computes the set of disclosable credentials
and out of them removes all what has been already presented by Alice. Next,
abduction reasoning finds the following sets of missing credentials:

{credential (Hol, juniorScientist, Inst)}
{credential (Hol, seniorScientist, Inst)}
{credential (Hol, boardO f Directors, Inst) }

Now, using role minimality criterion the algorithm selects the set
{credential (Hol, juniorScientist, Inst)} as the minimal one and returns it back to
the client.

Since Alice is a senior scientist she declines to present the requested credential
and returns the access request but with no entry for presented credentials. The
algorithm updates Alice’s profile marking the requested credential as declined. The
difference comes when the algorithm recomputes the disclosable credentials as all
disclosable credentials from the disclosure policy set difference Alice’s presented
and declined credentials. Out of those abduction finds the following missing sets:

{credential (Hol, seniorScientist, Inst)}
{credential (Hol, boardO f Directors, Inst)}

The algorithm selects the need for senior scientist and returns it back to Alice. On

next interaction, Alice presents her senior scientist credential and gets granted the
service request.

The interactive steps in access scenario 1 can be leveraged by two ways. First
one by using credential chain discovery algorithm as a pre-processing step to the
interactive algorithm, i.e. discovering all relevant credentials before getting a de-
cision. Second way is by using a post-processing step that returns to a client the
need for credentials only relevant to subject attributes and gathering the remain-
ing credentials directly from predefined certificate authorities’ public repositories.
The second approach outlines potential future work on extending the model to
automatic credential discovery.

6. ACCESS CONTROL GUARANTEES

We define below the main guarantees the access control framework provides.

DEFINITION 6.1 SOUNDNESS. If a client gets grant then he has a solution for
the request.

DEFINITION 6.2 COMPLETENESS. If a client has a solution for a service then he
gets grant the service.

17

To prove the guarantees first we have to look at the policies underlying our model
and especially what would be reasonable access and disclosure policies that support
the above guarantees.

DEFINITION 6.3 FAIR ACCESS. Let P4 be an access control policy and let Cp,
be the set of ground instances of all credentials occurring in P. The policy Py
guarantees fair access if for any request r there exists a set Cs C Cp, that is a
solution for r.

DEFINITION 6.4 FAIR INTERACTION. Let P4 and Pp be access and disclosure
control policies, respectively. The policies guarantee fair interaction if

(1) P4 guarantees fair access and

(2) if Cs is a solution for a request v then Cs is disclosable by Pp, i.e. Vc €
Cs, Pp '= C.

The intuition of fair interaction is that any solution for a request should be po-
tentially visible to clients. This property essentially defines the ability of granting
services to (good) clients.

The property itself does not imply that a service disclosure policy is trivial, rather
it is evident in all trust negotiation models: if there is a policy protecting a resource
then the policy (requirements) should be negotiated with an opponent in order to
provide access. How the policy (a solution set) is negotiated (disclosed) is a matter
of concrete trust negotiation settings/strategies.

On top of the property one can protect a solution set by means of stepwise
disclosure control (ref. [Koshutanski and Massacci 2007]) or by means of hidden
credentials described later in the section.

One would argue that if fair interaction then why not simply request all creden-
tials allowed by the disclosure policy instead of abducing missing ones. First, the
disclosure policy controls the disclosure of all resources’ policies under a partner’s
domain and so we need to abduce only the relevant information (credentials). Sec-
ond, by abducing the missing credentials we ensure that at any moment the missing
set of credentials is an actual solution, i.e. it is consistent with the access policy
state.

We make the following policy assumptions.

REMARK 6.1 PoLiCY ASSUMPTIONS. Hereinafter all P4 are well-behaved poli-
cies and all Pp are monotonic policies.

The well-behaved property ensures that if we have two solutions for a service we can
”add” them and we will still get the service, and if we have a solution for a service
any subset of this solution is consistent with the policy. With the latter requirement
we avoid situations where lack of information makes a policy inconsistent.

The set of well-behaved policies reside between monotonic and arbitrary policies.

PROPOSITION 6.1. All monotonic policies are well-behaved but the converse is
not true.

ProOF. In one direction the property is immediate (refer to Definition 3.5). For
the other direction we show a counter-example:

Ty CA.

18

ry « Cg.
ry — Ce.
«~— C A, Cc.
— CB, Ce.
In our case having {C4,Cp,Cc} bans the client to get either of the services, which
clearly shows that the example is a non-monotonic policy. At the same time, for

each of the services we have additive and subset consistent properties so that the
policy is well-behaved. [

Monotonicity on Pp ensures that if a solution is visible to a client then that
solution should remain visible during interaction steps. Consider the following
example.

EXAMPLE 6.1 NON-MONOTONIC DISCLOSURE.

Client Server
{CB,Cp, \r» Pa|r1—caco. Po 8:
CE,CF} CD rl <« CB, CE, CF. Cc‘
AﬂcA/,)/ 12« Cc. Cr.
{CD} «— Ca, Cc. CD « not CE.

= «— CB, Cc. CE < not CD.
jed
AccesS DI p el behaved Coi-{CACR.CECrCo)

PD is non-monotonic ~ CD2={CA,CB,Cc,CF,CE}

There are two sets of disclosable credentials and either of them contains a solution
set for r1. If the interactive algorithm selects Cp, then the solution abduction finds is
{C4,Cp}. On the next interaction step the client supplies Cp (as he does not have
in possession C4) and gets denial because the presence of Cp bans the disclosure of
Cg and abduction cannot find any solution in the new set of disclosable credentials.
O

Let us look at a client side and define what would be a reasonable client that our
framework aims to provide the guarantees for.

DEFINITION 6.5 COOPERATIVE CLIENT. A client with a set of credentials (abil-
ity) C is a cooperative client if whenever receives ask(Ca) returns Caq NC.

The definition captures the practical and intuitive aspect of client’s behavior: A
client who has the right set of credentials and who is willing to send them to a
server will be granted access. We notice that it is fairly difficult to model and prove
any results for non-cooperative clients.

The work in [Koshutanski and Massacci 2007] empowers cooperative clients with
a negotiation model that allows them to negotiate with a server additional re-
quirements before presenting own credentials. Thus, a client and a server become
cooperative on those set of credentials on which they have mutually satisfiable
requirements.

We assume that a client initiates a service request with an empty set of presented
credentials. The assumption is important to avoid initial inconsistency and to
ensure a successful first step.

19

THEOREM 6.1 SOUNDNESS. Let P4 be an access policy, Pp be a disclosure policy
and v a request. If a client gets grant r with the access control algorithm then he
has a solution set Cs that unlocks r according to P 4.

PRrROOF. Refer to Appendix A. O
THEOREM 6.2 TERMINATION. The access control algorithm always terminates.
PrOOF. Refer to Appendix A. O

THEOREM 6.3 COMPLETENESS FOR A COOPERATIVE CLIENT. Let P4 be an ac-
cess policy, Pp be a disclosure policy and r a request. If P4 and Pp guarantee fair
access and interaction then if a cooperative client has a set of credentials Cs that is
a solution for r according to P4 then the client always gets grant r with the access
control algorithm.

PRrROOF. Refer to Appendix A. O

DEFINITION 6.6 DISCLOSABLE AND HIDDEN CREDENTIALS. Let Pp be a dis-
closure policy, credential ¢ is disclosable if there is a set of credentials C such that
¢ & C and C together with the disclosure policy Pp entails ¢, namely Pp UC = c.
A credential ¢ is hidden if it is not disclosable.

The intuition behind hidden credentials is that the system does not ask for them but
ezxpects them from clients. So, the information for hidden credentials is obtained by
out-of-band sources. Hidden credentials are used either to unlock more credentials
needed to grant access or used directly to unlock a resource. So, a client must
provide them when initially requests for a service.

DEFINITION 6.7 HIDDEN CREDENTIALS FOR A RESOURCE r. Let P4 be an ac-
cess control policy and Pp be a disclosure control policy. A set of hidden credentials
for a resource r is the set Cy such that:

(1) there exists a solution set Cs for r according to P4 such that Cs O Cy and
(2) all hidden credentials in Cs with respect to Pp are in Cy.

To protect a solution set from unnecessary disclosure one can specify which creden-
tials from the solution set should be hidden so that only selected clients can access
a resource.

Taking it to extreme, all solution sets for a resource could be hidden, i.e. for
any solution Cs and its set of hidden credentials Cy holds Cy; = Cs, and we fall
back in the standard classical access control framework of having only grant/deny
decisions.

DEFINITION 6.8 CLIENT WITH HIDDEN CREDENTIALS FOR A RESOURCE 7.
A client with hidden credentials for a resource r is any client that has the set of
hidden credentials C1; of a solution set for r and whenever requests r he sends Cy
initially.

Below, we refine the fair interaction property for hidden credentials.

DEFINITION 6.9 FAIR INTERACTION WITH HIDDEN CREDENTIALS. Let P4 and
Pp be access and disclosure control policies, respectively. The policies guarantee
fair interaction if

20

(1) Pa guarantees fair access and

(2) if Cs is a solution for a request v and Cy is the set of hidden credentials for Cs
then the visible part of Cs is disclosable by Pp U Cy, i.e. Ve € (Cs\Cx), PpU
Cy Ec.

The intuition of fair interaction with hidden credentials is that hidden credentials
in a solution set are all that is needed to obtain the disclosure of the remaining
credentials.

THEOREM 6.4. COMPLETENESS FOR A COOPERATIVE CLIENT WITH HIDDEN
CREDENTIALS. Let P4 be an access policy, Pp be a disclosure policy and r a
request. If P4 and Pp guarantee fair access and interaction then if a cooperative
client with hidden credentials Cy for v has a solution set Cs with respect to Cy; then
the client always gets grant r with the access control algorithm.

PROOF. Refer to Appendix A. O

7. IMPLEMENTING THE ACCESS CONTROL FRAMEWORK: IACCESS SYSTEM

This section describes an implementation of the access control framework called
iAccess.

7.1 Use of answer set programming solvers (ASP)

With the increase of computational power over the last decade, ASP solvers have
become very efficient tools* that can compute results in few seconds even with
several thousands of atoms and rules. It makes them highly suitable for access
control engines especially when scaling to hundreds of access rules, constraints, and
user roles and tasks.

We use DLV® system as a back-end engine for the basic computations of de-
duction and abduction. DLV is a disjunctive datalog system with negations and
constraints under the stable model semantics. DLV has variety of front-ends fa-
cilitating different computations. Among them the two front-ends relevant to our
purposes are: the disjunctive datalog front-end (the default one) used for deductive
computations and the diagnosis front-end used for abduction computations.

We use DLV’s default front-end with input a service request marked as a query
over the second argument the access policy to check whether the request is granted
by the policy. DLV output of this step is whether the request is true or false in all
stable models of the policy.

We use DLV’s default front-end with input a disclosure policy union a set of
presented credentials in order to compute all disclosable credentials.

We use the abduction diagnosis front-end with input a service request stored
in a temporary file with extension obs, a set of disclosable credentials stored in a
temporary file with extension hyp and, the third argument, an access policy union a
set, of presented credentials. The file with extension hyp points to a set of hypotheses
and the file with obs points to a set of observations. The DLV output of that step

4See benchmarks of ASP solvers http://asparagus.cs.uni-potsdam.de
5www.dlvsystem.com

21

are all subsets (subset minimal) of the hypotheses that satisfy the observations. In
that way we find all missing sets of credentials satisfying the request.

On top of the missing sets we filter them according to some minimality criteria.
We have adopted the sequence first role minimality then set cardinality. For doing
so, we include extra information to the credentials in the hypotheses, specifying a
credential weight or its position in the role-lattice hierarchy. Then we select the
set(s) with the lowest role-position values. After obtaining the minimal set we drop
the extra information from the credentials that are to be sent to a client.

7.2 Integration with X.509 standard

We adopted X.509 [X.509 2005] certificate standard for attesting participants iden-
tities and attributes. There are two certificate types considered by the standard:
identity and attribute certificates. Figure 8 shows the structures of the two certifi-
cates.

\| X.500 Subject |\ \| X.500 Holder |\
|| Public Key || |I[Attributes |
‘| X.500 Issuer |‘ ‘| X.500 Issuer |‘
‘| Expiration date |‘ ‘| Expiration date |‘
‘| Serial Number ” | Serial Number :
‘| Extensions |‘ : Extensions |
__ Certificate Info || | Certificate Info |
| CA Digital Signature | | SOA Digital Signature |
Identity Certificate Attribute Certificate

Fig. 8. X.509 Identity and Attribute Certificates Structure

X.509 identity certificate is used to identify entities in a network. The main fields
of the certificate’s structure are the subject information, the public key identifying
the subject (corresponding to the subject’s private key), the issuer information and
the digital signature on the document, signed by the issuer (with its private key).
X.509 attribute certificate has the same structure like the identity one with the
difference that instead of a public key field there is a field for listing attributes and
the subject field is called holder (of the attributes).

As already noted in Section 5, we need a way to semantically convert X.509
certificates to internal policy compliant representation. We adopted the following
transformations:

—An identity certificate to certificate(subject, Issuer: i) predicate identifying
entity subject stated by authority i.

—An attribute certificate to credential(holder, Attr: a, Issuer: i) predicate
attesting that the holder has an attribute a issued by authority i.

22

The logical model has the following two sets of predefined identifiers regarding cre-
dential transformations: Attr for attribute identifiers and Issuer for certificate
authority identifiers. We developed a semantic conversion module that has a pre-
defined database specifying certificate to credential conversions including transfor-
mations between public keys of trusted CAs and SOAs and their logical identifiers
as well as transformations between attribute values and their logical representation.

The semantic conversion module has also the responsibility to properly convert
internal credential values to values compliant with the external domain a request
comes from.

7.3 Integration with SAML standard

We have adopted OASIS SAMLS standard for having standard semantics of autho-
rization statements among participants in an autonomic network. SAML offers a
standard way of exchanging authentication and authorization information between
on-line partners. The basic SAML data objects are assertions. Assertions contain
information that determines whether users can be authenticated or authorized to
use resources. The SAML framework also defines a protocol for requesting asser-
tions and responding to them, which makes it suitable when modeling interactive
communications between entities in a distributed environment.

A client uses SAML Authorization Decision Query statement to specify a resource
name and a resource action when requesting a service. Once a SAML request is re-
ceived iAccess extracts the Authorization Decision Query and invokes the semantic
conversion module for transforming it to a predicate of the logical model. We have
adopted the transformation Authorization Decision Query to grant(Resource: r,
Action: p) where Resource and Action are predefined sets of identifiers considered
in the logical model.

Once an access decision is taken, iAccess generates a SAML response part in-
capsulating a SAML Authorization Decision assertion. The authorization decision
assertion has three types of decision values: permit, deny and indeterminate.

—Permit or Deny decision is used when the access control algorithm explicitly
returns grant or deny.

—Indeterminate decision is used when ask(Ca¢) is returned.

iAccess uses the SAML standard attribute assertions to list the set of missing
credentials. For each certificate(subject, issuer) the semantic conversion module
generates a SAML assertion with an authentication statement detailing subject and
issuer fields. In case of credential(holder, attribute, issuer) the semantic conversion
module generates a SAML assertion with an attribute statement. The inconve-
nience with SAML v1.1 is the fact that issuer field is designed as an attribute to
an assertion element and not as separate element having its own generalized name
identifier. The standard issuer field of a SAML assertion has the semantics of the
entity issued the assertion, in our case it is the iAccess system. As so we had
to provide the information for a potential issuer of an attribute by means of an
additional attribute field in the attribute statement listing the missing credential.

Shttp://www.oasis-open.org/committees/security

23

iAccess
e —— = — = — = — = = = — — =
DLV Access Policy Disclosure Policy
Engine /Datalog/ /Datalog/

¥ v '

Interactive Access Control ‘

‘ 1

ccess Decision Level

Session Data ‘

= g - — e

- - N
‘ Local—to—Extemal} Semant%c } External-to-Local Env/C_ontext |
I Conversion I Attributes
= v \
| > |
Q X.509 X.509
) . X AML
o XML Signature Attribute Certs| |Identity Certs S \
| 2 Time stamp
& e \
| E } \ﬂ'u;léa ! |
& - S0As !
—ouTREIS. — — — — = -
SOAP Rc@&, _ “AOAP Request
= o <= SOAPEnvefope ——
g g | SOAP Request / Response \
s3] HTTP/SSL/TCP/IP \
F
Fig. 9. iAccess Architecture

7.4 iAccess Architecture

To make the access decision engine Web Services compatible we also adopted W3C
SOAP” as a main transport layer protocol. SOAP is a lightweight protocol for
exchanging structured information in a distributed environment. It has an optional
Header element and a required Body element. Informally, in the body we specify
what information is directly associated with the service request and in the header
additional information that should be considered by the end-point server.

To request for an access decision on a message level one has to:

(1) place SAML Request in the SOAP Body thus making it an input to the decision
engine being invoked and

(2) attach X.509 Certificates in the SOAP Header using WS-Security® specification
for that.

Figure 9 shows iAccess system architecture. The bottom most layer comprises
the integration of the prototype with the Tomcat® application server. To ensure
message confidentiality on the transport layer one can perform all interactions over
an SSL connection.

When the Tomcat server receives an access request it invokes the iAccess engine

"http:/ /www.w3.org/ TR /soap
8http://www.oasis-open.org/committees/wss
9http://tomcat.apache.org

24

for an access decision. iAccess parses the SOAP envelope, containing the body and
the header elements, extracts X.509'C identity and attribute certificates, and the
SAML!! request protocol.

Next, iAccess validates and verifies the certificates and invokes the semantic
conversion module with input the certificates and SAML authorization request. The
verification against trusted CAs and SOAs is to identify internally those authorities
that are known and trusted by a server. Those authorities unknown to a server are
internally represented according to some default criteria, e.g. by using authorities’
common name (CN) of the X.500 structure.

We note that the semantic conversion database is dynamically allocated and
loaded depending on the domain the request comes from.

Once an access decision is taken iAccess invokes the conversion module for trans-
forming grant, deny or additional credentials onto a SAML decision assertion that
is then wrapped in a SAML Response. Next, iAccess places a time-stamp for valid-
ity period on the decision statement and digitally signs it to ensure integrity of the
information. Tomcat server returns the SAML decision to the entity requested it.
When the SAML assertion is received it becomes an authorization certificate that
is to be presented to an application enforcement module for providing access to a
resource.

Envr/Context module provides the environment and context attributes that ac-
cess and disclosure policies are sensitive against (e.g. system time and state, net-
work endpoint address etc).

8. IACCESS PERFORMANCE EVALUATION

We will present iAccess time response evaluation in three parts: PKI/PMI part,
access decision part and total time response. The PKI/PMI part covers the extrac-
tion of X.509 certificates and SAML request, certificate validation and verification,
and logical predicates transformation. The second part corresponds to the actual
interactive access control algorithm functionality. The overall time response in-
cludes the time response of PKI/PMI part, the access decision part and the time
response of the conversion module for generating a digitally signed SAML response
element containing the access decision.

We run the iAccess system on the access control policies described in Section 5.
All the tests have been run on a PC with Windows XP, Intel Pentium 4 processor
on 2 Ghz and 512 Mb of RAM.

Figure 10 shows the first set of trials. The performance has been measured
in milliseconds and rounded to seconds when displayed on the diagram. We have
invoked iAccess server 11 times with different number of X.509 certificates. For that
purpose, we generated X.509 attribute certificates with roles fraunhofer employee(1
to fraunhofer employee97. Each trial has been done with increase of 10 certificates
and the last one with input of 100 certificates.

Each trial had an input the three certificates for Alice Milburk employee, Fraun-
hofer identity certificate and Fraunhofer accredited institution, and the remaining
certificates from the newly generated ones, i.e. first trial with 2 of the new certifi-

10X.509 technology provider: http://www.bouncycastle.org
I1SAML technology provider: http://www.opensaml.org

25

seconds
N
L

— PKI/PMI
0,88

— Access decision

0,08°006 0,08 0,08 0,08 0,08 0,08 0,08 0,09 0,08 0,09

5 10 20 30 40 50 60 70 80 90 100 # X509 certs

Fig. 10. iAccess performance with increasing input of X.509 certificates

cates, second with 7, third with 17 and so on and the last one with 97. Each trial
specified access request for conf permission so that the system had to compute a set
of missing credentials (in our case juniorScientist) for every request, thus obtaining
the maximum system load.

The positive outcome of the first set of trials is that even with 100 certificates
still the iAccess system response to take a decision is around 1 second. We conclude
that the number of certificates and its respective cryptographic operations are not
a bottleneck for the iAccess timely decision. The generation of a digitally signed
SAML response remained within the range of 70-150 milliseconds for all the trials.

However, what we observed was that the access decision time remained less that
100 milliseconds for all the 11 trials while only the PKI/PMI part increased with the
increasing number of certificates. So, the total time response has been influenced
mainly by the PKI/PMI part.

The explanation for that is the way the access decision algorithm functions. In
case of not enough access rights the algorithm computes the set of disclosable cre-
dentials and then invokes the abduction reasoning with input the set of credentials
marked as hypotheses. If we look at the disclosure policy (Fig. 7) we can immedi-
ately find out that whatever credentials we input the disclosure policy releases only
the 9 roles we have in the hierarchy and the 4 certificates of trusted CAs and SOAs.
Thus with the increased number of client’s certificates the number of hypotheses
to the abduction engine remained unchanged — 10 facts — and so the engine took
the same time to compute a set of missing credentials. We remind that from the
disclosable credentials we remove all presented credentials, in our case the three
certificates for an employee, legal key holder and accredited organization.

Figure 11 shows the second set of trials but this time with increasing number of
hypotheses on each trial. We modified the disclosure policy (by adding new rules)
such that for each presented credential in the range employee01 to employee97 the

26

seconds

216,54 — Total
216;34 — Access decision

100 -

80
60 1
40 4 0,74 1,39 2,74 5,56 1135
20 | 263 542 :
0,11 0,13 0,13. — PKIPMI
0+ . . .
&) Q) G Q) \ Q) N SN N\ # X509 certs(#hyp)
N N N’ N N N N
& A PN o o RS AR R o

Fig. 11. iAccess performance with increasing input of X.509 certificates and dynamic hypotheses

policy discloses a new credential juniorScientist01 to juniorScientist97, respectively.
Additionally, we specified that each juniorScientistXX dominates the basic role
juniorScientist. In this way with increase number of input certificates we increase
the number of hypotheses to the abduction engine.

We have done 9 trials but this time staring with 6 certificates and increasing with
1 on each trial. On the horizontal axis we denote the number of input certificates
and in brackets the number of hypotheses feed to the abduction engine. With 13
hypotheses the access decision time is 630 milliseconds and with 21 hypotheses (14
input certificates) the time response is approximately 3 and a half minutes. The
PKI/PMI part remained imperceptible with respect to the access decision time.
We refer to [Eiter and Gottlob 1995] for a comprehensive reading of abduction
complexity.

However, the conclusion from the second set of trials is that with 16 possible roles
in an organization the iAccess system would give access decision results within a
reasonable amount of time (approx. 6 seconds) taking into account that for any
request potentially all roles are disclosable. As of now iAccess could be suitable for
small and medium size enterprises (SMEs).

The main factor for the potential number of rounds needed to grant a service is
the complexity of the access policy and particularly how many possible solutions
exist for a service.

9. CONCLUSIONS

We have proposed a framework for access control for autonomic communication.
The key idea is that in an autonomic network a client may have the right set of
credentials but may not know it and an autonomic server needs a way to interact
and communicate with the client missing credentials that grant access.

We have proposed a solution to this problem by extending classical policy-based
access control models with an advanced reasoning service: abduction. Built on top
of it, we have presented the interactive access control algorithm that computes on

the fly missing credentials that entail a request.

We enriched the framework over the existing policy-based approaches for access
control by introducing the difference between monotonic and well-behaved policies
and between disclosable and hidden credentials.

The first distinction extends our work on a wider set of policy languages with
respect to the already existing approaches [Bonatti and Samarati 2002; Yu et al.
2003; Kapadia et al. 2004; Bertino et al. 2004; Constandache et al. 2007]. The
latter distinction addresses the behavior of an autonomic server by allowing it to
dynamically protect the privacy of its policies by specifying which credentials are
hidden and which are not.

We have shown that the access control framework is sound and correct. We
have presented an implementation of the model called iAccess and its performance
evaluation.

Future work is to extend the interactive model to cope with automated credential
discovery. The aim is to leverage the interactive access control process and reduce
the number of credentials requested to a client.

Another direction of future work is researching what guarantees the interactive
framework offers in terms of interoperability when applied to existing negotiation
systems such as TrustBuilder[Winslett et al. 2002], Trust-X [Bertino et al. 2004]
and PeerTrust [Nejdl et al. 2004].

REFERENCES

APpT, K. 1990. Logic programming. In Handbook of Theoretical Computer Science, J. van Leeuwen,
Ed. Elsevier.

BASELICE, S., BONATTI, P. A., AND FAELLA, M. 2007. On interoperable trust negotiation strate-
gies. In Proceedings of IEEE International Workshop on Policies for Distributed Systems and
Networks (POLICY’07). IEEE Computer Society, 39-50.

BERTINO, E., CATANIA, B., FERRARI, E.; AND PERLASCA, P. 2001. A logical framework for rea-
soning about access control models. In Proceedings of the Sizth ACM Symposium on Access
Control Models and Technologies (SACMAT). ACM Press, 41-52.

BERTINO, E., FERRARI, E., AND SQUICCIARINI, A. C. 2004. Trust-X: A peer-to-peer framework for
trust establishment. IEEE Transactions on Knowledge and Data Engineering 16, 7, 827-842.

BoNATTI, P. AND SAMARATI, P. 2002. A unified framework for regulating access and information
release on the web. Journal of Computer Security 10, 3, 241-272.

CONSTANDACHE, 1., OLMEDILLA, D., AND SIEBENLIST, F. 2007. Policy-driven negotiation for autho-
rization in the grid. In Proceedings of IEEE International Workshop on Policies for Distributed
Systems and Networks (POLICY’07). IEEE Computer Society, 211-220.

DamiaNou, N., DuLAy, N., Lupu, E., AND SLOMAN, M. 2001. The Ponder policy specification
language. In Proceedings of the International Workshop on Policies for Distributed Systems
and Networks (POLICY’01). IEEE Computer Society, 18-38.

DE CAPITANI DI VIMERCATI, S. AND SAMARATI, P. 2001. Access control: Policies, models, and
mechanism. In Foundations of Security Analysis and Design - Tutorial Lectures, R. Focardi
and F. Gorrieri, Eds. LNCS, vol. 2171. Springer-Verlag Press.

E1TER, T. AND GOTTLOB, G. 1995. The complexity of logic-based abduction. Journal of the
ACM 42,1, 3-42.

GELFOND, M. AND LIFSCHITZ, V. 1988. The stable model semantics for logic programming. In Pro-
ceedings of the Fifth International Conference on Logic Programming (ICLP’88), R. Kowalski
and K. Bowen, Eds. MIT-Press, 1070-1080.

KAPADIA, A., SAMPEMANE, G., AND CAMPBELL, R. H. 2004. Know why your access was denied:
regulating feedback for usable security. In Proceedings of the 11th ACM conference on Computer
and Communications Security. ACM Press, New York, NY, USA, 52-61.

28 .

KosHUTANSKI, H. AND MassAccl, F. 2007. A negotiation scheme for access rights establishment
in autonomic communication. Journal of Network and System Management (JNSM) 15, 1,
117-136. Springer press.

L1, J., L1, N., AND WINSBOROUGH, W. H. 2005. Automated trust negotiation using cryptographic
credentials. In Proceedings of the 12th ACM conference on Computer and Communications
Security. ACM Press, New York, NY, USA, 46-57.

L1, N., GRosoF, B. N., AND FEIGENBAUM, J. 2003. Delegation logic: A logic-based approach
to distributed authorization. ACM Transactions on Information and System Security (TIS-
SEC) 6,1, 128-171.

L1, N. AND MITCHELL, J. C. 2003. RT: A role-based trust-management framework. In Proceedings
of the 3rd DARPA Information Survivability Conference and Ezposition (DISCEX III). IEEE
press, Los Alamitos, California, 201-212.

LYMBEROPOULOS, L., Luru, E., AND SLOMAN, M. 2003. An adaptive policy based framework for
network services management. Journal of Network and Systems Management 11, 3 (Septem-
ber), 277-303.

NEJDL, W., OLMEDILLA, D., AND WINSLETT, M. 2004. PeerTrust: Automated trust negotiation for
peers on the semantic web. In VLDB Workshop on Secure Data Management (SDM). Lecture
Notes in Computer Science, vol. 3178. Springer, 118-132.

SANDHU, R., COYNE, E., FEINSTEIN, H., AND YOUMAN, C. 1996. Role-based access control models.
IEEE Computer 39, 2 (February), 38-47.

SEAMONS, K. AND WINSBOROUGH, W. 2002. Automated trust negotiation. US Patent and Trade-
mark Office. IBM Corporation, patent application filed March 7, 2000.

SHANAHAN, M. 1989. Prediction is deduction but explanation is abduction. In Proceedings of
1JCAI’89. Morgan Kaufmann, 1055-1060.

SLOMAN, M. AND Lupu, E. 1999. Policy specification for programmable networks. In Proceedings
of the First International Working Conference on Active Networks. Springer-Verlag, 73—84.
SMIRNOV, M. 2003. Rule-based systems security model. In Proceedings of the Second Interna-
tional Workshop on Mathematical Methods, Models, and Architectures for Computer Network

Security (MMM-ACNS). Springer-Verlag Press, 135-146.

SPKI. 1999. SPKI certificate theory. IETF RFC 2693.

WEEKS, S. 2001. Understanding trust management systems. In IEEE Symposium on Security
and Privacy (SS&P). IEEE Press.

WINSLETT, M., YU, T., SEAMONS, K., HESS, A., JACOBSON, J., JARvIs, R., SMITH, B., AND YU,
L. 2002. Negotiating trust in the Web. IEEE Internet Computing 6, 6 (Nov/Dec), 30-37.

WINSLETT, M., ZHANG, C. C., AND BoNAaTTI, P. A. 2005. PeerAccess: a logic for distributed
authorization. In Proceedings of the 12th ACM CCS Conference. 168-179.

X.509. 2005. The directory: Public-key and attribute certificate frameworks. ITU-T Recommen-
dation X.509:2005 | ISO/IEC 9594-8:2005.

Yu, T. AND WINSLETT, M. 2003. A unified scheme for resource protection in automated trust
negotiation. In Proceedings of the IEEE Symposium on Security and Privacy. 110-122.

Yu, T., WINSLETT, M., AND SEAMONS, K. E. 2003. Supporting structured credentials and sensitive
policies through interoperable strategies for automated trust negotiation. ACM Transactions
on Information and System Security (TISSEC) 6, 1, 1-42.

29

A. FORMAL PROOFS

PrROOF THEOREM 6.1. This proof is rather straightforward. The only way to
introduce a credential in Cp is by step 1 of the algorithm. Since initially Cp =
0 so the client has sent a sequence of sets of credentials C,,...,Cp, such that

Ui Cp; = Cp. So, the client has a set of credentials that unlocks r. [

PROOF THEOREM 6.2. At each interaction the union of presented and declined
credentials always increases. Because at each interaction abduction finds different
solution with respect to the preceding ones then the union sets increases always
with new credentials occurring in the access policy.

Since the union set is bound by the credentials occurring in the policy then there
is always a stage in which either grant (enough presented credentials) or deny (too
many declined credentials) is given. O

PrROOF THEOREM 6.3. We proof the theorem in two parts. First part proves
that in a single interaction if a cooperative client does not get grant r he gets
ask(Cprq), i.e. a cooperative client will not be denied access by the algorithm.
Second part (rather straightforward) shows that since the access policy is finite
then a cooperative client with a solution set for r will get grant r.

Part 1.
Proof by induction on interaction steps:

Interaction 1. Client requests service r together with an initial set of presented
credentials C, = (. Fair access and interaction properties guarantee that: (i) a
solution for r exists according to the access policy P4 and (ii) that solution is
disclosable by the disclosure policy Pp. Therefore, abduction reasoning finds a
solution for r and the algorithm returns it back to the client.

Interaction N. Here we use the induction hypothesis that the client fails to get
grant r and gets ask (Ca¢) at interaction step N-1. Now, suppose that the client
fails to get grant r at interaction N. There are two reasons to fail: either there
is no solution in the set of active credentials Cp that unlocks the request or Cp
makes the access policy state inconsistent so that any solution set in Cp does not
entail the request.

The set of active credentials Cp increases only with credentials that are part of
other solutions for r, i.e. Cp C (Ciq U ... UCRN;") where C}, denotes the set
of missing credentials returned at each interaction preceding the current one.
Here we use the assumption that access policy P4 is well-behaved. According to
Definitions 3.8, 3.7 and 3.6 follows that Cp is subset of a solution set for r (using
the additive property) and is consistent with the access policy.

Therefore, Cp preserves consistency in P4 and the only reason the client fails to
get grant is that there is no solution for r in Cp.

In step 3 the algorithm computes the set of disclosable credentials Cp.

Since P4 and Pp guarantee fair access and interaction then the solution set Cg
that the client has is disclosable — Cs C (Cp U Cp) — and not yet presented —
Cs Z Cp.

Following that, the abduction reasoning will find a solution for r in step 4b and
that solution is guaranteed by the existence of the non-empty set Cs \ Cp:

(i) (Cs \C’p) C Cp and

30

(ii) (CsUCp) C (CL U...UCRTUCs)

(iii) Since P4 is well-behaved follows that CsUCp does not make P 4 inconsistent,
ie. P4UCPUCs £ L.

Following the bullets above the client gets ask(Caq) at interaction step N.

Part 2.
We proved in Part 1 that in a single interaction step if a cooperative client does
not get grant r he gets ask(Caq).

There are a finite number of solutions for each request r simply because P4 con-
sists of a finite number of access rules. The abduction reasoning service at each
interaction computes different solution with respect to the solutions computed in
previous interactions because from the disclosable credentials we remove all creden-
tials that have been already requested to a client (ref. step 4a).

Since there are finite solution sets for r and since the client has one of them
therefore the client in a finite number of interaction steps will be asked to present
Cs,ie. Cs C Cp, and will get grant r. [

PrOOF THEOREM 6.4. Analogously of theorem 6.3 we proof the theorem in two
parts. First part proves that in a single interaction if the client does not get grant
r he gets ask(Caq). Second part shows that in a finite number of interactions the
client will be asked the solution he has and gets grant.

Part 1. Proof by induction on the interaction steps:

Interaction 1. Client requests service r together with an initial set of presented
credentials C, = C3. We apply Definition 6.8 for a client with hidden credentials.
Next, using Definition 6.9 fair interaction with hidden credentials follows that the
solution Cg the client has is disclosable by the disclosure policy and the set Cy.
Next, abduction step will find a solution for r (at least Cs is a potential solution)
and will return ask(Cp,).

Interaction N. Here we use the induction hypothesis that the client fails to get
grant r and gets ask(Cp¢) at interaction step N-1.

Now, suppose that the client fails to get grant r at interaction N. The proof
of this step becomes identical to the respective interaction step in the proof of
Theorem 6.3 taking into account that the client’s solution set Cs is disclosable
by Pp and Cp, because Cy is already in the set Cp.

Then since P4 is well-behaved and P 4 and Pp satisfy fair access and interaction
property follows that the non-empty set Cs\Cp will guarantee that the abduction
reasoning will find a solution for r and the client will get ask(Caq).

Part 2.
The rest of the proof follows the lines of the proof of Theorem 6.3. [

