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Abstract

Corporate insurance contracts providing liability coverage in the event of an information
security breach are increasingly popular. In addition to the obvious use of ‘Cyberinsurance’
as a risk mitigation tool, a public policy narrative has emerged whereby insurance companies
act as a clearing house for information and then provide guidance on appropriate security
investment to firms seeking liability coverage. Utilizing few assumptions, our modeling
framework demonstrates that this view of cyberinsurance as a delegated policy tool is
unlikely to yield the anticipated coordination benefits, and may in fact erode the aggregate
level of security investment undertaken by targets.
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The market for corporate insurance contracts that provide liability coverage in the event
of a security breach to a firm’s IT systems (‘cyber insurance’) has been growing steadily
since the turn of the millennium. As of 2015, this market has grown to around $2.5B in
annual premiums and estimates suggest that is could reach $7.5B before 2020. See O’Hearn
and et al. (2015) for an overview.

From the perspective of a policy maker, both in the U.S. and in Europe, the anticipated
benefits from a cyber insurance market are much higher than a simple financial instrument
for controlling individual corporate risk exposures. For example, the chair of the U.S. Sen-
ate’s Subcommittee on Consumer Protection, Product Safety, Insurance, and Data Security
observed in March 2015:

While an insurer’s primary function is to mitigate financial losses – not
defend against cyber threats – cyber insurance may be a market-led approach to
help businesses improve their cybersecurity posture by tying policy eligibility or
lower premiums to better cybersecurity practices.
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Source: U.S. Senate 2015.1

furthermore

A robust cybersecurity insurance market could help reduce the number of
successful cyber attacks by: (1) promoting the adoption of preventative measures
in return for more coverage; and (2) encouraging the implementation of best
practices by basing premiums on an insureds level of self-protection.

Source: U.S. Department of Homeland Security 2017.2

Similar expectations are held by several high profile cyber security experts such as
(Schneier, 2001, Chapter 5) or Gordon et al. (2003), as well as leading economists (Var-
ian, 2000).

A natural model of multiple target firms, active cyber adversaries, policy maker, and
insurance companies presented in this paper demonstrate that the presence of attackers
reacting to groups of firms security investments generates non-linear dependencies between
firms. More strikingly, it shows that the presence of insurance contracts, either actuarially
fairly or unfairly priced, result’s in a reduction of aggregate security investment and, hence,
an increase in the number of active attackers. Our results contribute to the growing literature
on how to describe interdependencies between agents and the impact on public policy. See
Bramoullé et al. (2014) and Allouch (2015) for recent examples using networks and linear
payoff functions. In our case, the dependency–mechanism, as a result the joint action of
attackers and targets, exhibits substantial non-linearities that are hard to capture with a
standard network model with linear pay-offs.

From a classical perspective, firms with well diversified owners should not buy liability
insurance as managers should reflect the risk neutrality of the diversified owners (Mayers
and Smith Jr, 1987). However, the large corporate liability insurance market and the heavy
demand for financial hedging instruments indicate that firm decision making is most likely
made under a risk averse basis, driven by the corporate officers and their incentives, as argued
by Grossman and Hart (1982). Indeed, Caillaud et al. (2000), propose a model whereby
that risk-neutral firms are ‘induced to risk-aversion’ because the disclosure of ‘accidental-
losses’ that deteriorate the profitability of projects is private to the firm and costly audit
is needed to demonstrate that the ‘accident’ was something that the agents managing the
firm could not control through an appropriate investment, under a risk neutral marginal
cost/marginal benefit trade-off. Furthermore, MacMinn and Garven (2000) argue more
directly that the demand for corporate insurance stems from the firm choices mimicking the
risk averse behavior of its corporate officers, who have significant costs attached to adverse
events through imperfections in the executive labor market and other reputational effects.

The notion corporate officers buy insurance to hedge against risks to their own positions
is empirically investigated from a legal perspective in Baker and Griffith (2007), who use the
demand for corporate liability insurance as a predictor of firms bad corporate governance.
Indeed, Griffith (2006) argues that SEC should mandate insurance details of officers and

1See the minutes of the hearings at http://www.commerce.senate.gov/public/index.cfm/2015/3/

examining-the-evolving-cyberinsurance-marketplace., in addition the Network and Information Secu-
rity (NIS) Directive of the European Union, looks at the role of Cyber insurance in providing forward guid-
ance see http://www.cspforum.eu/uploads/1_Cyber-insurance_and_NISD.pdf and https://ec.europa.

eu/digital-single-market/en/network-and-information-security-nis-directive.
2The full quote is from: https://www.dhs.gov/cybersecurity-insurance, last accessed February 20,

2017. Paragraph 1:2.
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directors liability insurance policies in order to allow investors to police corporate manage-
ment. Hence, there is a substantial case that, in the absence of insurance, risk management
decisions are made on a risk-averse basis, hence the observed demand for liability insurance.

The impact of moral hazard and adverse selection in the presence of insurance has a
long history of investigation in economics – see for instance (Pauly, 1974; Shavell, 1987;
Cornes and Sandler, 1996; Freeman and Kunreuther, 1997) for an eclectic set of examples
that directly relate to the notions of public policy, liability sharing, and insurance considered
herein.

How the presence of insurance and the collective behavior of victims of crimes can influ-
ence the aggregate behavior of the criminals who generate the risks being insured has been
less comprehensively investigated in the literature. Dionne and Wang (2013) have shown that
external environmental conditions affect the distribution of insurance claims and their legit-
imacy in the case of auto insurance fraud. However, Dionne and Wang (2013) suggest that
the systematic factor that varies across all targets is driven by an external macroeconomic
effect and is not fully endogenous.

Some discussion has occurred in the insurance literature on theft – for instance if large
numbers of households buy burglar alarms, the aggregate cost of being a burglar increases as
one needs to invest in specialist skills to bypass alarms or to spend more time searching for
vulnerable homes (Kunreuther and Heal, 2003b). Fewer burglars should then join the market
for burglaries and the actuarial risk of a payout decreases. However, the job selection choice
for burglars is likely to be highly inelastic; there are high costs associated with changing
career and the stigma of prior convictions can result in substantial costs when choosing
an alternative career path. Criminologists commonly refer to the concept of ‘consistency’
in behavior. That is, once a pattern of offending behavior has been established it is very
difficult for the offender to adjust to changing opportunity sets and costs associated with
this behavior.

Kirwan and Power (2013) indicate that individuals and organizations engaged in cyber
crime do not face such difficulties. For example, the choice of a security engineer to work on
either malicious software or software with a legitimate business purpose is simply a matter of
re-tasking oneself.3 See also the discussion in Miller (2007); Johnson (2014) and McCarthy
(2002).

In this paper, we outline a game played between a group of targets who invest in defensive
expenditure to reduce the risk of a successful attack by one or more attackers. Attackers are
modeled as agents in competition with upfront entry costs who infiltrate and expropriate
valuable information from the targets. Into this game we introduce a variety of insurance
contracts and policy driven behavioral restrictions that the insurer can impose on the target.
Our main result is quite surprising. When losses are significant neither the monopolist
insurers nor a fully competitive insurance market have the incentive to reduce externalities
within the market. Furthermore, a rational monopolist insurer would be positively assuaged
towards inflating the cyber threat by mandating insufficient security expenditures, as long as
it can identify the actuarially fair price of insurance risk and the maximum quote premium
it can charge to risk averse targets. The fact that attackers react to aggregate investment
changes the opportunity set for a monopolist, hence the effect is almost exclusive to situations
when attackers react relatively quickly to adjustments in target investment.

The next section, §(1), outlines the mathematical description of target firms, attackers,

3The recent disclosure of the emails of the Italian “HackingTeam” organization showed that
the same software and services were sold to the FBI, the Italian Police, Russian Hack-
ers, and the Sudanese Intelligence. See http://www.theguardian.com/technology/2015/jul/06/

hacking-team-hacked-firm-sold-spying-tools-to-repressive-regimes-documents-claim.
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insurers, and a public policy coordinator. In §(2), we present baseline equilibria where
heterogeneous targets self protect with and without a policy coordinator. §(3) compares the
self-protection equilibria in several insurance market models including a monopoly insurer
and actuarially fair insurance with a public policy coordinator. We illustrate our general
results with two numerical examples in §(4) In one example, a continuum of identical firms
is used to explain the insurance trap graphically. In the other example, a continuum of firms
of two types (large and small) is used to show that the potential response of attackers to
the perceived vulnerability of targets can cause large changes in security expenditures. We
provide a general summary and some natural extensions in §(?).

1. Modeling Assumptions

We use fully-informed agents for two reasons. First, there is no consensus in the com-
puting science literature on who are the better informed parties and what are the types of
information asymmetries that occur. Second, we are interested in exploring the new public
policy issues raised by our model in the simplest plausible setting before adding complica-
tions.4

The timeline of the games is as follows: for our first game, in the absence of insurance
or a regulator, targets and attackers simultaneously choose their optimal expenditure and
participation in the “market for attacks”. In game two, a public policy coordinator initially
sets a mandatory investment profile and in the second stage attackers choose their optimal
participation.

In game three, targets simultaneously choose whether or not to buy an actuarially fair
insurance contract as well as their levels of security expenditure. At the same time, attackers
choose whether or not to participate in an attack given their forecast of the profile of security
expenditures. We make the standard assumption that a competitive insurance market with
full information will result in the provision of actuarially fair insurance policies without
further modelling the behaviour of insurers.

In game four, we combine games two and three to illustrate the joint impact of regula-
tion and insurance. As in game two, the public policy coordinator mandates the security
investment for each target in the first stage of the game. In the second stage, targets si-
multaneously decide whether or not to purchase actuarially fair insurance in a competitive
market while attackers simultaneously decide whether or not to participate in an attack.

Finally, in the first stage of game five, we relax the actuarially fair insurance assumption
and model a monopoly insurer making a take-it-or-leave-it offer of an insurance contract
tailored for each target. In the second stage of the game, targets simultaneously decide
whether or not to accept the monopolists offer. If targets accept the contract then their level
of security expenditure is set by the contract. If a target rejects the monopolists offer, then
the target also chooses its level of security expenditure. Also in the second stage, attackers
simultaneously choose whether or not to participate in an attack.

1.1. Targets Assumptions

Each target i ∈ {1 . . . N} has an endowment of assets Wi > 0 and, in the event of a
successful cyber attack, is subject to losses Li where Li > 0. Each target makes a security
investment xi, where 0 ≤ xi < Li and is targeted by a number of attackers ni where

4Without irony Pal et al. (2013) provides a summary of how a cyber security vendor acting both as security
provider and as insurer can extract a sizeable rent, even under symmetric information on the actual threat
level.
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0 ≤ ni < ∞. The probability of a successful attack against target i is determined by
its investment xi and the number of attackers ni focusing on this particular target, and
is denoted by σi(ni, xi). For each target there are only two outcome states, “successfully-
attacked” and “not-successfully-attacked”; the probability of each state is respectively σi
and 1− σi.

From this point onwards, we follow Grossman and Hart (1982) and Caillaud et al. (2000)
and when we refer to “target-preferences” or “target-utility” we are referring to the induced
preferences exhibited by the firm reflecting the “transferred” preferences from the corporate
officers to the revealed actions of the firm. We are, of course, not implying that firms have
behavioral characteristics as individuals do.

[A.1] The utility function of the i ∈ {1, . . . , N} firm generated by the preferences of their
corporate officers is denoted Ui(w) over a scalar random wealth variable w ≥ 0. Ui(w) is
an least twice differentiable von Neumann Morgenstern utility function, such that for all w,
U ′
i(w) > 0 and U ′′

i (w) < 0 which are respectively the first and the second derivatives of Ui(·)
w.r.t. w.5

For compactness we define the following notation convention, let F (.) be an at least
twice differentiable continuous function with vector of arguments θ = [θj ] we utilize exten-
sively an elasticity operator, eF (θ),θi := (F (θ)/θi)/(∂F (θ)/∂θi). Furthermore, when θi is
not explicitly defined we presume that the elasticity is in terms of xi. Hence, e∆Ui(xi) =
e∆Ui(xi),xi

. Finally, in certain cases we need to define a second order elasticity of the form
eF ′

θj(θ),θi
:= (F ′

θj(θ)/θi)/(∂F ′
θj(θ)/∂θi). Where F ′

θj(θ) = ∂F (θ)/∂θj . Again, for compact-

ness of exposition, if θi is not explicitly defined, for instance eF ′(θ) or then it is presumed
that θi = θj = xi, hence a second order elasticity in xi.

The expression ∆Ui(xi) = Ui(Wi − xi) − Ui(Wi − xi − Li) denotes the drop in utility
between the two outcome states for a given investment xi. Notice that σi∆Ui captures the
expected drop in utility in case of a successful attack. The elasticity e∆Ui with respect to the
security investment xi intuitively captures the change in utility for an upfront investment,
a sure cost xi from the perspective of a target, to face a possible loss Li. For risk averse
targets (A.1), it is e∆Ui > 0.

Given wealth wi and an expected loss σiLi, we follow (Pratt, 1964, p.124) and define the
risk premium πi, see (Pratt, 1964, p.124), as the amount that would make a risk averse target
indifferent between incurring the certain loss πi + σiLi and being exposed to the uncertain
loss Li with probability σi. We can define the maximum risk premium πmax(wi, Li) as the
maximum of the risk premium πi over all σi. The corresponding probability of loss where
such maximum premium is attained is denoted by σmax(w,Li), and the maximally insurable
loss L(wi, Li) is the sum of the two:6

Ui(wi − πmax − σmax · Li) = σmax · Ui(wi − Li) + (1− σmax) · Ui(wi) (1)

L(wi, Li) = πmax(wi, Li) + σmax(wi, Li) · Li (2)

For a risk averse target, under our assumptions, the existence of σmax(wi) and πmax(wi) is
guaranteed by Jensen’s inequality and the mean value theorem.

For a risk neutral target, the risk premium pii is equal to zero, for all values of wi, σi and
Li. Hence, πmax(wi) = 0 and σmax(wi) can take any value in [0, 1]. Note that, in either case,

5Corporate liability insurance is expected to cover large losses (O’Hearn and et al., 2015) and therefore
the critique of expected utility theory by Rabin (2000) may not apply as it concerns decisions for lotteries
with small stakes.

6(Pratt, 1964, p.124) refers to the sum πi + σiLi, without maximization, as the ‘insurance premium’.
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the maximum risk premium, the quantity σmax(wi) and hence, the the maximally insurable
loss do not depend on the actual probability of loss σi.

For an individual firm, there may only be a discrete set of possible investments in security
controls. For the population of targets, the assumption of a continuous probability function
ensures tractability and ease of exposition. Hence, we assume that the probability of a
successful attack σi(xi, ni) against target i is at least twice differentiable in xi and ni.

The properties described below are well understood properties for implementing secu-
rity controls. Once simple controls are implemented, the cost for marginal improvement in
security will increase, with increasing rapidity (Gordon and Loeb, 2002).
[A.2] The quantity σi(·) is a strictly increasing function of the number of attackers; that is
∀ni (∂σi/∂ni > 0). In the absence of attackers the probability of a successful attack is zero:
∀xi, ni = 0 implies σi = 0, .

[A.3] For all ni > 0, the quantity σi(·) is continuous strictly decreasing with increasing
investment by target i in security investment, for all xi ≥ 0 (∂σi/∂xi < 0). The marginal
probability of a successful attack with respect to the number of attackers also decreases with
increasing security expenditure (∂(∂σi/∂ni)/∂xi ≤ 0).

[A.4] The rate of reduction in σi(·) with increasing xi is strictly decreasing with increasing
defensive expenditure, for all xi ≥ 0 (∂2σi/∂x

2
i > 0).

In our approach, externalities between targets are entirely driven by the aggregate reac-
tion of attackers ni. It is possible to extend the formal treatment by imposing an explicit
externality which directly link the collection of investments x−i = [xj ]j ̸=i of other targets to
the probability σi of a successful attack on target i. This approach is pursued by Kunreuther
and Heal (2003a,b) which explicitly considers externalities in the utility function in terms
of all x whilst holding n constant. Our approach introduces a new channel by which exter-
nalities between targets can occur, and it seems sensible to first investigate this new effect
in isolation without complicating matters further by adding direct dependencies between
targets. Furthermore, our channel is a result of underlying behavior and does not rely on
exogenous imposition of mutual dependencies between targets.

For the success probability, it is useful to consider two elasticities in the security expen-
diture xi which capture the marginal effectiveness of security expenditures: the elasticity of
the marginal increase in attack probability for increasing security expenditures e∂σi/∂xi

, and
the elasticity of the marginal increase in attack probability for increasing number of attackers
e∂σi/∂ni

. Both elasticities are less than zero as the probability diminishes with respect to
increasing security expenditure. Their absolute value can be considered as an indication of
the effectiveness of security expenditures. If the success probability can be decomposed into
two separate multiplicative components σi(xi, n) = fi(xi) · gi(n), one depending only from
ni and one depending only from xi, then the marginal elasticity in the increasing number of
attackers coincides with elasticity of σi in xi, that is e∂σi/∂ni

= eσi .
7

1.2. Attacker Assumptions

Cyber attacks against each target i are attempted by a fraction of attackers ni from
a large pool of NA potential attackers8. To mount an attack, an attacker must spend an

7A simple functional form that satisfies this condition is σi = e−αixinβi
i where αi > 0 and 0 < βi < 1

are positive scalar parameters and σi ∈ [0, 1] has an upper bound in lnni = αi/βix. In this case we have
eσi = e∂σi/∂xi

= −αi. Multiplicative forms have also been considered by Gordon and Loeb (2002); Kunreuther
and Heal (2003a); Cavusoglu et al. (2008).

8Similarly to Ransbotham and Mitra (2009) we distinguish between ‘advanced persistent threats’ and
‘large scale’ attacks. The former are highly idiosyncratic risks are commonly covered under national security
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upfront cost Ci and, if the attack is successful, realizes a reward Ri.
9

Note that the attackers cost, Ci, and reward if successful, Ri, are allowed to depend on
the target i but not on the identity of the particular attacker.

[A.5] Attackers are risk neutral and make binary attack or no-attack decisions if the market
conditions are favorable.10 Each additional attacker against target i increases the saturation
of the market and reduces the overall marginal benefit for all attackers: ∂

∂ni

∑N
i=1(Ri σi −

Cini) < 0.
The second part of A.5 does place a natural limit on the overall expected reward: attacks

cannot be used as “money pumps” to extract arbitrarily large surpluses.

[A.6] The attacker-target matching probability distribution is at maximum entropy.11 Hence,
the probability matching a given j attacker to the i target is random with a probability is
ςi = NA/N and we can assume that ni = n.12

[A.7] In the event of a successful attack on target i the successful attacker does not share
this reward with other attackers attacking the target and no further attack will generate
any reward.13 Further, when looking at the aggregate, the cost of the infrastructure can be
assumed to be relatively constant Ci = C.14 We denote the rate of return on C for a given
reward Ri for an attack on the i target as Ri/C = ρi.

1.3. The Cyberinsurance Market

Let the i-th target have an available insurance contract described by the three-tuple
(qi, ℓi, xi). The quantity qi specifies the premium or quote paid upfront by i prior to any

rather than criminal or commercial liability governance. Further, recent studies estimate only few attacks
are of the latter type Bilge and Dumitras (2012). Also in (Verizon, 2016, page 22), in spite of the front cover
fanfare, cyber-espionage incidents totaled for a paltry 247 out of 64,199. In contrast, large-scale attacks affect
individuals Grier et al. (2012), organizations Ransbotham and Mitra (2009), and industrial systems Nicholson
et al. (2012) alike. Verizon (2016) reports that Crimeware and Web attacks alone represents over two thirds
of the attacks of the financial sector, a figure aligned with the attack trend quantified by Google’s researchers
in Rajab et al. (2011).

9 Attackers’ rewards Ri are distinct from targets’ losses Li as they might be captured by different utility
functions ranging from financial rewards (Hutchings and Clayton, 2016) to political gains (Li et al., 2011),
from machines to be resold on black markets (Allodi et al., 2016) to kudos in forums (Ooi et al., 2012).

10The common knowledge of attack opportunities is due to the propensity of attackers to communicate
success and failures through online forums Ooi et al. (2012); Allodi et al. (2016).

11Assumption A.6 may appear restrictive from an economic perspective. However, exploits kits – represent-
ing two thirds of the threats against end users according to Google (Rajab et al., 2011) –, phishing attacks
(Moore and Clayton, 2009), and most advanced persistent threats (Li et al., 2011) exploit the victim’s clicks
on a link in a web site, an email, or in a crafted document that is redirected to a place where malware is then
provisioned to the visitor instead of ‘normal’ web content (Kotov and Massacci, 2013). Such technologies
substantially reduce the costs of attack campaigns (Grier et al., 2012), but make it harder to predict who will
eventually click on a link (ςi) and be specifically targeted by the subsequent attack (σi(·)). To address this
uncertainty, the Rock Phish gang, a specialized ‘enterprise’ in phishing bank credentials, offered to its rogue
‘clients’ a server hosting fake websites from different banks (Moore and Clayton, 2007).

12 One can think of each investment Ci as buying as a service a campaign of nCi attacks across targets
(Grier et al., 2012) and the number of attackers per target n can be thought of as a product n = NA · nCiN

−1.
13Compromised goods (being them machines or credit cards) have very limited values by themselves on

the black markets as the risk of buying ’scams for scammers’ is high (Herley and Florêncio, 2010). A solid
community reputation is needed by a seller to show that its machines are technically compromised but the
reward has not been extracted yet (Allodi et al., 2016).

14Empirical studies demonstrate that exploit-kits only utilize a constant handful of exploits (Kotov and
Massacci, 2013; Allodi and Massacci, 2014) and simple Google searches can be used to automated the recon-
naissance of vulnerable websites to implant links (Moore and Clayton, 2009). For phishing attacks the cost
of the harvesting kit is also limited and the largest cost is the spam campaign a bulk effort from a limited
number of individuals (Moore and Clayton, 2008). In alternative, redirected traffic can be directly bought in
bulk from malvertising providers as illustrated by Sood and Enbody (2011).
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loss at the commencement of the contract. The quantity ℓi ≤ Li denotes the amount of the
deductible or excess that will be left to be paid by target i if a successful attack against it
occurs. Finally, xi denotes the security standard that is mandated by the insurance contract
as a minimum security expenditure required to qualify for insurance.15

[A.8] Cyberinsurance companies are profit maximizers with a risk-neutral break-even re-
quirement for the issuance of coverage at an actuarially fair price.

[A.9] The security expenditures xi are fully auditable, both ex ante and ex post, and the
investment in defensive expenditure is made with commitment.16

[A.10] The insurance company can identify the aggregate number of attackers per target for
a given level of defensive expenditure across the population of targets, both in the presence
or absence of insurance.17 Therefore the provider of the insurance can fully determine the
actuarially fair value of insurance for the i target in the presence or absence of insurance.

2. The Self-Protection Mechanism

2.1. Unregulated Markets

We start our treatment of the model with unregulated targets and and denote by E[Ui(xi)|n]
the expected utility of target i for a security investment xi given an environment with n at-
tackers per target:

E[Ui(xi)|n] = (1− σi(xi, n))Ui(Wi − xi) + σi(xi, n)Ui(Wi − xi − Li) (3)

From A.5 and A.7 is follows that when n attackers attack a single target the first successful
attacker extract the reward Ri and the probability of successfully attacking the i target is
n−1σi(·). At the equilibrium the expected profit of the n attackers per target aggregated
over all possible targets must be equal to the aggregate costs of launching the attacks:∑N

i=1
Ri · 1

n · σi(xi, n) · ςi =
∑N

i=1
ci · ςi (4)

Whilst singularities may exist in the solution n⋆(x) of the entry condition (4), we restrict
our attention to cases when n⋆(x) is continuous with finite first order derivatives. We denote
by n⋆(x) the maximal solution18 to (4) for a given vector x of security investments. A
preliminary result is that the solution n⋆(x) of the Cournot equilibrium for the number of
attackers is decreasing in xi and namely

∂n⋆(x)

∂xi
< 0 where n⋆(x) ≜ max{0, arg solve

n
{n− 1

N

∑N

i=1
ρi · σi(xi, n) = 0}} (5)

15 In the equilibria considered in this paper, insured targets will only choose to pay the security expenditure
mandated by their insurer. Hence, we abuse notation slightly be using xi to denote both the mandated
expenditure and the actual expenditure.

16In the case of a successful attack that results a visible loss, digital forensics experts are recruited to
investigate (Marcella Jr and Greenfield, 2002). Therefore, if a firm committed to set of security investments
in a contract, an insurer can verify their realization either before a security event (Olakunnle, 2014) or after
it (Werlinger et al., 2010).

17This assumption is standard in the insurance literature but less obvious for cybersecurity. The re-
cent initiatives on data sharing by the EU Commission (see the cited NIS Directive) and the US fed-
eral government (https://www.dhs.gov/sites/default/files/publications/Overcoming%20Perceived%
20Obstacles%20White%20Paper_1.pdf), as well as community initiatives such as the VERIS Database
(http://veriscommunity.net) are likely to resolve this issue in the upcoming years.

18A natural assumption is a preference for attackers to enter the market. Therefore the realized configura-
tion in practice would be the one with the largest number of attackers.

8

https://www.dhs.gov/sites/default/files/publications/Overcoming%20Perceived%20Obstacles%20White%20Paper_1.pdf
https://www.dhs.gov/sites/default/files/publications/Overcoming%20Perceived%20Obstacles%20White%20Paper_1.pdf
http://veriscommunity.net


where arg solve{.} returns the argument that is the solution to a non-unary function in
terms of the function’s other parameters. This follows directly from Assumption A.5 by
taking the partial derivative of both side of (5) and observing that A.5 implies N ≥∑N

j=1 ρj
∂
∂nσj(xj , n)

∣∣
n=n⋆(x)

.

By assumption, attackers are in a Cournot subgame, and the Nash equilibrium is defined
over the set of N target firm strategies as the simultaneous solution of all targets i of the
following problem

max
xi

E[Ui(xi)|n] subject to xi ≥ 0 and n = n⋆(x).

in addition the target optimization is subject to problem specific constraints generated by
the specific functional form of Ui(·) and σi(· · · ) chosen.

This is solved by setting the usual first order condition19 ∂E[Ui(xi)|n]/∂xi = 0, substi-
tuting n = n⋆(x) in the resulting derivative, and solving for xi. The simultaneous solution
for every target yields a number of points x∗ that solve the first order condition under the
constraint n∗ = n⋆(x∗).

The fist order condition for the expected utility of targets is expanded as follows:

∂E[Ui(xi)|n]
∂xi

= −E[U ′
i(xi)|n]− Li

∂σi(xi, n)

∂xi
U ′
i(Wi − xi − L(Wi − xi, Li)). (6)

This decomposition contains a positive term and a negative term which capture the interplay
between the risk aversion of the target and the marginal effectiveness of self-protection
expenditures. The first term is negative and captures the unwillingness of the target to
increase its spending to counter marginal increases in risk. The second term increases along
the effectiveness of security expenditures, and is amplified by marginal utility of the risk
averse target at the point of the maximally insurable loss.

To illustrate the properties of the model, we first consider the case of the risk neutral
target. If target i is risk neutral its expected utility is simply the expected net monetary value
of its assets E [xi|n] = Wi − xi − σi(xi, n)Li. In the insurance literature the probability of a
negative event is usually only affected by the type of the individual (e.g. Einav et al. (2013))
or exogenous parameters (e.g. Dionne and Wang (2013)) In our scenario, the probability
σi is partly determined by the strategic effort of the agent (xi) and this by itself has a
major impact. Since the function σi is convex in the security investment argument (A.3 and
A.4) the expected utility of the risk neutral target is no longer a straight line which would
have made the optimal value of security investment to 0. The optimal level of defensive
expenditure is obtained by simultaneously setting to zero for all target i = 1 the usual first
order condition:

∂σi(xi, n)/∂xi = −1/Li where n = n⋆(x) (7)

Given the assumptions on σ a solution for the Nash equilibrium, x♯ ≥ 0 always exists and is
unique. The expenditure x♯i also represents the overall optimal expenditure for unregulated
risk-averse target in presence of actuarially fair insurance. We discuss this issue in Section 3.1.

To show existence and unicity of a Nash equilibrium one could follow Theorem 8 of
Rosen (1965) and show that the entry condition in (1.2) describes a convex set of admissible

19In the general case where externalities are explicitly considered both in the utility functions and in the
probability of a successful attacks, the general solution would need to solve the equation diag(∇E[u(x)|x, n]) =
0 subject to n = n⋆(x), where 0 is an N length null vector and u is the vector of all utility functions u =
[Ui]i∈{1,...,N}. In our model ∂E[Ui(xi)|n]/∂xj ] = 0, for all j ̸= i by assumption as all externalities are captured
by the n term. At the equilibrium n must be replaced by n⋆(x) and thus ∂/∂xj(∂E[Ui(xi)|n]/∂xi|n=n⋆(x))
is in general different from zero.
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points and restrict the analysis to models with global diagonal strict concavity as the latter
guarantees that any sequence of optimizing changes starting in x would eventually lead to the
attractor x∗ corresponding to the Nash equilibrium20. However, the diagonal strict concavity
assumption may be overly restrictive as several interesting cases exist for which it does not
hold21.

In practice, targets are unlikely to start from a very high level of security expenditures
close to their upper bound Li. Hence, we restrict our analysis to a bounded subset around
the origin including the first solution (if any) to the Nash equilibrium i.e. for xi ∈ [0, x̄i]
such that x∗i ≤ x̄i where x∗i is the smallest solution to (6). In this case a simultaneous Nash
equilibrium always holds by setting three conditions on the elasticity of the drop in utility,
e∆Ui .

Proposition 2.1
A solution to the first-order condition x∗ ∈ [0, x̄] is a unique and stable Nash equilibrium in
the region [0, x̄] if (i) the elasticity of the drop in utility is smaller than the elasticity of the
marginal increase in successful attack by changing the number of attackers, e∆Ui ≤ −e∂σi/∂n,
(ii) it is also smaller than half of the elasticity of the marginal increase in successful attack
by changing security expenditures, 2e∆Ui ≤ −e∂σi/∂xi

, and (iii) in the absence of security
investments, x = 0, n0 = n⋆(0), it must be smaller than the combination of the elasticity of
probability of a successful defense and the marginal utility discounted by the expected drop
in utility e∆Ui(0) ≤ −eσi(0,n0) − U ′(Wi)/(σi(0, n0)∆Ui(0)).

Under our general assumptionsA.1–A.7 and the above conditions (i) and (ii) in the region
[0, x̄], the marginal utility of the targets evaluated at n = n⋆(x) is a monotone decreasing
function on the constrained surface determined by the attackers’ entry condition. Condition
(iii) implies that the function that has an initial positive point at x = 0 and therefore
x∗ ∈ [0, x̄] is a maximum.

All three conditions compare the elasticity of the gain derived from a security investment
(e∆Ui) with the ability of the same target to obtain such a gain by investing xi. The relative
weight of condition (i) and (ii) tells us that in comparison to the potential gap from security
expenditures (e∆Ui) the direct impact of security expenditures (e∂σi/∂xi

) can be half the size
of the the potential indirect impact (e∂σi/∂n). Since e∆Ui(xi) > 0 for a risk averse target
(from A.1), condition (i) is possible from assumption A.2 and the second part of assumption
A.3 which guarantees that e∂σi/∂n < 0. The possibility of condition (ii) to be true rests on
assumptions A.2 and A.4 which make e∂σi/∂xi

< 0.
Condition (iii) requires that the benefit of action must be greater than the ability of

transforming security investments into smaller chances of attacks, captured by −eσi and
the marginal utility of inaction and the resistance of a target to spend, captured by U ′

i(0).
Inaction includes the risk of a drop in utility by itself and hence the last term must be
discounted by such expected drop. Condition (iii) is possible due to assumptions A.3 and
A.1.

If the conditions above are not satisfied by the risk averse utility function of interest,
there might not necessarily be a unique Nash equilibrium22

20Consider the dynamic system where x(0) is a random initial endowment in [0, x̄]. Setting n(t + 1) =
n⋆(x(t)), the update in firm investment is denoted x(t+ 1) = [argmaxxi E [Ui(xi)|n]n=n(t+1)]i,...,N . A vector
x∗ is a unique attractor if for any starting point in [0, x̄] the vector x∗ is the unique point of convergence of
the iterative sequence.

21For a negative exponential CARA utility functions diagonal strict concavity always holds. It does not
hold, in general, for iso-elastic or power utility functions where agents exhibit CRRA type preferences.

22For identical CARA targets with a constant absolute risk aversion γi and constant elasticity αi of the
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2.2. A Benevolent Social Planner Mandating Security Investments

Before introducing the insurance market, it is useful to ascertain the optimal investment
policy that a fully informed benevolent social planner would mandate. We will now show
that in the presence of a public policy acting as a benevolent social planner, the socially
optimal level of investment x†i will be greater than x∗i .

By “benevolent” we adhere to a classical utilitarian definition where the social planner’s
utility function respects the preferences of the population of targets. This can be captured
by the aggregate von Neumann–Morgenstern utility function which sums the utilities of the
individual targets weighted by the values νi assigned by the policy maker to different targets.
The planner’s action is to “mandate” security investments for each target denoted x†i and we

will assume that x†i is binding, measurable, and enforceable (compulsory security standards).
Hence, the expected utility of the policy maker for all security expenditures x and number

of attackers n is the linear combination of the expected utilities of the individual targets
E[Ui(xi)|n] as specified in (3).

E[UP (x)|n] =
∑N

i=1
νi E[Ui(xi)|n]. (8)

We model the outcome as a subgame-perfect equilibrium. The choices of the policy maker in
the first stage of the game must be optimal given the strategies of the players in the second
stage. The strategy of each actor in the second stage must also be optimal for each possible
security investment of the policy maker in the first stage and given the strategies of all other
second-stage players, Binmore (2007).

In stage two, targets are not active players in the game without insurance because the
policy maker mandates their level of defensive expenditure, xi. Still, the payoffs of the
targets are important since the policy maker chooses the levels of defensive expenditure to
maximize their expected utility (8).

Each potential attacker can still choose whether or not to participate in attacks against
the population of targets. For potential attackers to be part of a subgame-perfect equilibrium,
it is sufficient for the equilibrium number of attackers per target, n⋆(x), to satisfy (4) for each
set of feasible defensive expenditures x. Hence, they are indifferent between participating or
not participating in attacks.

Since the equilibrium number of attackers per target, n∗, adjusts to changes in the levels
of defensive expenditure, the policy maker must take this adjustment into account when
determining the optimal choice in the first stage of each game. Therefore, the optimal choice
of the policy maker satisfies the usual first-order conditions: ∂E[UP |n⋆(x)]/∂xi = 0 for
all i under the constraint represented by the attacker indifference condition (4). The Nash
equilibrium point (x∗, n∗) of the unregulated targets is just one of the evaluated expected
utilities for the policy maker since at the equilibrium, hence we can see that n∗ = n⋆(x∗).

probability of a successful attacks w.r.t. absolute and marginal security expenditures the first two conditions
are (i) γi < αi, (ii) γi < 1/2αi whilst condition (iii) converges asymptotically to (i) for large losses Li. As
soon as the risk aversion of the target is less than half the effectiveness of security expenditures, a unique
Nash equilibrium will exist. For identical targets with a CRRA utility function, a small coefficient for relative
risk aversion ξi < 1, and a constant or non-increasing ratio between the loss and the wealth as the wealth
Wi becomes bigger, condition (iii) converges to αi > 0. Conditions (i) and (ii) will also be verified for the
entire feasible range. Hence for large wealths Wi, a unique equilibrium exists, irrespective of the effectiveness
of defenses αi. If the target has a relatively high coefficient of relative risk aversion ξ > 1, a unique Nash
equilibrium might not exist: at an one equilibrium, targets starting from high initial security expenditure will
maintain such expenditure and push attackers out of the market; in another equilibrium, targets will have
low security expenditures and a large number of attackers. A computer program that simulates this effect is
available in the supplementary materials.
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The decomposition of the marginal expected utility illustrates how incentives of policy
makers may differ from incentives of individual unregulated targets23:

∂E[UP (x)|n⋆(x)]

∂xi
= νi

∂E [Ui(xi)|n]
∂xi

∣∣∣∣
n=n⋆(x)︸ ︷︷ ︸

Unregulated Nash Equilibrium

+

Drop in attackers if dxi>0︷ ︸︸ ︷
∂n⋆(x)

∂xi
· ∂E [UP (x)|n]

∂n

∣∣∣∣
n=n⋆(x)︸ ︷︷ ︸

Global benefit if dn<0

(9)

The divergence between the policy maker’s marginal utility and the individual target’s
marginal utility occurs because individual targets ignore the beneficial effect that the tar-
get’s expenditure has in reducing attacks on other targets: the number of interested attackers
decreases as target i strengthens its defenses (−∂n⋆(x)/∂xi ≥ 0 and decreasing in xi) and
the diminishing number of attackers increases the marginal expected utilities of the policy
maker – i.e. the aggregated utilities of all targets (∂E [UP (x)|n]/∂n ≤ 0). The overall term
is positive and shift to the right of the optimal choice of the security expenditure.

Proposition 2.2
The security investment x†i mandated by a benevolent social planner to a risk averse target
i is larger than the optimal security investment x∗i that the same target i would have chosen

in an unregulated environment, i.e. x†i ≥ x∗i .

That the benevolent social planner mandating investments can “improve”, strictly in
an individual welfare sense, the outcomes for all targets is a well-understood effect. In the
absence of the social planner and when the number of targets is large, no single target
can, by altruistically and unilaterally raising their defensive expenditure, can reduce the
overall number of attackers n∗

i . Hence, their unilateral increase has only the effect of shifting
them from their optimal expenditure. From Assumptions A.1 to A.7 for a given n∗

i , the
optimal expenditure x∗i is unique and all deviations from this expenditure are sub-optimal. In
contrast, the social planner accounts for the attacker reaction and by mandating expenditure
across all targets attains a higher overall utility for each target than each individual target
could do by acting alone.

3. Cyberinsurance Contracts

We now introduce an insurance market that provides targets with coverage against losses
from cyber-attack. At first we assume a perfectly competitive market providing actuarially
fair insurance. Then we move on to the opposite case when a single monopoly insurer can
extract a full surplus from targets.

3.1. Actuarially fair cyber-insurer and unregulated targets

In the absence of the social planner individual targets can freely choose a level of defensive
expenditure xi as well as whether to purchase an insurance contract specified by the tuple
(qi, ℓi). As such the i target’s expected utility is

E[Ui(qi, ℓi, xi)|n] = σi(xi, n)Ui(Wi − xi − qi − ℓi) + (1− σi(xi, n))Ui(Wi − xi − qi) (10)

23The second term of the policy maker marginal utility ∂E [UP (x)|n]/∂n can also be expressed as the νj-
weighted sum of the product of the impact of loss on utility U ′

j(Wj − xj − L(Wj − xj , Lj)) for the decrease
of successful attacks if dn > 0 represented by −∂σj(xj , n)Lj/∂n. This decomposition is more amenable to
quantification.
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As the quantity σi(xi, ni) is the probability that target i incurs a loss from an attack, it also
represents the probability that an insurer who insures target i for contract (qi, ℓi) will pay
out the amount Li − ℓi. Since insurance markets are efficient, the insurer does not make a
profit at the equilibrium:

qi = σi(xi, n)(Li − ℓi) (11)

This condition is commonly referred to as actuarially fair insurance. Consider now n as
fixed exogenously. Target i wishes to choose xi and (qi, ℓi) to maximize the expected utility
E[Ui(xi, qi)|n]. Risk neutral targets are indifferent between buying insurance coverage or
“self-insuring”, even when this coverage is provided at an actuarially fair price. Hence, they
always choose no insurance (ℓi = Li and qi = 0).

When targets are risk averse, the analysis requires a more careful reasoning. At first
we consider again a noncooperative game among the players. The choices of attackers are
unchanged w.r.t. their choices in absence of efficient insurance markets (§2). In the absence
of insurance, the strategy for a target at the equilibrium was simply the choice of defensive
expenditure. When targets can also purchase actuarially fair insurance, target i’s strategy
involves two choices: (i) the level of deductibles ℓi and (ii) the level of defensive expenditure,
xi. The premium is then determined by (11) given our assumption about the efficiency of
insurance markets.

Lemma 3.1
For a given number n of attackers per target, a risk averse target i which is offered insurance
at an actuarially fair rate will always find it optimal to choose a level of coverage equal to the
full loss (ℓi = 0) and select the same level of security expenditures of a risk neutral targets

(xi = x♯i).

The general solution of the Nash equilibrium requires the simultaneous solution of setting to
zero of the partial derivative of the expected value in (10) with respect to xi and ℓi under the
free entry constraint represented by (4). When target i is risk averse and Ui(w) is weakly
concave, it is convenient to solve for target i’s optimal choice in two steps. At first, we
calculate the optimal deductible ℓi(xi), for each level of defensive expenditure xi. Then, we
calculate the optimal level of defensive expenditure xi when ℓi is set to its optimal level, that
is, when ℓi(xi) is substituted for ℓi in (10).

The choice to be fully insured (ℓi = 0) follows directly by applying Jensen’s inequality to
the expanded version of (10). The expected utility will then reduce to a single state as the
quote is payable in both periods and the coverage is complete as there is no deductible. This
means that the i target will choose xi to maximize the utility Ui(Wi−xi−σi(xi, ni)Li). Since
Ui(w) is an increasing function, this corresponds to choosing xi to maximize the expected
net value of target i’s assets, and namely Wi − xi − σi(xi, ni)Li. Unsurprisingly, a risk
averse target who is able to offload the entire risk of a loss by the purchase of actuarially fair
insurance chooses the same level of defensive expenditure as would be chosen by a risk-neutral
target as determined by (7).

Note that the target that purchases actuarially fair insurance will spend more than the
target that opts for self-protection: for a given number of attackers per target n, the former
will spend x♯i − σi(x

♯
i, n), whereas the latter will spend x♯i . The relation between x♯i and the

security expenditure of the risk neutral target x∗i depends on the actual shapes of Ui and
σi but it is possible to establish some general result for risk averse targets. The following
decomposition clarifies the relations between the expected utility of the risk averse target
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and the expected utility of the target when actuarially fair insurance is available.

Ex. Util. at Nash︷ ︸︸ ︷
∂E[Ui(xi)|n]

∂xi
=

Ex. Util. Fair Ins.︷ ︸︸ ︷
∂Ui(E[xi|n])

∂xi
+

Degree of Prudence︷ ︸︸ ︷
U ′(E[xi|n])− E[U ′(xi)|n] +

−∂σ(xi, n)

∂xi
Li︸ ︷︷ ︸

Marginal Loss in xi

·
(
U ′(Wi − xi − L(Wi − xi, Li))− U ′(E[xi|n]))

)︸ ︷︷ ︸
Marginal Util. at Local Risk Neutrality vs Expected xi

(12)

If the first two terms are positive, then at the optimal value of investments for the risk
neutral target x = x♯ the term relating to the actuarially fair insurance converges to zero,
but the derivative of the expected utility at the Nash equilibrium it is still positive and the
maxima is farther away; hence x∗ ≥ x♯.

The second term of the decomposition captures the degree of prudence of the target,
that is the sign of U ′′′

i which for prudence is set to be U ′′′
i < 0 and imprudence in the

opposite case. In this case the reverse of Jensen’s inequality operates as U ′
i is concave, hence

U ′(E[xi|n]) ≤ E[U ′(xi)|n] so this term is negative. However, the larger the concavity of
U ′
i , the steeper the monotone decrease in U ′

i will be given U ′
i(w1) ≥ U ′

i(w2) for w1 ≤ w2.
As such, the maximally insurable loss Wi − xi − L(Wi − xi, Li) will be likely reached in
close proximity with the point Wi − Li and will be far closer to Wi − Li than the point
E[xi|n] = Wi − xi − σ(xi, n)Li. Therefore the third term can (and will in most plausible
cases) be positive and substantially larger than the second term, this leads us to the following
result.

Theorem 3.2
Let x♯i be the optimal security investment for the risk averse target with actuarially fair

insurance premium q♯i = σi(x
♯
i, ni)Li and x∗i the optimal security investment in the absence

of any available insurance contracts. The inequality x∗i > x♯i occurs if (i) the elasticity of the
drop in utility is smaller than the elasticity of the marginal success of security expenditures
in the number of attackers e∆Ui(xi) < −e∂σi(xi,n)/∂n for all values of x ≤ x♯i and n = n⋆(x) and

(ii) the expected marginal utility at x♯i is smaller than the marginal utility at the maximally

insurable loss at Wi − x♯i, E[U ′
i(x

♯
i)|n♯] ≤ U ′

i(Wi − x♯i − L(Wi − x♯i, Li)).

The first condition implies that for xi < x♯i the marginal effectiveness of security expenditures
to limit the number of attackers is greater than the aversion of the target to additional
deterministic expenditure. The interplay between σi and Ui can change the relative position
of the optimal security expenditure for uninsured versus insured targets and is represented
by condition (ii).24 We can see that for uninsured targets the optimal level of expenditure
x∗i bounds the marginal expected loss as follows: −1/λi ≤ Li ∂σi(xi, n)/∂xi|xi=x∗

i
≤ −λi. At

the same time by (7) we recover −1/λi < −1 = Li∂σi(xi, n)/∂xi|xi=x♯
i
≤ −λi. Therefore the

marginal chances of a successful attacks for the optimal investment x♯ of the insured target
is essentially in the same narrow interval as the marginal chances for the optimal investment
x∗i for the uninsured target. The precise crossover point requires us to specify a functional
form for σi and Ui; however, this crossover point will exist given the underlying assumptions.

24 For targets with a exponential CARA utility with a constant for absolute risk aversion γ and a constant
elasticity α of success probability w.r.t. absolute and marginal expenditures condition (i) is equivalent to
γ < α and condition (ii) converges to (i) for large L. When actuarially fair insurance is available, the optimal
investment coincides with Nash equilibrium case for risk neutral targets.
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The simultaneity assumption on the choices of attackers and targets are implies that an
individual target neglects the effect that a change in the target’s level of defensive expenditure
has on the incentives of potential attackers to mount attacks. Furthermore, each potential
attacker is assumed to neglect the effect that the attacker’s decision might have on the overall
level of threat perceived by the targets and on the targets’ levels of defensive expenditure.
These assumptions appear to be plausible approximations when the number of potential
attackers and the number of targets is large. For in this case, a change in the choice of
defensive expenditure by a single target is not likely to affect the overall expected reward
from attacks by very much. Similarly, a change in the participation decision of a single
potential attacker is not likely to have a significant effect on the number of attackers per
target.

3.2. Policy Maker with Efficient Insurance Markets

To our efficient insurance markets case, we now introduce a benevolent social planner with
the same utilitarian objectives as described in Section 2.2. The policy maker, the targets,
the attackers and the insurers satisfy the same assumptions and objective functions of the
previous sections. We again model the situation as a two stage game with a subgame-perfect
equilibrium.

Under hypothesis of efficient insurance markets, insurer’s profits are zero and we can
ignore this component in the utility function of the policy maker. Therefore, the objective
function of the policy maker is determined by (8) where the utility of the targets is determined
by (10) in place of (3) from Section 2.

The policy maker still chooses the level of defensive expenditure for each target in stage 1.
In stage 2, each potential attacker also chooses whether or not to participate in attacks. The
choices available to the targets are instead different from the no insurance case because each
target i can decides the insurance contract, (qi, ℓi). Targets choose a level of coverage to

maximize the expected utility given in (10) where x†i is determined exogenously by the policy
maker. If the insurance industry provide actuarially fair insurance qi will be determined by
(11).

A strategy for the policy maker is simply the policy maker’s choice of defensive expen-
ditures for the targets. Strategies for stage 2 players are more complex. A strategy for each
potential attacker is conditioned on whether or not to participate in attacks for each possible
set of choices by the policy maker in the first stage. All strategies for a target are conditioned
on the chosen level of coverage for each possible choice by the policy maker in the first stage.

In a subgame-perfect equilibrium the chosen ℓi, for each target i must be optimal for each
set of defensive expenditures that could be chosen by the policy maker when the number
of attackers per target is also given by the equilibrium level n∗

i . If a target is risk neutral,
ℓi = Li is, of course, always optimal. For the case where a target is strictly risk averse,
Proposition 3.1 asserts that ℓi = 0 is optimal for all levels of defensive expenditure xi and
all levels of ni. In both cases, each target i always receives the expected utility value of its
assets, U(Wi − xi − σiLi).

Since the policy maker anticipates this outcome in stage one of the game, the policy
maker’s expected utility from (8) can be rewritten as

E[UP (x)|n] =
∑N

i=1
νiUi(E[xi|n]) with n = n⋆(x). (13)

The function n⋆(x) has also been substituted for n in the expression for E[Ui] because the
policy maker forecasts the response of potential attackers to different levels of defensive
expenditure in the second stage of the game.
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The equilibrium levels of defensive expenditure determined in the first stage of the game
are assumed to satisfy the usual first order conditions for optimality: ∂E[UP ]/∂xi = 0 for
all i. Similarly to (9) for the regulated targets in the absence of insurance, this condition
can be decomposed into two components that clarify why the investment mandated by the
policy maker is larger than the investment by unregulated targets, even in presence of an
efficient cyberinsurance market.

∂E[UP (x)|n]
∂xi

= νi
∂Ui(E[xi|n])

∂xi

∣∣∣∣
n=n⋆(x)︸ ︷︷ ︸

Risk neutral optim. when=0

+

Drop in attackers if dxi>0︷ ︸︸ ︷
∂n⋆(x)

∂xi
· ∂UP (E[x|n])

∂n

∣∣∣∣
n=n⋆(x)︸ ︷︷ ︸

Global benefit if dn<0

. (14)

Once again, each target ignores the beneficial effect the target’s expenditure has in reducing
the number of attackers not only on itself but on the other targets as well. This phenomenon
is captured by the second term of the decomposition which is the pro quota variation to
the social expectation of a reduction in the number of attackers (∂E[UP ]/∂n) due to the
reduction of this very number of attackers thanks to the increase in expenditure by the i-th
target ∂n⋆(x)/∂xi.

Proposition 3.3
In presence of efficient markets for cyberinsurance the security investment x‡i of a risk averse
target i mandated by a benevolent policy maker to each individual target is larger than
the optimal security investment x♯i that the same target i would choose in an unregulated

environment with actuarially fair insurance (x‡i ≥ x♯).

3.3. Mandated Protection from Monopolist Cyber Insurer

Under Assumptions A.9 and A.10 an insurer can mandate a minimal level of defensive
expenditure as part of the insurance contract conditions and compute quotes for each target
under this investment assumption. This scenario ought to be the best chance for the incen-
tives of a profit-maximizing insurer to align with those of a “benevolent” policy maker. In
contrast, we show that the choice of defensive expenditure by the insurer may not be socially
optimal and even worse that self-protection as individual security expenditures collapse and
quotes increase.

The outcome of the interaction between the insurer and the targets is modeled as a
subgame-perfect equilibrium of a two-stage game. In the first stage of the game, the insurer
makes its offer to each target. The offer consists now of a triple (qi, ℓi, xi) where the first two
arguments are respectively the premium and the deductible as in the previous section and
xi is the required level of defensive expenditure which an insured target must incur. The
total profit obtained by an insurer would be the difference between the premium paid by the
targets and expected losses that must be covered (minus the deductibles):

Π =
∑N

i=1
qi + σi(xi, n

⋆(x))(ℓi − Li) where ℓi ≤ Li. (15)

In the second stage of the game, targets and potential attackers make simultaneous choices.
Each target must choose whether or not to accept the insurer’s offer. If a target accepts,
then no further choice is required. If a target rejects the offer, then the target must also
choose the level of defensive expenditure xi which it will incur. As in previous sections, each
potential attacker must choose whether or not to participate in attacks on the targets.

The monopolist wishes to offer an insurance contract which all targets will be willing to
purchase given the overall security environment consequent to all targets choosing insurance;
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recalling that the level of risk is solely determined by the attacker entry condition n = n⋆(x).
For the targets to be willing to accept the insurer’s offer, they must be indifferent between
accepting or not accepting. Therefore, the following incentive compatibility constraint must
hold:

E[Ui(qi, ℓi, xi)|n⋆(x)] ≥ E[Ui(xi)|n⋆(x)]. (16)

Given monopoly power, the single insurer
Since the insurer holds a monopoly will extract all possible surplus from each target and

therefore we only consider the boundary form of the constraint.
The left-hand side of (16) is defined in (10) and denotes the expected utility which

target i obtains by accepting the insurance contract. In an equilibrium, where all targets
purchase insurance and choose the level of expenditure specified by the insurance contract
xi

◦, the appropriate forecast of the number of attackers is n⋆(xi
◦), the equilibrium number

of attackers per target. The right-hand side of (16) indicates the expected utility which a
target obtains by rejecting insurance (qi = 0 and ℓi = Li) and making an optimal choice of
defensive expenditure.

It is convenient to solve the insurer’s problem in two steps. In Step 1, the insurer chooses
qi(x) and ℓi(x) to produce the profit that satisfies the incentive compatibility constraint for
each level of defensive expenditure, xi. In Step 2, the insurer chooses the level of defensive
expenditure that maximizes Π(x).

When all xi are held fixed, the right-hand side of (16) is a constant as is the quantity
σi(xi, n

⋆(x)) in the profit of the insurer from (15). The left-hand side of (16) is then smaller
than target’s utility when he chooses the level of deductible ℓi:

Ui(Wi − xi − qi(x)) ≥ E[Ui(qi, ℓi, xi, n
⋆(x))] (17)

The insurer is going to always offer the insuree a full insurance contract (qi, 0) as this would
maximize the value of the offer for the target. The same reasoning applies when the target
receives an offer for actuarially fair insurance as in Proposition.3.1. Since the insurer has
a monopolist advantage the compatibility bound will hold as an equality. This provides an
implicit expression for qi and xi:

Ui(Wi − xi − qi(x)) = E[Ui(xi)|n⋆(x))]. (18)

Since Ui is monotone increasing, and thus invertible, the implicit function above is well
defined for qi(x) for all values of xi and all parameters Wi, Li.

Each qi is a function of x, the environment as a whole, and by extension the insurer must
identify a vector function q(x) on the vector space x. The Jacobian matrix ∇q(x) captures
how a change in mandated security expenditures x of targets affects simultaneously all
insurance quotes (through the incentive compatibility constraint and the attackers’ behavior
from the Cournot equilibrium).

We introduce a term corresponding to the marginal ambient risk for the i-th risk averse
target showing how the expected marginal loss changes as the number of attackers changes as
discounted by the ratio in marginal utility when the target is asked to pay a given premium
qi w.r.t the maximally insurable loss L(Wi − xi).

Ri(xi, q, n) =

Raise Loss by dn>0︷ ︸︸ ︷
∂σi(xi, n)Li

∂n
·

1−

Marg. Util. Max. Insurable Loss vs Quote︷ ︸︸ ︷
U ′
i(Wi − xi − L(Wi − xi))

U ′
i(Wi − xi − q))

 (19)
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The first term is always positive (A.2). The sign of the second term depends from the
level of risk aversion. Since U ′

i is monotone decreasing (A.1), if the quote is smaller than the
maximally insurable loss (qi(x) ≤ L(Wi−xi)) then U ′

i(Wi−xi−qi(x)) ≤ U ′
i(Wi−xi−L(Wi−

xi)) and therefore the marginal risk is negative. Increasing the expenditure xi decreases the
marginal environmental risk for quotes below the maximally insurable loss. For large quotes,
the effect is reversed.

The marginal adjustment in the quotes qj and qi is given by the following equations for
i, j = 1 . . . n where we show how the quote qi of the target i varies with its own mandated
expenditures (the diagonal of the Jacobian) and the interacting terms qj of the the other
targets j ̸= i variate with xi:

∂qi(x)
∂xi

= −1−

Marg. Exp. Utility at Nash Eq. when =0︷ ︸︸ ︷
∂E[Ui(xi)|n]

∂xi

∣∣∣∣
n=n⋆(x)

·

Marg. Utility at Quote︷ ︸︸ ︷
1

U ′
i(Wi − xi − qi(x))

+

Drop attackers by dxi>0︷ ︸︸ ︷
∂n⋆(x)

∂xi
·
Marg. Risk at Cournot Equil.︷ ︸︸ ︷
Ri(xi, qi(x), n

⋆(x))

(20)

The interaction term contains the same components for the j target:

∂qj(x)

∂xi
=

∂n⋆(x)

∂xi
·Rj(xj , qj(x), n

⋆(x)). (21)

The first two components of the functional form of ∂qi/∂xi are relatively obvious. The
first term is a constant negative marginal rate showing that, ceteris paribus, the quote
must decrease linearly with the mandated security expenditures xi since the latter directly
competes with the quote qi for a direct share of the overall wealth Wi − xi − qi of the
target. The second term caters for the alternative solution of self-protection. For xi < x∗i
the marginal expected utility is positive and the overall term is negative as U ′

i is always
positive. Hence, for values of expenditures larger than the expenses at the Nash equilibrium,
this term makes rising the quote less attractive in terms of upfront costs than raising the
self-protection effort. When the security expenses gets larger than the value of the Nash
equilibrium the marginal expected utility changes sign and the overall term gets positives
so it creates the margin for an increase in the quote as the share of wealth received from
the target. Such growth is reduced by a factor, the marginal utility of the target when he
consider both the expenditure and the quote U ′

i(Wi−xi−qi(x)). Therefore an optimal value
for qi could be potentially be found for xi > x∗i , if the third term of the decomposition were
identically zero.

The third term of (20) and the condition on the other partial derivative (21) captures
the interaction with the environment. The impact of this term on the monopolists ability
to indirectly control the risk environment is significant. Consider the case when n⋆(x) is
exogenous and fixed for all x. The reservation utility of the target is only determined by
the second term of (20) and hence fixed. The interacting term between i and j in (21) is
identically zero. In this scenario, a monopolist insurer cannot affect the reservation utility
of any target. The monopolist can only provide full insurance (at a quote that extracts the
full surplus), mandating targets to invest in security at a risk neutral level.

The outcome in the general case when n⋆(x) is endogenous is radically different. What is
unexpected is the effect on the population of N targets choosing between insurance and self-
protection when i diminishes his expenditure xi. The unintended, but dramatically present,

18



effect is that target j is largely powerless to react when xi diminishes its expenditure and
makes the environment riskier. If the quote offered to the jth target is above jth own
maximally insurable loss then the marginal risk is positive. Once we multiply it by the
marginal change in the number of attackers, it becomes negative.

Hence j’s option is to buy more insurance at higher premiums as this is the only compo-
nent of the partial derivative and ∂qj/∂xi · dxi > 0 for dxi < 0. So, from the perspective of
the insurance company, making i invest less in security has the overall beneficial effect of in-
centivizing all other parties j to accept a higher premium. For target i itself, a viable option
is to buy more insurance and to spend less on security and hence contribute to an increase in
the margin for the quote. As a result, the insurer has incentives to lower mandatory security
expenditures to make insurance more appealing.

If the monopolist sets the initial insurance premium too high then targets will not diffuse
to adopting full insurance. So the insurance company would need to initially specify some
contract that ensures that targets are shifted to an equilibrium path (for example charging

at actuarially fair rate (σi(x
♯
i, n

♯)Li, 0, x
♯
i), and then progressively raise the expenditure,

whereby (q◦i , 0, x
◦) is the outcome and that no individual target can do better by rejecting

this offer. Only after all targets are in the neighborhood of x♯ then the equilibrium will be
maintained because any target is worse off by rejecting insurance. We illustrate this effect
numerically in Section 4.

The insurer optimizes its profit by the usual first order condition on (15) via the implicit
expression for q(x) from (18) and the attackers entry condition.

∂Π(x)

∂xi
= 0, Ui(Wi − xi − qi(x) = E[Ui(xi)|n⋆(x)]. (22)

The first order condition can then be decomposed as follows:

∂Π

∂xi
=

Fair Insurance: Risk Neutral Exp. Utility︷ ︸︸ ︷
−1− Li

∂σ(xi, n)

∂xi

∣∣∣∣
n=n⋆(x)

−

Self- protection: Ex. Util. at Nash︷ ︸︸ ︷
∂E[Ui(xi)|n]

∂xi

∣∣∣∣
n=n⋆(x)

·

Marg. Utility at Quote︷ ︸︸ ︷
1

U ′
i(Wi − xi − qi(x))

+

(23)

−

Drop attackers by dxi>0︷ ︸︸ ︷
∂n⋆(x)

∂xi
·

Aggregate Change in Utility︷ ︸︸ ︷
N∑
j=1

∂σj(xj , n)Lj

∂n

∣∣∣∣
n=n⋆(x)

U ′
j(Wj − xj − L(Wj − xj))

U ′
j(Wj − xj − qj(x))

The first term of the decomposition is the equilibrium condition for the risk neutral target
(7). We know that it is monotone because of Assumptions A.3 and A.4, and it is larger than

zero for xi < x♯i. The second term is the marginal expected utility at the Nash equilibrium.
We know it is greater that zero for xi < x∗i if the elasticity conditions in Proposition 2.1 hold.
The term on the last line captures the relative importance of the overall marginal ambient
risk across all targets j. The aggregate term is always positive given Assumption A.1 on the
target marginal utility function and Assumption A.5 and the consequent constraint on the
marginal change in the number of attackers w.r.t. the increase in security expenditures, see
(5). Theorem 3.2 provides the condition under which x♯ ≤ x∗.

Theorem 3.4
The optimal security expenditure x∗i chosen by the unregulated targets in the absence of any
available insurance is larger than the expenditure x◦i mandated by a monopolist insurer if
for every target i and all values of x ≤ x◦i , the elasticity conditions (i)-(iiii) for the existence
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of a Nash equilibrium from Proposition 2.1 are satisfied and (iv) the marginal probability of
a loss at xi = x◦i and n = n⋆(x◦) is smaller than −1/Li (namely ∂σ(xi, n)Li∂xi ≤ −1).

The first three conditions captures the interplay between the effectiveness of the secu-
rity expenditures and the risk aversion of the targets as discussed in Proposition 2.1. The
last condition compares the very same effectiveness against a risk neutral investment. This
requires a Monopolist insurer to choose a mandatory expenditure where the marginal ef-
fectiveness of each dollar spent on security measures is declined below the −45◦ line that
intersects the utility axes at the expected loss. The larger the losses, the lower the declina-
tion has to be. An easy corollary is that if the above conditions holds then it is also x◦i ≤ x♯i,
as (iv) also implies that then first order condition for the risk neutral target has not reached
zero.

If we eliminate the environmental interaction from the decomposition of the utility of
the monopolist insurer, the second group of terms in (23), then the resulting decomposition
would have explained the widely held belief, in particular among security experts, that
mandating cyberinsurance would solve the cyber security problem by mandating an increase
in the security spending. Unfortunately, that simpler decomposition would not account for
combined effect of the global strategic interaction of the attackers, which can be attracted
by an environment with lower security spending, and of the risk averse target behavior. In
risky environments, the response of risk averse targets might not be the socially desirable one
(spend more on security to make the environment less risky) but rather the most attractive
one (buy off more insurance and let somebody else deal with the risk).

4. The Insurance Trap

We now graphically illustrate a prisoner’s dilemma outcome to our preceding general
results, which we refer to as the ‘insurance trap’ by imposing specific functional forms on
Ui(·) and σi(·). Our first example uses homogenous firms with ex-ante identical losses and
utility functions. In our second example we impose two types of firms, with different degrees
of risk aversion and size of losses, to illustrate that are effects can be a) substantial in
magnitude and b) have substantial differences in magnitude between small and large firms.

For both examples we consider targets with an exponential CARA utility Ui(wi) =
−1/γi exp(−γiwi) and a probability of a successful attack with multiplicative components

σi(xi, n) = exp(−αixi)n
βi
i where αi > 0 and 0 < βi < 1 are positive scalar parameters.25

For simplicity of exposition we only consider cases where the optimal investments in security
and the number of attackers per target respect the boundary constraint that lnni = αi/βix,
hence forcing σi ∈ [0, 1].

4.1. Example 1: Illustration with homogeneous firms

When all targets are ex-ante identical the utility function is Ui(wi) = U(w), with absolute
risk aversion γi = γ and losses from a successful attack of Li = L. Similarly, all firms are
equally proficient in protecting their cyber assets hence σi = σ, with ex-ante identical scalar
coefficients βi = β and αi = α. In this set-up we can solve for the exact functional forms
of the nash equilibrium in the absence of insurance or a policy coordinator, x∗i = x∗ and

for the cases of actuarially fair insurance x♯i = x♯ and monopoly insurance x◦i = x◦, when
all firms choose, ex-post, identical actions. A full expansion of the model is presented in
Appendix B.1.

25The Mathematica files used to compute these bounds are available in the supplementary materials.
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Figure 1 presents what happens when actuarially fair insurance is introduced to a set
of unregulated targets and Figure 2 illustrates the system’s evolution when a monopolist
insurance switches from the initial actuarially fair insurance offering to a profit-optimizing
quote. In both figures, the ordinate axis shows the targets’ utility function and the abscissa
axis reports the level of wealth wi prior to the realization of success or non-success of an
attack on a target. For an insured target i this value is Wi − xi − qi, for an uninsured target
j this reduces to Wj − xj .

26

A

B

B0

B−1

CARA Nash Eq. Inv.
W − x∗

RN Expenditure
W − x♯Fair Insurance

W − x♯ − q♯

Policy Maker Opt.
W − argmaxx E[UP |n⋆(x)]

CARA Nash Eq.
E[U(x∗)|n∗]

Res. Ex. Util. Fair Ins.
maxx E[U(x)|n♯]

Utility Fair Ins.
U(W − x♯ − q♯)

Figure 1: From Self-Protection to Actuarially Fair Insurance

The insurance trap for identical firms, the abscissa values run from zero to W , the ‘wealth’
of the identical firms. The ordinate axis is in utils, with lines emanating from the left axis
representing certainty equivalence and those from the right expected utility. The expected
utility at the simultaneous Nash equilibrium is labelled by point A when targets do not have
access to any form of insurance. B0 is the certain utility of the first defectors when actuarially
fair insurance is available (assuming the number of targets is large). B is the certain utility
when all targets choose full coverage, at an actuarially fair price; with point B−1 the expected
utility of a firm fully rejecting the actuarially fair contract.

In Figure 1, the sequence of points A → B0 → B ̸→ B−1 that the targets will coalesce
into clearly illustrates the mechanics of the insurance trap when actuarially fair insurance is
introduced to unregulated, risk averse targets.

Point A, corresponding to the abscissa value x∗i , is the optimal level of expenditure for
each target under the simultaneous Nash equilibrium in the absence of insurance. Proposi-
tion 2.1 shows that a unique Nash equilibrium exists when the marginal rate of risk reduction
α is greater than the level of constant absolute risk aversion, γ; the probability of a success-
ful attack lies in the range 0 ≤ σ ≤ 1 and each firm has a non-negative level of investment,
xi ≥ 0.

26The curves here are plotted using the following parameters αi = 0.035, βi = 0.5, Wi = 100, Li = 110,
γi = 0.01, ρi = 2. The viable domain for this model has a lower bound on the target investment xi ∈
[βi/αi log(ρi), Li]; outside this interval the number of attackers results in σi > 1.

21



After the Nash equilibrium A has been reached, we start to make available actuarially
fair insurance to our targets. The presence of actuarially fair insurance would naturally
result in risk averse targets wanting to fully insure, by setting their deductible to zero and
adapt their expenditure relative to the equilibrium in the absence of insurance. When
actuarially fair insurance is first provided, and all other targets investment is at x−i = x∗

−i,
an individual target can migrate cheaply to point B0 with a higher realized utility. However,
all other targets will also migrate to full insurance, and the targets coalesce on the point B
by paying the fair premium and the risk neutral (RN) expenditure x → [x♯]. All targets are
paying more than at Nash Equilibrium but each individual (hence the aggregate) security

expenditure is lower than when fair insurance was not available (x∗i < x♯i). Therefore, the
number of attackers is higher in the presence of fair insurance (n∗ > n♯) as n⋆(x) is monotonic
decreasing in x.

A

B

C

C−1

CARA Nash Eq. Inv.
W − x∗

RN Expenditure
W − x♯

Monop. Mand. Inv.
W − x◦

Fair Insurance
W − x♯ − q♯

Monop. lower bound
W − x◦ − q◦

CARA Nash Eq.
E[U(x∗)|n∗]

Res. Ex. Util. Mono.
maxx E[U(x)|n◦]

Utility Monop. Ins.
U(W − x◦ − q◦)

Utility Fair Ins.
U(W − x♯ − q♯)

Figure 2: Geometry of the Insurance Trap

When targets have all migrated to full insurance, the expected utility at the Nash equilibrium,
A, for uninsured targets is no longer available as attacking intensity is based on expenditure
at B. The insurer can now adjust the expenditure and quote bundle until the target utility
reaches point C, where the insurer attains the maximum payoff whilst ensuring that target
certain utility is fractionally higher than point C−1, the reserve expected utility when the
contract is rejected. Any insurance quote yielding certain utility above A for all targets
allows the trap to be sprung.

Once all targets have migrated, the original optimal investment point, under the si-
multaneous Nash equilibrium with a maxima at x∗i , no longer exists. A target wishing to
unilaterally give up the available actuarially fair insurance would now shift to point B−1

as x−i = [x♯] and their investment will be x♯♯ > x∗ > x♯. Although their upfront expendi-
ture would be lower than x♯ + q♯, their expected utility will also be lower. Hence no firm
would rationally reject the insurance contract. The insurer can then gradually shift the
investment/insurance bundle to a higher risk higher premium combination.
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Let us now assume that insurance is provided by a monopolist where the monopolist
can mandate security expenditure as advocated by several academics and policy makers
as we previously discussed. A monopolist insurer can now optimally choose to set target
expenditure to x = [x◦i ]i and set a vector of quotes q = [q◦i ]i, such that the target utility
is at or above point C. For any target unilaterally rejecting the insurance contract the
alternative is to move to C−1 – the horizontal line represents the incentive compatibility
constraint, in utility, at the insurance’s optimal mix of x = [x◦i ]i. All firms would have
to coordinate and spend more than mandated by the insurance company and hence move
toward x = [x♯i]i in order for the monopolist’s quote to be unattractive relative to having
no insurance and investing in security. Under the realistic assumption that no one firm can
unilaterally change the level of attacking intensity through altruistic extra investment, the
only coordinated level of security is subject to the monopolists quote q = [q◦i ]i and is hence
x = [x◦i ]i as such the targets are a) spending more upfront on insurance than on security
and b) are at a lower utility than if there was no insurance and they decided on security
investments in a simultaneous Nash equilibrium.27

4.2. Example 2: Large diversified targets against small owner managed targets

A second example in this framework is the case when we have two types of firms in the
market with differing risk preferences and expected returns to attackers. We will assume
that Type 1 targets are large corporations with well diversified owners and managerial risk
preferences towards risk neutral, for instance with a relative risk aversion of 1/2 or less. In
contrast, Type 2 firms are smaller firms, possibly owner run, with managerial preferences
tending to relatively high levels of risk aversion; for instance a coefficient of relative risk
aversion between 2 and 4, see Rabin (2000) for discussion on various alternatives.

Both the number N1 of Type 1 firms and the number N2 of Type 2 firms are large, but
N1 is substantially smaller than N2. The return ρ1 on a successful attack to a Type 1 firm
will be likely very high (ρ1 ≫ 1) whilst the maximum reward ρ2 from a Type 2 firm may be
quite low (ρ1 ≈ 1) and possibly even below the break even point.

In this set-up monopolist insurance is particularly unfair on Type 2 targets as their par-
ticipation constraint is lower than the constraint of risk neutral Type 1 firms. Unfortunately,
attackers are drawn into the market as there is a high rate of return to be gained from a
successful attack on a Type 1 firm. This creates an “unsecure” environment in which Type
2 targets natural risk aversion pushes them towards (surely unfair) insurance and hence the
insurer can extract proportionally more of their wealth in terms of rent.

For the quantitative derivation of the phenomenon described above, we preliminarily
observe that firms within a type are otherwise identical, and act simultaneously and in-
dependently. Hence, we can simply consider the values xk for k ∈ {1, 2} as the security
investment of the representative firm of each type and weight each reward ρk in the at-
tacker entry condition (4) by the corresponding fraction of firms fk = Nk/

∑
k Nk. The

success probability σk has a common parameter determining its reaction to the number of
attackers (β1 = β2 = β), as β depends essentially on the attackers’ technology which this
scenario assumes to be largely independent from the chosen target Type k. Still, each target
Type k yields a different reward ρk and has a different effectiveness in security expenditures
(α1 ̸= α2).

27There is an alternative regulatory structure whereby a policy maker imposes a quote as a fixed proportion
of Li, for instance a fixed percentage of revenues for an online retailer, and then delegates to an insurance
company the power to mandate protection and provide coverage. As the quote is fixed, the insurance company
subjects target to onerous security expenditures with the attempt to drive σi(·) → 0 for all i, to maximize
the surplus.
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For notational convenience we set Lk
.
= αk−γk

γk
(eγkLk−1) for k ∈ {1, 2} targets. Following

the general treatment, we can solve the Nash equilibrium for each firm and write the optimal
security investment for self protection as

x∗k =
1

αk
logLk +

1

αk
log(n∗)β where n∗ =

(
f1ρ1
L1

+
f2ρ2
L2

)
(24)

It is immediate to see that even if ρ2 is less than unity and it costs attackers more to attack
them than they can earn in a reward, the attraction of f1ρ1 overwhelms this inconvenience
and results in Type 2 firms having to invest significantly against randomly matched attackers
attacking them.

When we introduce a monopolist insurer, the effects of any asymmetry between losses,
rewards and value of the two firm types is even more pronounced. Solving the functional
form in 16 for the exact quote of the monopolist for any given expenditure is given by:

q◦k =
1

γk
log(1 +

(eγkLk − 1)

eαkx
◦
k

(n◦)β) where n◦ =

(
f1ρ1

eα1x◦
1
+

f2ρ2

eα2x◦
2

) 1
1−β

(25)

By observing that γk < αk, 0 ≤ x◦k ≤ Lk, and by taking a Taylor expansion of the quote
it is possible to show that the optimal quote lies in the domain αk−γk

γk
Lk + β/γk log(n

◦ +
o(exp(−Lk))) < q◦k < Lk + β/γk log(n

◦ + o(exp(−Lk)))) where o(exp(−Lk)) is a term that
exponentially decreases to zero for Lk → ∞.

By construction, n◦ is a monotone increasing function in fkρk and monotone decreasing
function in αkx

◦
k we obtain to possible outcome depending on the relative expenditures and

the relative value of the reward for the attackers. If the security investment x1 of type 1 firms
is sufficiently large (e−αkx

◦
k → 0) and the security of small firms is negligible (e−αkx

◦
k → 1),

then the entire number of attackers is determined by their ability to extract small gains from
a large number of small entities n◦ → F(f2ρ2) where F is a monotone function.28 Therefore
the risk fraction of the quote is essentially determined by the behavior of the small firms.

When large firms’ expenditure is less effective, the reward from successful attacks to large
firms f1ρ1 dominates the quote for both firm types. The implications for this scenario are
quite stark: to cover their losses, due to attacks on their infrastructure that may not even be
profitable (ρ2 < 1), small firms will pay a disproportionate insurance premium expenditure
on insurance tending to the maximal quote q◦2 that they would accept.

5. Conclusions

As the problem of network security gains increasing traction in the broader policy debate,
this paper provides a general treatment of the investment problem in the presence of insur-
ance markets of differing types. The theoretical literature on insurance contracts is one of the
most well developed in economics. However, cyberinsurance offers a differing set of problems
to those commonly studied. Most notably, the risk generating mechanism is endogenous and
driven by a strategic set of attackers. The reactivity of attackers to the investment effort of
the targets is an important feature as their strategic entry and exit ensures that investment
decisions by firms have a supermodular effect. Any aggregate decrease in investment results
in higher ex-post attacking effort than would be expected by scaling up the marginal effect
of a single firm adjustment.

28This behavior is consistent with the minimal conversion rate in large scale spam campaign targeting
ordinary users found by Kanich et al. (2008) and the commoditization of denial of service attacks in Hutchings
and Clayton (2016).

24



When we introduce corporate liability insurance contracts that cover losses from cyber
security events targets the shift from risk averse to risk neutral decision making, almost
always, results in a net reduction of investment and a net increase in attacking intensity.
This effect occurs in each of the types of insurance market studied herein, unregulated but
actuarially fair, regulated and actuarially fair and monopolistic. We show that there is an
inherent prisoners dilemma for firms in a monopoly insurance setting. A monopolistic insurer
can pitch an acceptably contract (e.g. actuarially fair insurance) and entice firms to the risk
neutral point, no rational corporate officer would turn down this contract, even though the
complete migration of all firms will, ceteris paribus, increase both premiums and attacks.
Once ensnared, the insurance company has no incentive to increase investments to reduce
attacking effort, hence nullifying the public policy objective.

We posit the most benevolent case for strategic attackers, that is they are uncoordinated
and the first winner takes the entire reward. A reasonable conjecture is that refinement of the
attackers capability in identifying the lottery that they are faced when mounting a campaign
of attacks or differentiating their effort on the basis of the reward will normally amplify
their actions29 Another benign assumption is that attackers would leave the market under
unfavorable conditions. A possible avenue for future work would be to introduce dynamic
aspects and consider time-risk seekers attackers as defined in Ebert (2016): attackers who
see success posted in on-line forums Allodi et al. (2016); Ooi et al. (2012) might linger in
the market in the hope of future reward for a longer time than optimal given the defenders’
level of investment.

Another interesting, emerging scenario is the presence of ‘attacks for hire’ where some
hackers make available their denial of service infrastructure to on-line gamers to disrupt the
play of other players, see Hutchings and Clayton (2016) for a discussion. If firms would also
start to attack their competitors (e.g. when responding to on-line call for tenders) then one
would need different models of ‘targets’, as well as radically different policy interventions.
We leave this analysis for future work.
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Bramoullé, Y., R. Kranton, and M. D’Amours (2014). Strategic interaction and networks. American Economic
Review 104 (3), 898–930. Cited on p. 2

Caillaud, B., G. Dionne, and B. Jullien (2000). Corporate insurance with optimal financial contracting.
Economic Theory 16 (1), 77–105. Cited on p. 2, 5

Cavusoglu, H., S. Raghunathan, and W. T. Yue (2008). Decision-theoretic and game-theoretic approaches to
it security investment. Journal of Management Information Systems 25 (2), 281–304. Cited on p. 6

Cornes, R. and T. Sandler (1996). The Theory of Externalities, Public Goods, and Club Goods. Cambridge
University Press. Cited on p. 3

Dionne, G. and K. C. Wang (2013). Does insurance fraud in automobile theft insurance fluctuate with the
business cycle? Journal of Risk and Uncertainty 47 (1), 67–92. Cited on p. 3, 9

29Such cases can happen when a successful penetration of a target’s network security is re-sold in a secondary
market or attackers refine the group of targets that they attack using social engineering.

25



Ebert, S. (2016). Decision making when things are only a matter of time. Technical report, Tilburg. Available
at SSRN: http://ssrn.com/abstract=2674160. Cited on p. 25

Einav, L., A. Finkelstein, S. P. Ryan, P. Schrimpf, and M. R. Cullen (2013, February). Selection on moral
hazard in health insurance. American Economic Review 103 (1), 178–219. Cited on p. 9

Freeman, P. and H. Kunreuther (1997). Managing Environmental Risk Through Insurance. Kluwer Academic
Publishing. Cited on p. 3

Gordon, L. and M. Loeb (2002). The economics of information security investment. ACM Transactions on
Information and Systems Security 5 (4), 438–457. Cited on p. 6

Gordon, L. A., M. P. Loeb, and T. Sohail (2003). A framework for using insurance for cyber-risk management.
Communications of the ACM 46 (3), 81–85. Cited on p. 2

Grier, C., L. Ballard, J. Caballero, N. Chachra, C. J. Dietrich, K. Levchenko, P. Mavrommatis, D. McCoy,
A. Nappa, A. Pitsillidis, et al. (2012). Manufacturing compromise: the emergence of exploit-as-a-service.
In Proceedings of the 2012 ACM conference on Computer and communications security, pp. 821–832. ACM.
Cited on p. 7

Griffith, S. J. (2006). Uncovering a gatekeeper: Why the SEC should mandate disclosure of details concerning
directors’ and officers’ liability insurance policies. University of Pennsylvania Law Review , 1147–1208.
Cited on p. 2

Grossman, S. J. and O. D. Hart (1982). Corporate financial structure and managerial incentives. In The
economics of information and uncertainty, pp. 107–140. University of Chicago Press. Cited on p. 2, 5
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Electronic Companion

A. Appendix: Extended Proofs of Propositions and Theorems

We first state some helpful implications from our assumptions on how the marginal rate of the
expected utility of target i changes in the number of attackers n. This marginal rate captures the
changes in the perceived riskiness of the environment and is used in several of other derivations:

∂E[Ui(xi)|n]
∂n

= −∂σi(xi, n)Li

∂n
U ′
i(Wi − xi − L(Wi − xi, Li)) < 0. (26)

The factor U ′
i(Wi − xi − L(Wi − xi, Li)) provides the marginal utility of the target at the point of

the maximally insurable loss and it is always positive and monotonically increasing in xi as Ui is
weakly convex. To prove monotonicity we consider the definition of L and take the derivative of
both sides. This yields the first-order derivative ∂U ′

i(Wi − xi − L(Wi − xi, Li))/∂xi = (−U ′
i(Wi −

xi) + U ′
i(Wi − xi − Li))/Li. Since U ′

i is decreasing U ′
i(Wi − xi − Li) > U ′

i(Wi − xi) and therefore
∂U ′

i(Wi − xi − L(Wi − xi, Li))/∂xi > 0. By assumption A.4, σi(xi, n) increases in n and therefore
the overall marginal rate is always negative for all values of xi.

A first preliminary result we need to prove is that the variation in the number of attackers at
equilibrium when the security expenditures change is negative (5). To prove it we derive both sides
of the attacker entry condition in (4) and apply the global chain rule to ∂n⋆(x)/∂xi by suitably
aggregating σi and σj for i ̸= j:

N ∂n⋆(x)
∂xi

=
∑

j ̸=i ρj
∂σj(xj ,n)

∂n
∂n⋆(x)
∂xi

+ ρi
∂σi(xi,n)

∂xi
+ ρi

∂σi(xi,n)
∂n

∂n⋆(x)
∂xi

.

This is rearranged as follows where n⋆(x) is replaced for n after taking the derivative by either n or
xi:

∂n⋆(x)
∂xi

=
1(

N −
∑N

j=1 ρj
∂σj(xj ,n)

∂n

)ρi ∂σi(xi,n)
∂xi

We observe that ∂σi/∂xi < 0 by Assumption A.3. Further we can transform the denominator of

the right-hand side into the partial derivative w.r.t. n of nN −
∑N

j=1 ρjσj(xj , n) where n = n⋆(x)
after taking the derivative for n. By multiplying by C, representing the nNC addendum as a sum
from 1 to N of nC, and re-aggregating the summands, we obtain the negation of the second part of
Assumption A.5 on the absence of money pumps. Hence, the denominator is positive and the overall
term is negative. The strict inequality of Assumption A.5 also guarantees that ∂n⋆(x)/∂xi is always
well defined.

It is possible to establish a general (albeit not tight) bound on the value of the optimal investment.
We consider the ratio λi of the marginal rate of utility in the best case scenario when no loss is present
(w = Wi) and the unfortunate scenario where the target has spent Li in self-protection and has been
nonetheless successfully attacked (w = Wi − 2Li):

λi
.
=

U ′
i(Wi)

U ′
i(Wi − 2Li)

< 1 by Assumption A.1. (27)

Proposition A.1
For a given number of attackers n per target, the marginal loss due to a successful attack at the
equilibrium x∗

i of unregulated risk averse targets is bounded as follows:

− 1/(λiLi) ≤ ∂(σi(xi, n)Li)/∂xi|xi=x∗
i
≤ −(λiLi). (28)

Proof. We consider the first-order condition of the expected utility of the target in (3) and set it to

zero for a given value of ni. We obtain ∂σi(xi,n)
∂xi

= −E[U ′
i(xi)|n]/∆Ui(xi). The concavity of Ui(xi)

implies that for all xi ∈ [0, Li] we have U ′(Wi − xi) ≤ E[U ′
i(xi)|n] ≤ U ′(Wi − xi − Li) and therefore

−U ′(Wi−xi−Li)
∆Ui(xi)

≤ −E[U ′
i(xi)|n]

∆Ui(xi)
≤ −U ′(Wi−xi)

∆Ui(xi)
.
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The concavity of Ui also implies that ∆Ui(xi) ≤ U ′
i(Wi − xi − Li)Li and therefore (∆Ui(xi))

−1 ≥
(U ′

i(Wi − xi − Li)Li)
−1 and by multiplying both terms for the negative factor −U ′

i(Wi − xi) we
get −(U ′

i(Wi − xi))/(∆Ui(xi)) ≤ −(U ′
i(Wi − xi))(U

′
i(Wi − xi − Li)Li). The shape of Ui also im-

plies that ∆Ui(xi) ≥ U ′
i(Wi − xi)Li and therefore (U ′

i(Wi − xi)Li)
−1 ≥ (∆Ui(xi))

−1. By mul-
tiplying both terms for −U ′(Wi − xi − Li) we recover −(U ′(Wi − xi− Li))/(U

′
i(Wi − xi)Li) ≤

−(U ′(Wi − xi − Li))/(∆Ui(xi)). Subsequently, by joining the derived inequalities with the previous
derivation we have

−U ′(Wi−xi−Li)
U ′

i(Wi−xi)Li
≤ −U ′

i(Wi−xi−Li)
∆Ui(xi)

≤ −E[U ′
i(xi)|n]

∆Ui(xi)
≤ −U ′

i(Wi−xi)
∆Ui(xi)

≤ − U ′
i(Wi−xi)

U ′
i(Wi−xi−Li)Li

.

Multiplying all terms for the positive factor Li and replacing the expression −E[U ′
i(xi)|n] /∆Ui(xi)

at the center of the inequalities for the partial derivative of σi from (6) we obtain the desired result.
2

A.1. Proof of Proposition 2.1

Proof. For the given a region of interest [0, x̄], we have to show that a solution to the first order
condition x∗ ∈ [0, x̄] is a unique and stable Nash equilibrium. We derive a sufficient condition for the
interval of interests given the three requirements stated in Proposition 2.1:

(i) e∆Ui ≤ −e∂σi/∂n,

(ii) e∆Ui ≤ −1/2e∂σi/∂xi
, and

(iii) e∆Ui(0) ≤ −eσi(0,n0) − U ′(Wi)/(σi(0, n0)∆Ui(0)).

The first step is proving that conditions (i–iii) imply that the marginal utility of the targets ∂E[Ui(xi)|n]/
∂xi evaluated on the constrained surface determined by the attackers’ entry condition with n = n⋆(x)
is a monotone decreasing function in the interval x∗ ∈ [0, x̄].

To this extent, we represent the first-order condition for the Nash equilibrium (6) in the following
form by suitably aggregating the terms of the derivative:

∂E[Ui(xi)|n]
∂xi

= −U ′(Wi − xi)− ∂σi(xi,n)
∂xi

∆Ui(xi)− σi(xi, n)
∂∆Ui(xi)

∂xi

The partial derivative of the marginal utility can be calculated by an application of the global
chain rule after having replaced n⋆(x) for n in the right-hand side of the above equation as follows:

∂

∂xi

(
∂E[Ui(xi)|n]

∂xi

∣∣∣∣
n=n⋆(x)

)
=

U ′′(Wi − xi)−
(
∂2σi(xi, n)

∂x2
i

+
∂2σi(xi, n)

∂xi∂n

∂n⋆(x)

∂xi

)
∆Ui(xi)+

− ∂σi(xi, n)

∂xi

∂∆Ui(xi)

∂xi
−
(
∂σi(xi, n)

∂xi
+

∂σi(xi, n)

∂n

∂n⋆(x)

∂xi

)
∂∆Ui(xi)

∂xi
+

− σi(xi, n)
∂2∆Ui(xi)

∂x2
i

. (29)

The terms of the decomposition above can be re-arranged as follows:

. . . =E[U ′′
i (xi)|n⋆(x)]+

− ∂σi(xi, n)

∂n

∂n⋆(x)

∂xi
∆Ui(xi)

(
e∂σi/∂n + e∆Ui

)
+

− ∂σi(xi, n)

∂xi
∆Ui(xi)

(
e∂σi/∂xi

+ 2e∆Ui

)
. (30)

By Assumption A.1 we know that ∆Ui > 0 for any Li > 0 and E[U ′′
i (xi)|n] < 0 for any xi and

n. Consider the second addendum: Assumption A.2 implies that ∂σi(xi, n)/∂n > 0 and therefore
our preliminary result (5) implies that the addendum is not positive if e∂σi/∂n + e∆Ui(xi) ≤ 0, i.e.

29



condition (i). For the third addendum notice that Assumption A.3 implies that ∂σi(xi, n)/∂xi < 0
and therefore the overall addendum is negative if e∂σi/∂xi

+ 2e∆Ui(xi) ≤ 0.
Finally, we need to show that at x = 0 and n = n0 where n0 is the number of attackers from the

Cournot subgame when the security investments of the targets are zero, n0 = n⋆(0), the marginal ex-
pected utility is positive, ∂E[Ui(xi)|n]/∂xi|xi=0,n=n0 ≥ 0, and therefore the targets have an incentive
to act and increase their expenditures.

By taking the discount factor σi∆Ui as a common factor of the decomposition of the marginal
utility we obtain the equation:

∂E[Ui(xi)|n]
∂xi

= −σi(xi, n)∆Ui(xi)
(
eσi(xi,n) + e∆Ui(xi) +

U ′(Wi−xi)
σi(xi,n)∆Ui(xi)

)
.

Observe that the product of the first two factors is always positive for all values of xi and n.
Hence the sign is only determined by the third factor. By condition (iii) it is e∆Ui(0) ≤ −eσi(0,n0) −

U ′(Wi)
(σi(0,n0)∆Ui(0))

. So, the third factor is also negative. Thus, ∂E[Ui(xi)|n]/∂xi|xi=0,n=n0 ≥ 0. 2

A.2. Proof of Proposition 2.2

Proof. We have to prove that x†
i ≥ x∗

i .
We start by decomposing ∂E[UP (x)|n⋆(x)]/∂xi into the two components of (9). At first we

expand the definition (8)

∂
∂xi

E[UP (x)|n⋆(x)] = νi
∂

∂xi
E [Ui(xi)|n⋆(x)] +

∑
j ̸=i νj

∂
∂xi

E [Uj(xj)|n⋆(x)].

The next step is to expand the first addendum of the decomposition above, by replacing E [Ui(xi)|n⋆(x)]
with its definition in (3) when n = n⋆(x). The derivative can be expanded as follows by an application
of the global chain rule:

∂E[Ui(xi)|n⋆(x)]
∂xi

=

(
∂n⋆(x)
∂xi

∂σi(xi,n)
∂n

∣∣∣
n=n⋆(x)

Ui(Wi − xi − Li) +

+∂n⋆(x)
∂xi

∂(1−σi(xi,n))
∂n

∣∣∣
n=n⋆(x)

Ui(Wi − xi)

)
+

+

(
∂σi(xi,n)

∂xi

∣∣∣
n=n⋆(x)

Ui(Wi − xi − Li) + σi(xi, n
⋆(x))∂Ui(Wi−xi−Li)

∂xi
+

+ ∂(1−σi(xi,n))
∂xi

∣∣∣
n=n⋆(x)

Ui(Wi − xi) + (1− σi(xi, n
⋆(x)))∂Ui(Wi−xi)

∂xi

)
= ∂n⋆(x)

∂xi

∂E[Ui(xi)|n]
∂n

∣∣∣
n=n⋆(x)

+ ∂E[Ui(xi)|n]
∂xi

∣∣∣
n=n⋆(x)

.

We expand the second addendum of the decomposition, again by a suitable application of the global
chain rule: ∑

j ̸=i

νj
∂E[Uj(xj)|n⋆(x)]

∂xi
=

∑
j ̸=i

νj

(
∂(σj(xj ,n)Uj(Wj−xj−Lj))

∂n

∣∣∣
n=n⋆(x)

∂n⋆(x)
∂xi

+

+
∂((1−σj(xj ,n))Uj(Wj−xj))

∂n

∣∣∣
n=n⋆(x)

∂n⋆(x)
∂xi

)
= ∂n⋆(x)

∂xi

∑
j ̸=i

νj
∂E[Uj(xj)|n]

∂n

∣∣∣
n=n⋆(x)

.

By aggregating back the two addenda we obtain the desired result (9):

∂E[UP (x)|n⋆(x)]
∂xi

= νi
∂n⋆(x)
∂xi

∂E[Ui(xi)|n]
∂n

∣∣∣
n=n∗(x)

+ νi
∂E[Ui(xi)|n]

∂xi

∣∣∣
n=n⋆(x)

+

+∂n⋆(x)
∂xi

∑
j ̸=i

νj
∂E[Uj(xj)|n]

∂n

∣∣∣
n=n⋆(x)

= νi
∂E[Ui(xi)|n]

∂xi

∣∣∣
n=n⋆(x)

+ ∂n⋆(x)
∂xi

∂E[UP (x)|n]
∂n

∣∣∣
n=n⋆(x)

.

30



The first term of the decomposition is the value of the partial order derivative used to calculate
the Nash equilibrium of the unregulated targets. In order to show that the second term is always
positive we need to expand it back in a slightly different way. For brevity of exposition we omit the
n = n⋆(x) assignment:

∂E[UP (x|n]
∂n = ∂

∂n

(∑N
j=1 νjE [Uj(xj)|n]

)
=

∑N
j=1 νj

(
∂σj(xj ,n)

∂n Uj(Wj − xj − Lj)− ∂σj(xj ,n))
∂n Uj(Wj − xj)

)
= −

∑N
j=1 νj

∂σj(xj ,n)
∂n ∆Uj(xj).

For every j, the component ∆Uj is always positive. Further, the marginal probability of a
successful attack when the number of attackers increases ∂σj(xj , n)/∂n is also always positive by
A.2. Hence the overall sum is always negative. This sum is multiplied by the factor ∂n∗/∂xi.

We need to further determine whether the overall second term in (9) is positive decreasing in
xi. To this extent it is useful to consider the decomposition of ∂E [UP (x|n⋆(x))]/∂n into the factors

−∂n⋆(x)∂xi and
∑N

j=1 νj
∂
∂nσj(xj , n)∆Uj(xj). As for the second factor we notice that ∆Uj(xj) is

positive decreasing in xi by simple inspection and that ∂σi(xi, n)∂n is positive by A.2 and decreasing
in xi by A.4. Therefore, the overall second term of the decomposition of the policy maker expected
utility ∂E [UP (x|n⋆(x))]/∂xi is always positive.

Then, the optimal value of x†
i of the security investment of the policy maker happens at a point

(x†, n†) where ∂E[Ui(xi)|n]/∂xi|xi=x†
i ,n=n† < 0 whereas the security investment of the unregulated

target happens at the place x∗
i where ∂E[Ui(xi)|n]/∂xi|xi=x∗

i ,n=n† = 0. Since Ui is weakly concave

then x∗
i ≤ x†

i . 2

A.3. Proof of Lemma 3.1
Proof. First, it is useful to show that risk neutral targets are indifferent to insurance. When target i
is risk neutral, so that Urn:i(w) = w, the right-hand side of (10) reduces to the quantity:

E[Urn:i(qi, ℓi, xi)|q, l, n] = (1− σi(xi, n))(Wi − xi − qi)+
σi(xi, n)(Wi − xi − qi − ℓi)

= Wi − xi − qi − σi(xi, n)ℓi
= Wi − xi − σi(xi, n)Li.

As in the case of no insurance discussed previously, the target’s choice of defensive expenditure
minimizes the expected monetary loss. Hence, qi = 0 is optimal for a risk-neutral target and Li = ℓi.
When target i is risk averse, (10) reduces to the quantity

E[Ui(qi, ℓi, xi)|q, l, n] = (1− σi)Ui(Wi − xi − σi(xi, n)(Li − ℓi))+
σiUi(Wi − xi − σi(xi, n)(Li − ℓi)− ℓi)

= (1− σi)Ui(Wi − xi − σi(xi, n)Li + σiℓi)+
σiUi(Wi − xi − σi(xi, n)Li + σiℓi − ℓi)

≤ Ui ((1− σi(xi, n))(Wi − xi − σiLi + σiℓi)+
σi(Wi − xi − σi(xi, n)Li + σiℓi − ℓi))

= Ui (Wi − xi − σi(xi, n)Li) .

Substituting ℓi = 0 in (10), yields the result. 2

A.4. Proof of Theorem 3.2
Proof. We need to prove the following statement:

x∗
i ≥ x♯

i iff (i) e∆Ui(xi) ≤ e∂(1−σ)/∂n for xi ≤ x♯
i and n = n⋆(x)

(ii) E[U ′(x♯
i)|n♯] ≤ U ′

i(Wi − x♯
i − L(Wi − x♯

i , Li)).

First, we consider the case in which the targets have fair insurance available. We use Proposition 3.1
to determine that targets will choose full insurance and their expected utility function is therefore
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identical to Ui(Wi − xi − σi(xi, n)Li|n). For any given number of attackers, the maximum value of
the utility will be attained by setting the usual first order condition. The derivative of the utility
function, in the presence of full insurance is the following:

∂Ui(Wi−xi−σi(xi,n)Li)
∂xi

= U ′
i(Wi − xi − σi(xi, n)Li)(−1− ∂σi(xi,n)

∂xi
Li).

Since Ui is positive convex, the first factor is positive for all values of wealth, i.e. U ′
i > 0. The

first-order condition can only be attained by setting the second factor to zero; this yields (7).

So we denote with x♯
i be the value of the security investment for the insured target, which is

equal to the optimal expenditure of the risk-neutral target. For the no-insurance case the first-order
condition is derived as follows:

∂E[Ui(xi)|n]
∂xi

= ∂(σi(xi,n)Ui(Wi−xi−Li)+(1−σi(xi,n))Ui(Wi−xi))
∂xi

= ∂σi(xi,n)
∂xi

Ui(Wi − xi − Li) + σiU
′
i(Wi − xi − Li)(−1)+

−∂σi(xi,n)
∂xi

Ui(Wi − xi) + (1− σi(xi, n))U
′
i(Wi − xi)(−1)

= −σi(xi, n)U
′
i(Wi − xi − Li)− (1− σi(xi, n))U

′
i(Wi − xi)+

−∂σi(xi,n)
∂xi

(Ui(Wi − xi)− Ui(Wi − xi − Li))

= −E[U ′
i(xi)|n]− ∂σi(xi,n)

∂xi
Li

Ui(Wi−xi)−Ui(Wi−xi−Li)
Li

= −E[U ′
i(xi)|n]− ∂σi

∂xi
LiU

′
i(Wi − xi − L(Wi − xi, Li)).

We now compute the partial derivative over n of the marginal expected utility of the risk-averse
target:

∂
∂n

∂E[Ui(xi)|n]
∂xi

= +∂σi(xi,n)
∂n (U ′

i(W − xi)− U ′
i(W − xi − Li))− ∂

∂n
∂σi

∂xi
∆Ui

= −∂σi(xi,n)
∂n

∂∆Ui(xi)
∂xi

− ∂
∂xi

∂σi

∂n ∆Ui.

For this derivative to be greater than zero we need to impose the following condition:

−∂σi(xi,n)
∂n

∂∆Ui(xi)
∂xi

> ∂
∂xi

(∂σi

∂n )∆Ui moving terms on the opposite side
∂∆Ui
∂xi

∆Ui(xi)
< −

∂
∂xi

∂σi(xi,n)∂n

∂σi(xi,n)

∂n

∂σi

∂n > 0 and ∆Ui(xi) > 0.

By multiplying both terms for xi and replacing −∂σi/∂n with ∂(1− σi)/∂n we obtain the elasticity

constraint and according to condition (i) this constraint is holding for all xi < x♯
i and n = n⋆(x).

Hence the marginal expected utility in n is increasing for increasing n.

Therefore ∂E[Ui(xi)|n]
∂xi

> ∂E[Ui(xi)|n♯]
∂xi

for n > n♯. We also know that n > n♯ for xi < x♯
i and

n = n⋆(x) By chaining the result we obtain the final inequality:

∂E[Ui(xi)|n]
∂xi

> ∂E[Ui(xi)|n♯]
∂xi

for xi < x♯
i and n = n⋆(x).

We can now replace xi with x♯
i in the right-hand side of the inequality and expand the definition

of ∂E[Ui(x
♯
i)|n♯]/∂xi and assign this value to be greater than zero. Hence we have the following

inequality:

∂E[Ui(xi)|n]
∂xi

∣∣∣
xi<x♯

i and n=n⋆(x)
> −E[U ′

i(xi)|x♯, n⋆(x♯) + U ′
i(Wi − x♯

i − L(Wi − x♯
i , Li)) > 0.

Since we know that U ′
i(Wi − x♯

i −L(Wi − x♯
i , Li)) > E[U ′

i(x
♯
i)|x♯, n⋆(x♯)] by assumption (ii) then the

value of the derivative of the expected utility of the unregulated and uninsured risk-averse target is
positive for all xi ≤ ∗. The value of ∂E[Ui(xi)|n∗]/∂xi at xi

∗ is zero for n∗ = n⋆(x∗) by definition
of optimal expenditure for the fair insurance target at equilibrium. Therefore the optimal value for
which such derivative is zero will be attained at a value of x∗ that is larger than x♯. 2
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A.5. Proof of Proposition 3.3

Proof. First we derive equation (14) for the first-order condition:

∂E[UP (x)|n⋆(x)]
∂xi

=
∑N

j=1 νi
∂Uj(Wj−xj−σj(xj ,n

⋆(x)Li)
∂xi

= νi
∂Ui(Wj−xj−σi(xi,n

⋆(x))Li

∂xi
+
∑
j ̸=i

νi
∂Uj(Wj−xj−σj(xj ,n

⋆(x))Lj

∂xi

= νiU
′
i(Wi − xi − σi(xi, n

⋆(x)))
(
−1− ∂σi(xi,n

⋆(x)Li)
∂xi

)
+

−
∑
j ̸=i

νjU
′
j(Wj − xj − σj(xj , n

⋆(x)))
∂σj(xj ,n

⋆(x))Li

∂xi

= νiU
′
i(Wi − xi − σi(xi, n

⋆(x)))

(
−1− ∂σi(xi,n)Li)

∂xi

∣∣∣
n=n⋆(x)

− ∂σi(xi,n)Li)
∂n

∣∣∣
n=n⋆(x)

∂n⋆(x)
∂xi

)
+

−
∑
j ̸=i

νjU
′
j(Wj − xj − σj(xj , n

⋆(x)))∂n
⋆(x)
∂xi

∂σj(xj ,n)Li

∂n

∣∣∣
n=n⋆(x)

= νi
∂Ui(Wi−xi−σi(xi,n)Li)

∂xi

∣∣∣
n=n⋆(x)

+

∂n⋆(x)
∂xi

N∑
j=1

∂Uj(Wj−xj−σi(xi,n))
∂n

∣∣∣
n=n⋆(x)

= νi
∂Ui(E[xi|n])

∂xi

∣∣∣
n=n⋆(x)

+ ∂n⋆(x)
∂xi

∂UP (E[x|n])
∂n

∣∣∣
n=n⋆(x)

.

Now we must establish the sign of the second term of the decomposition. The same reasoning used
for proving Proposition 2.2 and Theorem 3.2. We notice that the term ∂n⋆(x)/∂xi is negative as

well as the term ∂UP (E[x|n])/∂n. Hence, their product is positive. Therefore, the value of x♯
i of the

security investment of the policy maker happens at a point where ∂E[Ui]/∂xi|xi=x♯
i
> 0 whereas the

security investment of the unregulated target happens at the place x∗
i where ∂E[Ui]/∂xi|xi=x♯

i
= 0.

Hence x‡
i ≥ x♯

i . □ 2

A.6. Proof of Theorem 3.4

Proof. First we prove that the expectation of the target is always maximized by setting deductibles
ℓi = 0:

E[Ui(qi, ℓi, xi)|n] =σi(xi, n)Ui(Wi − xi − qi − σi(xi, n)ℓi)

+ (1− σi(xi, n))Ui(Wi − xi − qi) (31)

≤σi(xi, n)Ui(Wi − xi − qi) + (1− σi(xi, n))Ui(Wi − xi − qi) (32)

=Ui(Wi − xi − qi) (33)

As a next step we show that if L(Wi − xi, Li) ≤ qi(x) then the marginal environmental risk
Ri(xi, qi, n) justifying additional investments for i is always smaller than the actual marginal risk
∂σi/∂n at the equilibrium point for n = n⋆(x). At first we have Wi − xi − L(Wi − xi, Li) ≥
Wi − xi − qi(x) and U ′

i(Wi − xi − L(Wi − xi)) ≤ U ′
i(Wi − xi − q) since U ′

i > 0 and U ′′
i ≤ 0 by the

assumption of risk aversion (A.1). Therefore U ′
i(Wi − xi − L(Wi − xi, Li))/U

′
i(Wi − xi − qi(x)) ≤ 1.

Since ∂σi(xi, n)/∂n ≥ 0 by Assumption (A.2) we have that Ri(xi, q, n) ≤ Li∂σi(xi, n)/∂n.
Then we derive (20) and (21) from the incentive compatibility constraint (18). For the former

equation we differentiate both sides of (18) and obtain

∂Ui(Wi−xi−qi(x))
∂xi

= ∂E[Ui(xi)|n⋆(x)]
∂xi

.

By expanding the definition of expected utility and by applying the properties of the derivation of
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compound functions we get

U ′
i(Wi − xi − qi)(−∂qi/∂xi − 1) =

∂σi(xi, n
⋆(x))

∂xi
Ui(Wi − xi − Li))

+ σi(xi, n
⋆(x))

∂Ui(Wi − xi − Li)

∂xi
+

+
∂(1− σi(xi, n

⋆(x))

∂xi
Ui(Wi − xi)

+ (1− σi(xi, n
⋆(x)))

∂U ′
i(Wi − xi)

∂xi
. (34)

We can now process the right-hand side term of the equation by using the global chain rule and by
re-arranging terms:

. . . =
(

∂σi(xi,n)
∂xi

+ ∂σi(xi,n)
∂n

∂n⋆(x)
∂xi

)
n=n⋆(x)

· Ui(Wi − xi − Li))+

+
(

∂(1−σi(xi,n))
∂xi

+ ∂(1−σi(xi,n))
∂n

∂n⋆(x)
∂xi

)
n=n⋆(x)

· Ui(Wi − xi)

+σi(xi, n
⋆(x))∂Ui(Wi−xi−Li)

∂xi
+ (1− σi(xi, n

⋆(x))∂Ui(Wi−xi)
∂xi

= ∂σi(xi,n)
∂xi

∣∣∣
n=n⋆(x)

Ui(Wi − xi − Li)) + σi(xi, n
⋆(x))∂Ui(Wi−xi−Li)

∂xi
+

+ ∂(1−σi(xi,n))
∂xi

∣∣∣
n=n⋆(x)

Ui(Wi − xi) + (1− σi(xi, n
⋆(x))∂Ui(Wi−xi)

∂xi

+∂n⋆(x)
∂xi

∂σi(xi,n)
∂n

∣∣∣
n=n⋆(x)

Ui(Wi − xi − Li))+

+∂n⋆(x)
∂xi

∂(1−σi(xi,n))
∂n

∣∣∣
n=n⋆(x)

Ui(Wi − xi).

The first four terms can be aggregated back into the partial derivative of the expected utility according
to (3) where n is held constant during the derivative and then replaced by n⋆(x). The remaining
two terms can be aggregated into the definition of ∆Ui(xi) after changing the sign accounting for the
negative sign stemming from ∂(1− σi)/∂n:

U ′
i(Wi − xi − qi(x))

(
−1− ∂qi(x))

∂xi

)
=

∂E[Ui(xi)|n]
∂xi

∣∣∣∣
n=n⋆(x)

+

− ∂n⋆(x)

∂xi

∂σi(xi, n)

∂n

∣∣∣∣
n=n⋆(x)

∆Ui(xi). (35)

By multiplying and dividing the right-hand side by Li, and by replacing the definition of maximally
insurable loss from equation (2) in terms of ∆Ui(xi)/Li one obtains the following equation after
simplification of the left-hand side:(

−1− ∂qi(x))

∂xi

)
=

∂E[Ui(xi)|n]
∂xi

∣∣∣∣
n=n⋆(x)

· 1

U ′
i(Wi − xi − qi(x))

+

− ∂n⋆(x)

∂xi
· ∂σi(xi, n)

∂n

∣∣∣∣
n=n⋆(x)

· Li ·
U ′
i(Wi − xi − L(Wi − xi, Li))

U ′
i(Wi − xi − qi(x))

. (36)

Replacing the definition of marginal environment risk yields our desired decomposition as given in
(20).
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For the second equation (21) we use the following derivation:

∂Uj(Wj−xj−qj(x))
∂xi

= ∂
∂xi

E[Uj(xj)|n⋆(x)]

U ′
j(Wj − xj − qj(x))

∂(Wj−xj−qj(x))
∂xi

= ∂
∂xj

(σj(xj , n
⋆(x))Uj(Wj − xj − Lj))

+(1− σj(xj , n
⋆(x)))Uj(Wj − xj)

U ′
j(Wj − xj − qj(x))

(
−∂qj(x)

∂xi

)
=

∂σj(xj ,n
⋆(x))

∂xi
Uj(Wj − xj − Lj))+

+
∂(1−σj(xj ,n

⋆(x))
∂xi

Uj(Wj − xj)

=
∂σj(xj ,n

⋆(x))
∂xi

(Uj(Wj − xj − Lj))− Uj(Wj − xj))

=
∂σj(xj ,n)

∂n

∣∣∣
n=n⋆(x)

·∂n
⋆(x)
∂xi

(Uj(Wj − xj − Lj))− Uj(Wj − xj)) .

Finally, by multiplying and dividing by Lj and reverting to the definition of maximally insurable
loss we obtain the final result:

U ′
j(Wj − xj − qj(x))

∂qj(x)
∂xi

=
∂σj(xj ,n)Lj

∂xi

∣∣∣
n=n⋆(x)

· Uj(Wj−xj)−Uj(Wj−xj−Lj))
Lj

∂qj(x)
∂xi

= ∂n⋆(x)
∂xi

· ∂σj(xj ,n)Lj

∂n

∣∣∣
n=n⋆(x)

· U ′
j(Wj−xj−L(Wj−xj))

U ′
j(Wj−xj−qj(x))

.

Now the insurer will optimize its profit function by taking the usual first-order condition:

∂Π(x)
∂xi

=
∂
∑N

j=1 qj(x)−σj(xj ,n
⋆(x)))Lj

∂xi

= ∂(qi(x)−σi(xi,n
⋆(x))Li)

∂xi
+
∑

j ̸=i
∂qj(x)−σj(xj ,n

⋆(x))Lj

∂xi
.

We expand the first term of the decomposition

∂qi(x)−σi(xi,n
⋆(x))Li)

∂xi
= ∂qi(x)

∂xi
− ∂σi(xi,n

⋆(x))Li)
∂xi

= ∂qi(x)
∂xi

−
(

∂σi(xi,n)Li

∂xi

∣∣∣
n=n⋆(x)

+ ∂σi(xi,n)Li

∂n

∣∣∣
n=n⋆(x)

∂n⋆(x)
∂xi

)
= −1− 1

U ′
i(Wi−xi−qi(xi))

∂E[Ui(xi)|n]
∂xi

∣∣∣
n=n⋆(x)

+ ∂n⋆(x)
∂xi

Ri(xi, qi, n
⋆(x))

−
(

∂σi(xi,n)Li

∂xi

∣∣∣
n=n⋆(x)

+ ∂σi(xi,n)Li

∂n

∣∣∣
n=n⋆(x)

∂n⋆(x)
∂xi

)
= − 1

U ′
i(Wi−xi−qi(xi))

∂E[Ui(xi)|n]
∂xi

∣∣∣
n=n⋆(x)

+

−1− ∂σi(xi,n)Li

∂xi

∣∣∣
n=n⋆(x)

+

−∂n⋆(x)
∂xi

(
∂σi(xi,n)Li

∂n

∣∣∣
n=n⋆(x)

−Ri(xi, qi, n
⋆(x))

)
,

expanding the second term for every addendum of the sum

∂qj(x)−σ(xj ,n
⋆(x))Lj

∂xi
=

∂qj(x)
∂xi

− ∂σ(xj ,n
⋆(x))Lj

∂xi

=
∂qj(x)
∂xi

− n⋆(x)
∂xi

σj(xj ,n)Lj

n

∣∣∣
n=n⋆(x)

= −∂n⋆(x)
∂xi

·
(

∂σj(xj ,n)Lj

∂n

∣∣∣
n=n⋆(x)

−Rj(xj , qj , n
⋆(x))

)
.

We can now start to group terms appropriately:

∂Π
∂xi

= − 1
U ′

i(Wi−xi−qi(xi))
∂E[Ui(xi)|n]

∂xi

∣∣∣
n=n⋆(x)

+

−1− ∂σ(xi,n)Li

∂xi

∣∣∣
n=n⋆(x)

−∂n⋆(x)
∂xi

·
∑N

j=1

(
∂σj(xj ,n)Lj

∂n

∣∣∣
n=n⋆(x)

−Rj(xj , qj , n
⋆(x))

)
.
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If we replace the definition of enviromental risk we obtain the desired result:

∂Π
∂xi

= − 1
U ′

i(Wi−xi−qi(x))
∂E[Ui(xi)|n]

∂xi

∣∣∣
n=n⋆(x)

+

−1− ∂σ(xi,n)Li

∂xi

∣∣∣
n=n⋆(x)

−∂n⋆(x)
∂xi

·
∑N

j=1
∂σj(xj ,n)Lj

∂n

∣∣∣
n=n⋆(x)

U ′
j(Wj−xj−L(Wj−xj))

U ′
j(Wj−xj−qj(x))

We consider now the value of the above derivative for xi = x◦
i , the optimal value for the insurer.

Since the profit of the insurer reaches the maximum the left hand side must be equal to zero and we
can move the marginal expected value of the target for the Nash equilibrium on the left-hand side of
the equation:

1

U ′
i(Wi − x◦

i − qi(x◦))

∂E[Ui(xi)|n]
∂xi

∣∣∣∣
xi=x◦

i ,x=x◦,n=n⋆(x◦)

= −1+

− ∂σ(xi, n)Li

∂xi

∣∣∣∣
xi=x◦

i ,n=n⋆(x◦)

(37)

− ∂n⋆(x◦)

∂xi
·

N∑
j=1

∂σj(xj , n)Lj

∂n

∣∣∣∣
xj=x◦

j ,n=n⋆(x◦)

(38)

.
U ′
j(Wj − x◦

j − L(Wj − x◦
j ))

U ′
j(Wj − x◦

j − qj(x◦))
(39)

We apply the same reasoning used for the proof of Proposition 2.1 and Theorem 3.2 to derive
the inequality for the value of marginal expected utility at the Nash equilibrium. If all elasticity
conditions for Proposition 2.1 hold for xi ≤ x◦

i then we know that the marginal expected utility
of the unregulated target is monotone decreasing for all values xi ≤ x◦

i . If the marginal expected
loss at x◦

i is smaller than -1, that is ∂σ(xi, n)/∂xi|xi=x◦
i ,n=n⋆(x◦) ≤ −1/Li, then the first line of the

equation is a positive term which is also monotone decreasing. The third term is always positive
given assumption A.1 and therefore x◦

i ≤ x∗
i . 2
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B. Appendix: Example Calculations

B.1. Derivation for homogeneous firm

Plugging the functional forms for U(·) and σ(·) into Propositions 2.1, Theorem 3.2 and The-
orem 3.4 and rearranging we derive the solution to the expected attackers per target: n⋆(x) =
(exp (−αx)ρ)1/(1−β); the Nash equilibrium investment in the absence of insurance: x∗ = β

α log(ρ) +
1−β
α log(αL − γL) + 1−β

α · γ · L(w,L); the investment under fair insurance/risk neutral investment:

x♯ = β
α log(ρ) + 1−β

α log(αL); the monopolist insurer optimal quote: q◦ = 1
γ log(exp (γL)nβ − nβ +

exp (αx)) − αx
γ and the monopolist insurers desired level of investment: x◦ = x♯ − 1−β

α (log(αγL) +

log(1−exp (−γL(W − x◦, L)))) = x∗− 1−β
α (log(αγL−L)+γL(w,L)+log(1−exp (−γL(W − x◦, L)))).

C. Appendix: Actual Insurance Contracts and Estimation of Risks

Cyberinsurance has only recently been made available widely. It is therefore useful to gain some
insight into the likelihoods of losses and their magnitude.

Table 1 provides a series of quotes from a major insurer for a range of different firms. Cross-
sectionally the size of the coverage tallies with the distribution of claims reported in a survey of
companies by the Net Diligence organization,30 which surveys 16 insurance companies annually re-
garding cyberinsurance claims. The group of insurers reported 85 claims for US firms that resulted
in payouts for the 2011 to 2013 period with claims ranging from $1,000 to $13.7 million, with a
median of around $750,000. The claim survey information is consistent with the indicative quotes in
that the approximate size of payouts in most sectors was just under 1 million dollars and this is the
approximate level of coverage. However, certain vulnerable sectors choose a coverage well in excess
of this amount and this is borne out by the realized claims that included several that were in excess
of $10 million.

Using these quotes we have made some illustrative calculations to estimate the natural probability
of a successful attack. First we divide the quoted premium by the coverage limit to derive the
probability of an incident, in one year, under the assumption that the quote is actuarially fair. This
corresponds to column 5 in Table 1. We can see that the highest probability under this assumption
is for financial and E-commerce firms at 3.7%.

This is likely a misleading value as the insurance market in this area is, in most likelihood, far
away from being actuarially fair. We therefore further assume that the insurance company, as a
near monopolist, can charge a monopoly price up to the break-even of expected utility for the firm
versus the certain utility in presence of insurance. For illustration purposes, we presume that security
expenditure is the same for both insured and uninsured targets and assume that the target preferences
are described by a CARA utility function as in Section 4: Ũi(z) = −(1/γ̃)e−γ̃z, where γ̃ = 2. We
then compute the value of σ̃i such that targets are indifferent between taking insurance and staying
uninsured: Ũi(1− qi/Wi) = σiUi(1−Li/Wi) + (1− σi)Ui(1). The corresponding value is reported in
column 6 in Table 1.

We also evaluate the procedure for a variety of risk aversion coefficients from 0.1 to 1 while
considering losses are relative to annual total revenue, which is a standard approach for for corporate
liability insurance. We choose 0.1, as a control value, as the probability should be very close to the
actuarially fair insurance. This is indeed the case for all organizations in this sample. For a risk
aversion coefficient of 1, the probability of an event with a successful claim for the Financial and E-
commerce sector is essentially identical to the 0.1 case. However, for several other firms, the implied
probability of a claim event rise by a five-fold factor.

In a final experiment we used two industry-reported payout ratios of 10% and 50% on premiums
and compute the minimum implied constant relative risk aversion for firms with iso-elastic power
utility, by reversing the calculation used above.31 For the widely quoted 10% payout, all firms have
a risk aversion coefficient well above unity; however, for a more reasonable 50% payout several firms
have minimum relative risk aversion coefficients close to a half.

30Article Net Diligence Cyber Claims Study 2014 by Mark Greisiger.
31See: “Cyber insurance market tempts new participants” by Alistair Grey, Financial Times, October 6,

2014. http://www.ft.com/cms/s/0/69db580c-4d37-11e4-8f75-00144feab7de.html.
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Table 1: Selection of cyberinsurance contracts across a variety of commercial settings.
Industry ∼ Wi Li qi q/L σ̃i

Healthcare 25,000,000 1,000,000 12,900 1.29% 1.24%
Education 25,000,000 1,000,000 6,000 0.60% 0.58%
Financial 100,000,000 1,000,000 37,000 3.70% 3.66%
Retail 50,000,000 1,000,000 26,000 2.60% 2.55%
E-commerce 50,000,000 1,000,000 37,000 3.70% 3.63%
Restaurant Chain 50,000,000 1,000,000 10,000 1.00% 0.98%
Manufacturing 100,000,000 10,000,000 50,000 0.50% 0.45%
Healthcare IT 1,200,000 5,000,000 15,900 0.32% 0.00%
Healthcare SaaS 1,500,000 5,000,000 30,420 0.61% 0.01%
Electronic Health Records Stor. 5,000,000 1,000,000 8,010 0.80% 0.65%
Clinical Data 20,000 2,000,000 4,900 0.25% 0.00%
E-Waste Company 1,500,000 1,000,000 3,564 0.36% 0.17%
Psychologists Office 1,000,000 1,000,000 1,600 0.16% 0.05%
Doctor’s Office 700,000 500,000 649 0.13% 0.06%
Online Retailer 500,000 1,000,000 1,100 0.11% 0.01%
Hospital 170,000,000 5,000,000 42,000 0.84% 0.82%
Data Storage 15,000,000 20,000,000 120,000 0.60% 0.12%

Notes: The first column identifies the industrial sector for which the corporate liability insurance has a specific cy-
berinsurance clause. The second column denotes the reported revenue (approximated by the insurance company) of
the organization in one year proxying for Wi. The third column provides the level of coverage Li for each organization
while the fourth column reports the payable insurance premium qi. From this data we computed column five as the
ratio of the premium to the coverage: if the insurance was actuarially fair, then this would be the probability of a
successful attack, assuming one claim per year. Column six is the probability that is estimated from the data by
assuming that targets are indifferent to insurance and have a CARA utility function with a risk aversion coefficient
equal to 2.
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