
Delta-Bench: Differential Benchmark for Static
Analysis Security Testing Tools

Ivan Pashchenko
University of Trento, Italy

Email: ivan.pashchenko@unitn.it

Stanislav Dashevskyi
University of Trento, Italy

Email: stanislav.dashevskyi@unitn.it

Fabio Massacci
University of Trento, Italy

Email: fabio.massacci@unitn.it

Abstract—Background: Static analysis security testing (SAST)
tools may be evaluated using synthetic micro benchmarks and
benchmarks based on real-world software.

Aims: The aim of this study is to address the limitations of
the existing SAST tool benchmarks: lack of vulnerability realism,
uncertain ground truth, and large amount of findings not related
to analyzed vulnerability.

Method: We propose Delta-Bench – a novel approach for the
automatic construction of benchmarks for SAST tools based on
differencing vulnerable and fixed versions in Free and Open
Source (FOSS) repositories. To test our approach, we used 7 state
of the art SAST tools against 70 revisions of four major versions
of Apache Tomcat spanning 62 distinct Common Vulnerabilities
and Exposures (CVE) fixes and vulnerable files totalling over
100K lines of code as the source of ground truth vulnerabilities.

Results: Our experiment allows us to draw interesting con-
clusions (e.g., tools perform differently due to the selected
benchmark).

Conclusions: Delta-Bench allows SAST tools to be auto-
matically evaluated on the real-world historical vulnerabilities
using only the findings that a tool produced for the analyzed
vulnerability.

Keywords-Static Analysis, Static Application Security Testing
Tool, Vulnerability, Software Security, Large-scale Benchmark

I. INTRODUCTION

Designing a benchmark with real-world software is a chal-
lenging task [1]. Therefore, existing approaches either insert
bugs artificially [2], [3], or use historical bugs from the
software repository of a project [4]. Artificial bug injection
is often difficult to verify (see [2, p.2]), whilst historical
vulnerabilities may represent only a subset of the ground truth.

Purely synthetic benchmarks [5] eliminate the above prob-
lems by isolating vulnerabilities into atomic tests that represent
small applications, so that each of them contains only the code
relevant to a vulnerability to be tested or a deliberately inserted
false positive, and some other closely related code which may
be required for the vulnerable code to compile.

Still, for practical purposes one would like to know how
a tool scales when moving from synthetic to real-world
software. The biggest problem of using real-world software for
benchmarking is that the code usually contains several “issues”
simultaneously. Hence, the tool may produce many alarms not
related to the vulnerability type for which we would like to
use the software as a benchmark. Some of those alerts may
be wrong but others may be “true” for other issues (see the
discussion on the Juliet test suite [1, p.2]).

Developers perceive these large amounts of alerts (Back-
ground Noise) to be a “pain in the neck” that goes along with
the practical usage of static analysis security testing (SAST)
tools [6]. Therefore, our goal is to devise a methodology for
benchmarking SAST tools that would combine both benefits
of synthetic benchmarks and real-world software: (1) “isolate”
findings relevant to the ground truth vulnerabilities, and (2)
assess the Background Noise that various tools may generate
in practice.

The next section (§II) provides an overview of the existing
SAST tool benchmarks. Then we describe the Delta-Bench
approach on how to use real-world software for benchmarking
SAST tools (§III) and discuss our data collection process
for the Delta-Bench evaluation (§IV), and check whether our
assumptions on the data are satisfied (§V). Finally, we discuss
the results of the empirical evaluation (§VI), the threats to
validity (§VII) and conclude (§VIII).

II. SAST BENCHMARKS

Several studies survey the performance of SAST tools. For
example, Li and Cui [7] provided a technical description of
seven open source tools, describing their experience with three
of them in terms of false positive and false negative rates on
their own test code. Emanuelsson and Nilsson [8] described
three commercial tools, providing case studies on their evalu-
ation at Ericsson. Such comparisons provide valuable insights
for security researchers, but cannot be easily replicated.

The first large-scale public event named Static Analysis
Tool Exposition (SATE), aiming to accumulate test data, was
conducted in 2008 [9] and is now at the fifth edition [10].
One of the main outcomes of this project is the creation of
the Software Assurance Reference Dataset (SARD), which
contains synthetic test suites for SAST tool comparison. In
the academic domain Johns and Jodeit [5] introduced a com-
mon methodology for systematic evaluation of SAST tools
using a benchmark composed of small programs that contain
artificially injected vulnerabilities. However, artificial vulnera-
bilities may differ from the real-world ones, and therefore the
evaluation results may differ.

A possible way to adapt real-world software for bench-
marking purposes is to modify the original source code of an
application to increase the potential coverage of SAST tools.
Examples are mutation [11] and metamorphic [12] testing.
Although such techniques may expand the applicability of

1



(a) Directly running the tool on the vulnerable version (b) Considering different alerts on vulnerable and fixed
versions

The tool output after analyzing a vulnerable version would likely contain many alerts not related to the analyzed vulnerability (Figure 1a). Such alerts should
be also present in the tool output on a fixed version. Hence, the alert subtraction may significantly decrease the amount of irrelevant alerts (Figure 1b).

Fig. 1. An example of findings of a SAST tool

static analysis tools to real-world software, they do not help
automatic warning classification and do not solve a problem
on how to compare outputs of different SAST tools [1].

The solution proposed by Dolan-Gavitt et al. [3] (LAVA)
suggests an artificial injection of vulnerabilities into the source
code of real applications. Although this technique allows
benchmarks to be created automatically, it does not allow
false positive evaluation of SAST tools [3, §VIII]. The current
implementation of LAVA is limited only to one vulnerability
type (buffer overflow), and some vulnerability types cannot be
injected using LAVA approach (e.g., logic errors, crypto flaws,
and side-channel vulnerabilities).

III. BENCHMARK CONSTRUCTION

Similarly to Livshits and Lam [13], and Delaitre et al. [14],
we intend to use large open source software projects – these
projects are well documented, their source code is publicly
available, and their software repositories contain many histor-
ical vulnerabilities. Therefore, they can be used for identifying
the ground truth – the expected correct output of a tool.

In a software repository we typically have available:
• Cfixed – the source code of a revision of a software

project that was created to fix a security vulnerability.
• Cvuln – the source code of the last vulnerable revision

that precedes the Cfixed.
Figure 1a demonstrates a typical situation regarding the

alerts of a SAST tool when running it on Cvuln. Ideally, the
tool output for Cvuln should contain only alerts related to the
vulnerability (TP area of the (a) square in Figure 1a). A tool
may not identify all the code related to the vulnerability in
Cvuln (FN area in the (a) square in Figure 1a).

SAST tools tend to generate many false alerts [15], so the
tool output may contain false positive alerts (FPS) related to
the vulnerable set of files in the squared area (b)1. In case of
a synthetic benchmark there would be no other alarms.

Unfortunately, real-world software projects usually contain
many “issues” distributed between all the project files. Hence,
a SAST tool would generate many more alarms (some of
them may correspond to other flaws present in a project) not
related to the analyzed vulnerability (the FPall area in the
(c) square). The false alerts FPall may be distracting, and
therefore unwanted by developers [6].

1We consider such alerts as false positives, since we concentrate only on
one vulnerability at a time.

Since the false alarms FPall are unrelated to the vulnerable
code fragment of the benchmark test, they are likely to be
present in the tool outputs for both Cvuln and Cfixed. The
successful fix of a vulnerability implies that the source code
does not contain the vulnerable code anymore. Hence, the
tool output on Cfixed should not contain alerts related to
the vulnerability and observed in Cvuln. We can then subtract
common alerts and evaluate the “actual” tool performance con-
sidering only the alerts relevant to the analyzed vulnerability.
Figure 1b shows the alert distribution in the vulnerable code
base after eliminating the alerts common for Cvuln and Cfixed.

The above intuition corresponds to our proposed process
to generate a benchmark. The first three steps determine the
ground truth, the others separate the Background Noise from
the findings related to the specific vulnerability – Signal:

1) Identify a suitable project that provides sufficient infor-
mation about security fixes, so that they can be identified
in the source code (e.g., Common Vulnerabilities and
Exposures (CVE) entries in the Git logs).

2) For each fixed vulnerability, identify a pair
〈Cvuln, Cfixed〉 – this information can be obtained
either from the repository commit logs, vulnerability
databases, or security notes.

3) Extract the source code constructs (files, and lines of
code) modified during a fix (thus, likely vulnerable): we
use the diff tool of a version control system.

4) Run a tool on a vulnerable version of the software Cvuln,
and on the fixed version Cfixed (the fix must be the only
difference between the two versions);

5) The Signal are the alerts differing between the tool
outputs on Cvuln and Cfixed. Metrics (TP, FP, etc.)
are only calculated on the alerts related to Signal. As
Background Noise we consider the code lines from the
same files that were reported for both Cvuln and Cfixed.

The next step in the process is to assess the tool findings
and classify them as true or false positives.

Unfortunately, various tools may return different code lines
for the same issue [1]. Moreover, a security fix may not touch
the exact vulnerable line, but may modify a line that is relevant
to the vulnerable one and is located “closely” to it (i.e., within
the same method). An insertion of a sanitization mechanism
for the user input may be an example of such a fix. Hence,
a direct comparison of the lines reported by a tool with the
code lines changed during a security fix would be misleading.

2



Algorithm 1: Differential tool assessment
input : A vulnerable revision Cvuln and a fixed revision Cfixed

output: Differential assessment of tool findings on file-level
// identification of the ground truth

1 GTF ← {file|file ∈ diff(Cfixed, Cvuln)} // diff(C1, C2) is
a diff tool of a version control system

2 BackgroundNoise← ∅ ;
// Alerts(C) represents a tool output after

running on C and returns a set of < file, line >.
3 for each < file, lile >∈ Alerts(Cfixed) do

// Adjust(file, line, C1, C2) converts positions of
lines in C1 into relative positions in C2

4 line∗ ← Adjust(file, line, Cfixed, Cvuln);
5 if < file, line∗ >∈ Alerts(Cvuln) then
6 BackgroundNoise← BackgroundNoise∪

{< file, line∗ >};
7 end
8 end
9 Signal← Alerts(Cvuln)\BackgroundNoise;
// identification of a set of correct findings

10 TP∆ ← ∅;
11 for each < file, line >∈ Signal do
12 if file ∈ GTF then
13 TP∆ ← TP∆ ∪ {file};
14 end
15 end

// classification of all the remaining findings
16 FN∆ ← GTF\TP∆;
17 FP∆ ← Alerts(Cvuln)\GTF ;
18 TN∆ ← file(Cvuln)\(GTF ∪ TP∆);

TABLE I
SOFTWARE PROJECTS USED FOR EVALUATION IN THIS PAPER

The table shows the characteristics of an average vulnerable version (Cvuln)
extracted from both Scanstud and Apache Tomcat: the total number of files
in the revision, the number of vulnerable files, and the Prevalence rate (the
ratio of vulnerable files in the revision). For Scanstud each vulnerable revision
consists from one vulnerable file, while for Apache Tomcat an average revision
may contain more than 1600 files with only 2-3 actually vulnerable files.

#Files #Vuln files Prevalence Rate
µ (± σ) µ (± σ) µ (± σ)

Scanstud 1 (± 0) 1 (± 0.0) 1.0 (± 0.0)
Tomcat 1626 (± 318) 2.54 (± 3.34) 0.0011 (± 0.0024)

In this short paper we use files as a first approximation for
finding classification: a TP is a file that has been changed
during the security fix and for which there exists an alert
pointing to that file. We extended our approach to work with
methods2, and plan to extend it to hunks and program slices.

Algorithm 1 shows how to filter Background Noise and
classify the “clean” tool findings. Since a line of code in a
vulnerable revision may have a different position in a fixed
revision, we have to convert the positions of the identified lines
obtained after running a tool on the fixed version, in order to
make the set of code lines comparable (we used lhdiff [16]
for this purpose).

IV. DATA SELECTION FOR EVALUATION

In order to understand what could be the difference in results
when comparing the performance of various tools, we had to
select an appropriate synthetic benchmark, as well as a real-
world software project. To have a fair comparison, both the

2We do not show the results on methods due to the space constraints.
However, we plan to report them in the extended version of this paper.

TABLE II
THE SAST TOOLS TESTED FOR THIS RESEARCH

SAST License Version Description

FindBugs Free 3.01 Supports any JVM language and can
detect 113 different vulnerability types.

Fortify
SCA

Commercial 4.42 Supports 23 programming languages
and detects over 700 vulnerabilities.

Jlint Free 3.1.2 Works only with Java language. It
helps to find more than 50 semantic
and syntactic bugs.

OWASP
LAPSE+

Free 2.8.1 Works only with Java language. The
tool can identify 12 vulnerability types.

OWASP
YASCA

Free 2.2 Supports 14 programming languages
and aggregates results from 11 static
analysis tools.

PMD Free 5.5.1 Supports 20 programming languages
and facilitates finding more than 25
bug types.

SonarQube Free 5.6 Supports 20 programming languages
and covers OWASP Top 10 vulnerabil-
ity types.

synthetic benchmark and the project should be written in the
same programming language (we selected Java, which is the
most popular programming language since 20043).

We used Scanstud by Johns and Jodeit [5] as a synthetic
benchmark, since it contains a large number of tests and
provides both “vulnerable” and “fixed” versions of each test.

We used Apache Tomcat as a real-world application, since
it is mainly written in Java, and contains a large number
of historical vulnerabilities that can be easily identified in
its source code repository. This project has more than 800
thousands of lines of code, more than 15 thousands of commits
and 30 unique contributors.

To demonstrate our approach we identified 38 vulnerable-
fixed file pairs from Scanstud. From Apache Tomcat we
extracted 70 revisions with 62 distinct CVEs, which contain
178 vulnerable files out of the total amount of 113842 files.
There are some common CVEs for different versions of the
project. A revision was selected if it was possible (i) to
precisely identify that the particular CVE was fixed, and (ii)
to successfully build the project version. Table I shows the
averages and standard deviations of total number of files,
number of vulnerable files, and the prevalence rate in one
experimental unit extracted from both Apache Tomcat and
Scanstud, and Table III lists the vulnerability types present
in both code bases.

To select SAST tools for benchmarking we considered the
lists created by OWASP4 and SAMATE5. Out of these lists
we selected the tools that (1) support Java, (2) are specifically
created for finding security vulnerabilities, and (3) can be
easily automated. From the commercial tools, we could obtain

3According to the two indexes used by IEEE Spectrum
(http://spectrum.ieee.org/) to assess popularity of a programming language:
(i) Tiobe index (http://www.tiobe.com/tiobe-index/), which combines data
about search queries from 25 most popular websites of Alexa; and (ii) PYPL
index (http://pypl.github.io/PYPL.html), which uses Google search queries.

4OWASP Source Code Analysis Tools list: https://www.owasp.org/index.
php/Source Code Analysis Tools

5SAMATE Source Code Security Analyzers list: https://samate.nist.gov/
index.php/Source Code Security Analyzers.html

3



an academic license for Fortify SCA (Checkmarx asked for
several thousands euros a year). Table II contains the list of the
selected SAST tools. All the tools were used in their default
configuration. Due to the licensing issues, we obfuscate the
real names of the tools while presenting their results.

We could not use all the tools from Table II for evaluation.
One tool generated many issues both on Scanstud and Tomcat,
but there were no security issues among them. FindBugs
identified 21 out of 38 issues on Scanstud, but was not able to
spot any vulnerabilities in Tomcat. This might happen because
Tomcat contains many different vulnerability types, not all
supported by FindBugs. However, the most likely reason is
that Apache Tomcat developers actually used FindBugs (and
also Coverity)6, hence they may have already fixed the findings
before committing to the source code repository. We assume
that this also caused the absence of findings from three other
tools on Tomcat. Moreover, two of them are unable to identify
the vulnerability types present in Scanstud.

Instead, Tool A and Tool B use smart algorithms of data
and control flow analysis and are constantly updated, and
therefore, they identified some vulnerabilities in both Scanstud
and Apache Tomcat. Hence, we will use them to demonstrate
the preliminary evaluation of our approach.

V. VULNERABILITY FIXES ARE “LOCAL”

Similarly to the Defects4J benchmark proposed by Just et
al. [4], our benchmark construction methodology depends on
“what else” happens during vulnerability fixes. Vulnerability
fixes must not contain other changes that are not relevant to
the purpose of the fix (e.g., refactorings or new features).
Regular bug fixing may involve several files and several little
“polishing” touches in several parts of the code base [17],
[18]. If this was the case for security bugs, our ground truth
could hardly be classified as such, as it would include a large
amount of irrelevant changes.

Several studies observed that for disciplined projects such
as Google Chrome, Mozilla’s Firefox [19], and Apache Com-
mons [20] the majority of security fixes are rather “local”,
which allows us to assume that in many cases the vulnerable
code consists of closely related chunks located within a single
file (or a handful of files).

To check if our assumption holds for Apache Tomcat, we
performed a comparative analysis of known security fixes
versus other commits not related to security vulnerabilities
(Figure 2). The distributions of the numbers of changed files
and lines of code suggest that non-security changes are likely
to be significantly larger (e.g., may spread to hundreds of files
and involve thousands of lines), while security fixes are rather
“local” (mostly a couple of files and less than 100 lines).
Therefore, it is not likely that security fixes from our sample
would contain irrelevant changes.

The cumulative distribution function (CDF) for CVE fixes demonstrates that
CVE fixes tend to be much more local than all other fixes in terms of changed
files. Also in terms of changed lines CVE fixes are more local than all other
fixes: CDF for changed lines during usual fixes is sharper than CDF for
changed lines during CVE fixes.

Fig. 2. Comparing vulnerability fixes with non-security changes from the
Apache Tomcat source code repository

TABLE III
RELATIVE RANKINGS DUE TO BENCHMARK CHOICES

The last column illustrates the relative performance of the two best tools in
Table II first by running them on the vulnerable version (Direct row) versus the
relative performance captured by Delta-Bench by removing the Background
Noise according to the Algorithm 1 (Delta-Bench row).

Vuln type Total vulns Benchmark Tool A Tool B Ranking
Cross-Site
Scripting 35 Scanstud 7 35 A� B

SQL
injection 3 Scanstud 3 3 A = B

Bypass 12 Direct 12 10 A ≥ B
Delta-Bench 12 1 A� B

Cross-Site
Scripting 11 Direct 11 6 A > B

Delta-Bench 10 2 A� B
Denial of
Service 15 Direct 15 11 A > B

Delta-Bench 13 8 A > B
Directory
Traversal 3 Direct 3 2 A ≥ B

Delta-Bench 3 0 A� B

Exec code 2 Direct 2 2 A = B
Delta-Bench 2 0 A > B

Information
Disclosure 23 Direct 22 23 A ≤ B

Delta-Bench 22 13 A� B
Session
Fixation 1 Direct 1 1 A = B

Delta-Bench 1 0 A ≥ B
Text

Injection 3 Direct 3 3 A = B
Delta-Bench 2 0 A ≥ B

VI. EMPIRICAL EVALUATION

From the perspective of “finding a vulnerable file”, SAST
tools are conceptually similar to defect predictors [21]. They
provide the likelihood of the presence of software defects in a
file (or a method) based on source code metrics (e.g., the size
of the source code, cyclomatic complexity, etc.), development
history (code churn, number of contributors, etc.), or other
features. For example, Neuhaus et al. [22] used the information
about past vulnerabilities in software components of Mozilla
Firefox to identify the components that will likely cause
vulnerabilities in the future; whereas, Shin et al. [23] assessed
the defect prediction capabilities of traditional source code
metrics versus developer activity metrics.

6FindBugs is integrated into Apache Tomcat build scripts. Also, Apache
Tomcat is listed among the projects that use Coverity Scan service
(https://scan.coverity.com/projects/apache-tomcat).

4



TABLE IV
AVERAGES OF FILE-LEVEL FINDINGS

There is a difference between tool performances on Scanstud and real-world
benchmarks: Tool B shows better results on Scanstud, but on real-world
software Tool A performs better. Delta-Bench allows us to see this difference
even better: the distance between means of tool metrics becomes bigger. In
some cases there even occurs inversions, i.e., Tool B produces more false
positives when executed on the vulnerable version (Direct row), while after
subtracting BackgroundNoise Tool A starts to produce more False alarms
(Delta-Bench row).

Metric Benchmark Mean of # Files RankingTool A Tool B

TP
Scanstud 0.3 1.0 A < B

Direct 2.2 1.7 A > B
Delta-Bench 1.8 1.2 A > B

FN
Scanstud 0.7 0.0 A > B

Direct 0.4 0.9 A < B
Delta-Bench 0.7 1.4 A < B

FP
Scanstud n/a n/a One file

Direct 554.0 677.0 A < B
Delta-Bench 402.0 254.0 A > B

Signal Scanstud 0.3 1.0 A < B
Delta-Bench 403.0 252.0 A > B

Background
Noise

Scanstud 0.0 0.0 A = B
Delta-Bench 152.0 426.0 A < B

Whilst defect predictors mostly use statistical methods for
identifying the relationships between the source code features
and software defects, SAST tools use semantic-based infor-
mation, and should have better performance [24].

Obviously, Tool A and Tool B (the two tools from Table
II selected for evaluation) did not produce any Background
Noise on Scanstud. Hence, we will report only one result for
Scanstud, while there will be two results for Apache Tomcat.

At first we assessed whether a tool is able to identify a
particular type of vulnerability. A tool succeeded, if there
is at least one correct finding (i.e., at least one TP). Table
III reports tool performances by vulnerability types extracted
from Scanstud and Apache Tomcat.

On Scanstud Tool B identified all 38 vulnerabilities, while
Tool A found only 10 vulnerabilities (7 Cross-Site Scripting
and 3 SQL injection). The analysis of tool findings in Tomcat
by vulnerability types showed different results. According to
the Direct approach (running a tool on the vulnerable version)
for finding classification, Tool A was able to find almost all
vulnerabilities, while Tool B missed some of them. However,
after removing the Background Noise the difference in tool
performances changed significantly: Tool A still identified
the majority of the vulnerabilities, but Tool B spotted only
several of them. Some TP were made by chance, and they
were filtered by Delta-Bench (removing the Background Noise
according to the Algorithm 1). The significant change hap-
pened for Bypass, Cross-Site Scripting, Directory Traversal,
and Information Disclosure vulnerability types.

Table IV shows the average results for each tool. There is
a significant difference in the relative ranking of the tools. On
Scanstud Tool B was able to spot all the vulnerable files, while
Tool A missed some of them. Hence, Tool B performs better
in terms of both TP and FN. By design, synthetic benchmarks
have no non-vulnerable files in Cvuln, hence the “n/a” for FP
in Table IV for Scanstud.

According to the Direct approach on Tomcat, Tool A

TABLE V
AVERAGES OF PRECISION, RECALL AND NEGATIVE PRECISION ON

FILE-LEVEL

Running tools on different types of benchmarks showed different performances
in terms of Precision, Recall, and Negative Precision. In some cases even a
ranking reversal. Noise removal allows a better discrimination between tools,
since the distance between metrics becomes more pronounced.

Metric Benchmark Tool A Tool B Result

Precision
Scanstud 0.3 1.0 A < B

Direct 0.0039 0.0025 A > B
Delta-Bench 0.0065 0.0044 A > B

Recall
Scanstud 0.3 1.0 A < B

Direct 0.9 0.7 A > B
Delta-Bench 0.7 0.4 A > B

Negative
Precision

Scanstud n/a n/a No TN
Direct 0.9998 0.9995 A > B

Delta-Bench 0.9995 0.9991 A > B

produced more TP , less FN and FP comparing to Tool
B, which shows that Tool A performs better. Delta-Bench
increased the difference between the two tools, and therefore,
made it possible to distinguish the two tools better. However,
there is an inversion in the amount of FP : Tool B shows
more FP according to the Direct approach, and Tool A
shows more FP according to the Delta-Bench. This happens
due to the fact, that Tool B produced much more warnings
(i.e., Background Noise) than Tool A. Therefore, when we
subtracted this Background Noise from the tool findings, this
eliminated the majority of FP produced by Tool B.

Table V shows the averages of Precision, Recall, and
Negative Precision for Tool A and Tool B. As it was mentioned
for the average tool findings (Table IV), the tools perform
differently when executed on synthetic and real-world soft-
ware. This is also visible for Precision and Recall. By design,
there were only vulnerable files for Cvuln in Scanstud, and
therefore, we cannot report any results for Negative Precision.
Similarly to the observations on the average tool findings,
Delta-Bench allows tools to be better differentiated than the
Direct approach.

Shaha et al. [25] in their study of bug reports showed
that low-severity bugs can be very important (e.g., due to
classification errors), therefore for our analysis we considered
all warnings regardless of their severity, as we believe they
can be also a subject to similar classification errors.

We also selected only the findings with the top two severity
levels. Both tools produced a negligible amount of TP, when
limited to high severity findings. As it was mentioned in
section IV, Apache Tomcat developers used other SAST tools,
and therefore, they may have already fixed all the high severity
findings produced by those tools.

VII. THREATS TO VALIDITY

Our results may be affected by errors in the data collection
process, the accuracy of the information about security fixes
in Apache Tomcat, and the mechanism for extracting either
ground truth or code fragments pointed by alerts.

Bias in the data collection: although static analysis tools
produce different kinds of output, we bring them to a common
denominator by reducing the output to vulnerability warnings
mapped to the source code locations. In this way we might

5



overlook some other features of tools that, for example, can
enhance user experience and may influence the selection.

Bias in the information about vulnerability fixes: there are
few fixes that span over several commits (e.g., CVE-2009-
3555), for which we used only the last commit that concluded
the fix to reconstruct the vulnerable code fragment. It might be
possible, that both ground truth and warning code fragments
that we extract do not reflect the full vulnerable code sample.

Bias in code base selection: Our private communications
with an industrial SAST specialist suggest that such tools may
be optimized towards finding vulnerabilities specific to web
applications (e.g., XSS or SQLi). Although Apache Tomcat is
a web server, it still has a handful of vulnerabilities specific to
web applications. Hence, we believe that this threat is limited.

Bias in SAST tool selection: we present results obtained
only from two SAST tools. However, we use these tools to
demonstrate the methodology without making claims about
the overall performance of these tools and only show how
different benchmarking methods may change the results.

VIII. CONCLUSIONS

We propose Delta-Bench – a novel approach that uses fixes
of historical vulnerabilities from the existing FOSS projects as
a ground-truth set of vulnerabilities to automatically construct
benchmarks for SAST tools by (suitably) differencing SAST
alerts from vulnerable and fixed versions. The approach allows
us to evaluate SAST tools using only the findings that a tool
produced for the analyzed vulnerability (without considering
the Background Noise). For benchmark construction Delta-
Bench requires only a pair of vulnerable and fixed versions
of a software code as an input.

We demonstrated Delta-Bench on a synthetic benchmark
Scanstud and a set of historical vulnerabilities extracted from
Apache Tomcat. Our experiments already showed significant
insights between the two tools: we found that a relative tool
ranking may be reverted by a different benchmarking method.

As for the future work, we plan to demonstrate Delta-Bench
by using it for evaluation of different commercial and open-
source SAST tools, and on a larger set of real-world software
projects as a source of historical vulnerabilities (beyond Java).
Due to space constraints in this short paper we show the
initial results only at a file-level granularity. We have already
extended Delta-Bench to work with methods, and are starting
to extend it to hunks and program slices. The approach could
be also applied to other types of bugs provided the assumption
on the locality of fixes also applies to those bugs (as we have
shown in Section V for security bugs).

By using Delta-Bench software development companies
may select the most appropriate tool for their projects and
tool developers may improve SAST tools for sharper results.

ACKNOWLEDGMENTS

We would like to thank Achim D. Brucker, Paolo Tonella,
and the members of the security group in Trento for their
helpful comments on preliminary versions of this work. They
greatly helped to improve this paper. We would also like to

thank Katsiaryna Labunets from the TU Delft for her useful
suggestions on the final stages of this work.

REFERENCES

[1] National Security Agency Center for Assured Software (NSA CAS),
“Juliet Test Suite v1.2 for Java user guide,” 2012.

[2] J. Dahse and T. Holz, “Static detection of second-order vulnerabilities
in web applications,” in Proc. of USENIX’14, 2014.

[3] B. Dolan-Gavitt, P. Hulin, E. Kirda, T. Leek, A. Mambretti, W. Robert-
son, F. Ulrich, and R. Whelan, “Lava: Large-scale automated vulnera-
bility addition,” in Proc. of SSP’16, 2016.

[4] R. Just, D. Jalali, and M. D. Ernst, “Defects4J: A database of existing
faults to enable controlled testing studies for Java programs,” in Proc.
of ISSTA’14, 2014.

[5] M. Johns and M. Jodeit, “Scanstud: a methodology for systematic, fine-
grained evaluation of static analysis tools,” in Proc. of ICSTW’11, 2011.

[6] M. Christakis and C. Bird, “What developers want and need from
program analysis: An empirical study,” in Proc. of ASE’16, 2016.

[7] P. Li and B. Cui, “A comparative study on software vulnerability static
analysis techniques and tools,” in Proc. of ICITIS’10, 2010.

[8] P. Emanuelsson and U. Nilsson, “A comparative study of industrial static
analysis tools,” ENTCS, vol. 216, pp. 5–21, 2008.

[9] V. Okun, R. Gaucher, and P. E. Black, “Static analysis tool exposition
(SATE) 2008,” NIST SP, vol. 5, no. 00-2, p. 79, 2009.

[10] P. E. Black and A. Ribeiro, “SATE V Ockham sound analysis criteria,”
NIST SP, Tech. Rep., 2016.

[11] Y. Jia and M. Harman, “An analysis and survey of the development of
mutation testing,” TSE, vol. 37, no. 5, pp. 649–678, 2011.

[12] T. Y. Chen, S. C. Cheung, and S. M. Yiu, “Metamorphic testing: a new
approach for generating next test cases,” HKUST-CS98-01, Hong Kong
University of Science and Technology, Tech. Rep., 1998.

[13] B. V. Livshits and M. S. Lam, “Finding security vulnerabilities in Java
applications with static analysis.” in Proc. of USENIX’13, 2005.

[14] A. Delaitre, V. Okun, and E. Fong, “Of massive static analysis data,” in
Proc. of SERE’13, 2013.

[15] L. Rabai, A. Ben, B. Cohen, and A. Mili, “Programming language use
in us academia and industry,” Inf. in Education, vol. 14, no. 2, p. 143,
2015.

[16] M. Asaduzzamad, R. K. Chanchal, K. A. Schneider, and M. Di Penta,
“Lhdiff: A language-independent hybrid approach for tracking source
code lines,” Proc. of ICSME’13, 2013.

[17] D. Kawrykow and M. P. Robillard, “Non-essential changes in version
histories,” in Proc. of ICSE’11, 2011.

[18] K. Herzig, S. Just, and A. Zeller, “The impact of tangled code changes
on defect prediction models,” Emp. Soft. Eng., vol. 21, no. 2, pp. 303–
336, 2016.

[19] V. H. Nguyen, S. Dashevskyi, and F. Massacci, “An automatic method
for assessing the versions affected by a vulnerability,” Emp. Soft. Eng.,
vol. 21, no. 6, pp. 2268–2297, 2015.

[20] D. Li, L. Li, D. Kim, T. F. Bissyandé, D. Lo, and Y. L. Traon, “Watch out
for this commit! a study of influential software changes,” arXiv preprint
arXiv:1606.03266, 2016.

[21] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, “A systematic
literature review on fault prediction performance in software engineer-
ing,” TSE, vol. 38, no. 6, pp. 1276–1304, 2012.

[22] S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller, “Predicting
vulnerable software components,” in Proc. of CCS’07, 2007.

[23] Y. Shin, A. Meneely, L. Williams, and J. A. Osborne, “Evaluating
complexity, code churn, and developer activity metrics as indicators of
software vulnerabilities,” TSE, vol. 37, no. 6, pp. 772–787, 2011.

[24] H. Tang, T. Lan, D. Hao, and L. Zhang, “Enhancing defect prediction
with static defect analysis,” in Proc. of INTERNETWARE’15, 2015.

[25] R. K. Saha, J. Lawall, S. Khurshid, and D. E. Perry, “Are these bugs
really normal?” in Proc. of MSR’15, 2015.

6


