



# Crime Pays if You are Just an Average Hacker

Shim Woohyun, <u>Luca Allodi</u>, Fabio Massacci lastname@disi.unitn.it

Cyber Security 2012 IEEE/ASE Conference 16 December 2012, Washington D.C., USA





### **Outline**





#### **Motivation**

- Market for security doesn't really work well [1]
- "There are also the markets we don't like that work entirely too well: for example, the market for stolen goods, that encourages burglary [..]" 1
- Cost of cybercrime:
  - Herley: It's quite tricky to get black market numbers right [2]
  - Anderson: Our investments in security are 10x the gains for the attackers (i.e. we're using the wrong strategy) [3]
- However, we still do not have a model of the economically involved hacker
  - Black markets for attack tools
  - Black markets for compromised hosts
  - Black markets for credit cards
- 1. MicroMOTIVES and MACROBehavior Thomas C. Schelling. Ed. Norton, pg 30.





### **Motivation**

"Why does an hacker become an hacker?"





### What's happening in the black markets

 Do bank robbers manufacture their own guns?

> Exploitation success rate: 10-15% Success rate highly depends on quality of traffic

```
1 23.03.2011, 19:44
Средний пробив на связке: 10-25%
                                                                                            Update for version ..
* Пробив указывается приблизительный, может отличаться
                                                                       <sup>1</sup> Апдейт до версии "Eleonore Exp v1.6.5"
 Install rates, slightly higher than usual:
                                                                        The package features these exploits:
* Отстук стандартный, даже чуть выше стандартного:
                                                                        В состав связки входят следующие эксплойты:
                                                                        > CVE-2006-0003 (MDAC)
                    Zeus = 50-60\%
> 3eBC = 50-60\%
                                                                        > CVE-2006-4704 (WMI Object Broke)
> Лоадер = 80-90% Loader = 80-90%
                                                                        > CVE-2008-2463 (Snapshot)
                                                                        > CVE-2010-0806 (IEpeers)
Price for latest version 1.6.x:
                                                                        > CVE-2010-1885 (HCP)
Цена последней версии 1.6.х:
                                                                        > CVE-2010-0188 (PDF libtiff mod v1.0)
> Стоимость самой связки = 2000$
                                    Package cost = 200$
                                                                        > CVE-2011-0558 (Flash <10.2)
                                     "Clean" from AV = from 50$
> Чистки от АВ = от 50$
                                                                        > CVE-2011-0611 (Flash <10.2.159)
                                    Rebuild on new domain/IP=50$
                                                                        > CVE-2010-0886 (Java Invoke)
> Ребилд на другой домен/ИП = 50$
                                    Update = from 100$
                                                                        > CVE-2010-4452 (Java trust)
> Апдейты = от 100$
                                    Package bounded to one domain or IP Work on Vista and Win7
* Связка с привязкой к домену или IP .
```





### The game







### **Preliminary Model (1/4)**

- · To build our model, we look at the attacker:
  - He has limited time
    - Might have a regular job
    - Other activities

T: total time

L: time dedicated to legal activities

I: time dedicated to illegal activities

$$L = (T - I)$$





# **Preliminary Model (1/4)**

To build our model, we look at the attacker:

He needs to weight legal activities...

```
T: total time
B: maximum benefit from legal activities
L: time dedicated to legal activities
p: probability of earning B
J: time dedicated to illegal activities
S: minimum benefit from legal activities
L = (T - I)
EU_{Legal} = L(pB + (1-p)S)
```





# **Preliminary Model (2/4)**

To build our model, we look at the attacker:

T: total time
L: time dedicated to legal activities
I: time dedicated to illegal activities L = (T - I)

He needs to weight legal activities...

B: maximum benefit from legal activities

p: probability of earning B

S: minimum benefit from legal activities

$$EU_{Legal} = L(pB + (1-p)S)$$





# **Preliminary Model (3/4)**

To build our model, we look at the attacker:

T: total time
L: time dedicated to legal activities
I: time dedicated to illegal activities L = (T - I)

B: maximum benefit from legal activitiesp: probability of earning BS: minimum benefit from legal activities

$$EU_{Legal} = L(pB + (1-p)S)$$

 ..With the effects of security policies against criminal activities, enforced by the defender..

q: probability of detection of the criminal activity t: time to detect and disable criminal activity





# **Preliminary Model (4/4)**

To build our model, we look at the attacker:

T: total time
L: time dedicated to legal activities
I: time dedicated to illegal activities L = (T - I)

B: maximum benefit from legal activitiesp: probability of earning BS: minimum benefit from legal activities

q: probability of detection of the criminal activity t: time to detect and disable criminal activity

..and the potential return for the criminal activity

Z: maximum benefit from a criminal activity

C: cost for the hacker in perpetrating it

$$EU_{Criminal} = I(q(Zt - C) + (1-q)Z)$$





# **Preliminary Model (4/4)**

#### To build our model, we look at the attacker:

T: total time
L: time dedicated to legal activities
I: time dedicated to illegal activities L = (T - I)

p: probability of earning B S: minimum benefit from legal activities

B: maximum benefit from legal activities

$$EU_{Legal} = L(pB + (1-p)S)$$

q: probability of detection of the criminal activity t: time to detect and disable criminal activity

Z: maximum benefit from a criminal activityC: cost for the hacker in perpetrating it

$$EU_{Criminal} = I(q(Zt - C) + (1-q)Z)$$





### Preliminary Model (putting it together)

T: total time

L: time dedicated to legal activities

I: time dedicated to illegal activities L = (T - I)

B: maximum benefit from legal activities

p: probability of earning B

S: minimum benefit from legal activities

$$EU_{Legal} = L(pB + (1-p)S)$$



g: probability of detection of the criminal activity

t: time to detect and disable criminal activity

$$EU_{M} = q[(T-L)(Zt-C) + L(pB+(1-p)S)] + (1-q)[(T-L)Z + L(pB+(1-p)S)].$$

$$\frac{EU_{Criminal} = I(q(Zt-C) + (1-p)S)}{EU_{Criminal} = I(q(Zt-C) + (1-p)S)}$$

Z: maximum benefit from a criminal activity

C: cost for the hacker in perpetrating it





### Our approach with the model [4]

- We use a simulation approach
- We fix a "standard value" for each parameter according to our direct observations

- ... briefly describe Krebs et al. [4]
- p = 0.3
- S = 0.5
- ... and briefly explain why 0.3. and 0.5





- q=Probability of neutralization by defenders
- Verizon 2012 Incident report

Unfortunately, as our research has shown for the last several years, third parties discover data breaches much more frequently than do the victim organizations themselves.





- q=Probability of neutralization by defenders
- Verizon 2012 Incident report









- q=Probability of neutralization by defenders
- Verizon 2012 Incident report
- Grier et. all, CCS 2012 [5]
  - Exploit kits change domain monthly/weekly, meaning that neutralizing them as a threat is extremely difficult (and resource-consuming)





- q=Probability of neutralization by defenders
- Verizon 2012 Incident report
- Grier et. all, CCS 2012 [5]
  - Exploit kits change domain monthly/weekly, meaning that neutralizing them as a threat is extremely difficult (and resource-consuming)
- Difficult cooperation between law forces

# nakedsecurity

Award-winning news, opinion, advice and research from SOPHOS

Meanwhile, Russia's anti-cybercrime unit has claimed that there's a very good reason that it hasn't investigated the Koobface gang - it hasn't been asked to.





- q=Probability of neutralization by defenders
- Verizon 2012 Incident report
- Grier et. all, CCS 2012 [5]
  - Exploit kits change domain monthly/weekly, meaning that neutralizing them as a threat is extremely difficult (and resource-consuming)
- Difficult cooperation between law forces

# nakedsecurity

Award-winning news, opinion, advice and research from SOPHOS

Meanwhile, Russia's anti-cybercrime unit has claimed that there's a very good reason that it hasn't investigated the Koobface gang - it hasn't been asked to.





- C=Cost for the attacker
- Exploit kits do not require particular technology (inexpensive)





- C=Cost for the attacker
- Exploit kits do not require particular technology (inexpensive)
- Van Eeten OECD Tech Report [6]: criminals are often out of jurisdiction
- Arrest rate is very low, penalities unclear

For example, Yevgeniy Anikin and Viktor Pleschuk, who hacked the WorldPay system of The Royal Bank of Scotland and stole \$10 million from its accounts, were found guilty by a Russian court, yet only received suspended sentences, while those convicted of ordinary





# Parameters estimation (C=0.2)

- C=Cost for the attacker
- Exploit kits do not require particular technology (inexpensive)
- Van Eeten OECD Tech Report [6]: criminals are often out of jurisdiction
- Arrest rate is very low, penalities unclear

For example, Yevgeniy Anikin and Viktor Pleschuk, who hacked the WorldPay system of The Royal Bank of Scotland and stole \$10 million from its accounts, were found guilty by a Russian court, yet only received suspended sentences, while those convicted of ordinary





- B=maximum return from legal activities
- Z=maximum return from criminal activities
- Returns are not only economical, but also related to personal realization (in many forms)





- B=maximum return from legal activities
- Z=maximum return from criminal activities
- Returns are not only economical, but also related to personal realization (in many forms)
- We distinguish two cases:
  - -Z>B
    - Hacker valuates thrill, fun from hacking, sense of superiority more than lawful returns
  - -B>Z
    - Hacker values legality and moral self-esteem more than criminal returns





- B=maximum return from legal activities
- Z=maximum return from criminal activities
- Returns are not only economical, but also related to personal realization (in many forms)
- We distinguish two cases:
  - -Z=1>B=0.8
    - Hacker valuates thrill, fun from hacking, sense of superiority more than lawful returns
  - -B=1>Z=0.8
    - Hacker values legality and moral self-esteem more than criminal returns





- L=time dedicated to legal activities
- Hackers are usually young and well educated
  - Meaning they spend time studying and working

novich, Sverdlovsk region, Russia. Education: Professional Pedagogical

University of Russia (Applied Informatics in Economics major). Citizen-





- L=time dedicated to legal activities
- Hackers are usually young and well educated
  - Meaning they spend time studying and working

novich, Sverdlovsk region, Russia. Education: Professional Pedagogical

University of Russia (Applied Informatics in Economics major). Citizen-

gion, Russia. Education: Graduated in 2003 from the School of Computer
Systems and Programming of Saint Petersburg State University of Aerospace Instrumentation. Citizenship: Russian





- L=time dedicated to legal activities
- Hackers are usually young and well educated
  - Meaning they spend time studying and working
- Does not take a lot of time to run a cybercriminal activity

"Botnet operation is a mini job, once a day you check for 30minutes, pay once a month server bills, sell for about an hour information on the market and enchance your code if you feel like it. I was thinking about working for Kaspersky, but these guys want all kinds of phony diplomas and can't even recognize native code (see the duqu 'incident'). The profit? Depends, sometimes 400\$ a day, sometimes none, but a steady 40\$ a day with bitcoins alone."





# Parameters estimation (L=0.9)

- L=time dedicated to legal activities
- Hackers are usually young and well educated
  - Meaning they spend time studying and working
- Does not take a lot of time to run a cybercriminal activity

"Botnet operation is a mini job, once a day you check for 30minutes, pay once a month server bills, sell for about an hour information on the market and enchance your code if you feel like it. I was thinking about working for Kaspersky, but these guys want all kinds of phony diplomas and can't even recognize native code (see the duqu 'incident'). The profit? Depends, sometimes 400\$ a day, sometimes none, but a steady 40\$ a day with bitcoins alone."





### Our approach with the model – cnd.

| Activity type | Variable | Meaning                                                             |  |  |  |  |
|---------------|----------|---------------------------------------------------------------------|--|--|--|--|
| General       | T        | hacker's total time                                                 |  |  |  |  |
|               | t        | time for detection and neutralization of criminal activity          |  |  |  |  |
|               | p        | probability of obtaining maximum benefit from legal activities      |  |  |  |  |
|               | 1-p      | probability of obtaining only minimum benefit from legal activities |  |  |  |  |
|               | q        | probability of detection of the criminal activity                   |  |  |  |  |
|               | q-1      | probability of non-detection of the criminal activity               |  |  |  |  |
| Legal         | L        | fraction of time the hacker devotes to legal activities             |  |  |  |  |
|               | В        | maximum benefit gained from a legal activity                        |  |  |  |  |
|               | S        | minimum benefit gained from a legal activity                        |  |  |  |  |
| Criminal      | I        | fraction of time the hacker devotes to criminal activities          |  |  |  |  |
|               | Z        | maximum benefit gained from a criminal activity                     |  |  |  |  |
|               | С        | cost for the hacker in perpetrating criminal activities             |  |  |  |  |





#### **Simulations**

- We run simulations changing one parameter at a time,
  - From 0.05
  - To 1
  - With 0.05 steps





### **Simulations**

- We run simulations changing one parameter at a time,
  - From 0.05
  - To 1
  - With 0.05 steps
- Each run simulates the policy maker enforcing a policy addressing one particular aspect of the hacker decisional model





### **Simulation results**

| Changes in less spainble | Model 1   | Model 2   | Model 3   | Model 4   | Model 5   | Model 6   | Model 7   |
|--------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Changes in key variable  | p changes | q changes | S changes | C changes | B changes | Z changes | t changes |
| 0.05                     |           |           |           |           |           | Succeed   |           |
| 0.1                      |           |           |           |           |           | Succeed   |           |
| 0.15                     |           |           |           |           |           | Succeed   |           |
| 0.2                      |           |           |           |           |           | Succeed   |           |
| 0.25                     |           |           |           |           |           | Succeed   |           |
| 0.3                      |           |           |           |           |           | Succeed   |           |
| 0.35                     |           |           |           |           |           | Succeed   |           |
| 0.4                      |           |           |           |           |           | Succeed   |           |
| 0.45                     |           |           |           |           |           | Succeed   |           |
| 0.5                      |           |           |           |           |           | Succeed   |           |
| 0.55                     |           | Succeed   | Succeed   |           |           | Succeed   |           |
| 0.6                      |           | Succeed   | Succeed   |           |           | Succeed   |           |
| 0.65                     |           | Succeed   | Succeed   |           |           | Succeed   |           |
| 0.7                      | Succeed   | Succeed   | Succeed   |           |           |           |           |
| 0.75                     | Succeed   | Succeed   | Succeed   |           |           |           |           |
| 0.8                      | Succeed   | Succeed   | Succeed   |           |           |           |           |
| 0.85                     | Succeed   | Succeed   | Succeed   |           |           |           |           |
| 0.9                      | Succeed   | Succeed   | Succeed   |           |           |           |           |
| 0.95                     | Succeed   | Succeed   | Succeed   |           |           |           |           |
| 1                        | Succeed   | Succeed   | Succeed   |           |           |           |           |





### **Thanks**

Questions?

luca.allodi@unitn.it